1
|
Couto CG, Chew DJ. Letter regarding "Evaluation of the clinical outcome of hypercalcemia of malignancy and concurrent azotemia in dogs with lymphoma". J Vet Intern Med 2024; 38:1287-1288. [PMID: 38551138 PMCID: PMC11099710 DOI: 10.1111/jvim.17060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/18/2024] Open
|
2
|
Guo X, Kong Y, Kwon TH, Li C, Wang W. Autophagy and regulation of aquaporins in the kidneys. Kidney Res Clin Pract 2023; 42:676-685. [PMID: 37098672 DOI: 10.23876/j.krcp.22.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 04/27/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that facilitate the transport of water molecules across cell membranes. To date, seven AQPs have been found to be expressed in mammal kidneys. The cellular localization and regulation of the transport properties of AQPs in the kidney have been widely investigated. Autophagy is known as a highly conserved lysosomal pathway, which degrades cytoplasmic components. Through basal autophagy, kidney cells maintain their functions and structure. As a part of the adaptive responses of the kidney, autophagy may be altered in response to stress conditions. Recent studies revealed that autophagic degradation of AQP2 in the kidney collecting ducts leads to impaired urine concentration in animal models with polyuria. Therefore, the modulation of autophagy could be a therapeutic approach to treat water balance disorders. However, as autophagy is either protective or deleterious, it is crucial to establish an optimal condition and therapeutic window where autophagy induction or inhibition could yield beneficial effects. Further studies are needed to understand both the regulation of autophagy and the interaction between AQPs and autophagy in the kidneys in renal diseases, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Xiangdong Guo
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chunling Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Matchimakul P, Pongkan W, Kongtung P, Mektrirat R. Comparative quantitation of aquaporin-2 and arginine vasopressin receptor-2 localizations among chronic kidney disease and healthy kidney in dogs. Vet World 2021; 14:2773-2781. [PMID: 34903939 PMCID: PMC8654747 DOI: 10.14202/vetworld.2021.2773-2781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Aquaporin-2 (AQP2) and arginine vasopressin receptor-2 (AVPR2) are proteins that control water homeostasis in principal cells. Chronic kidney disease (CKD) is defined as the impairment and irreversible loss of kidney function and/or structure, which causes water imbalances and polyuria. The study aimed to know the expression of AQPs and AVPR2 in the kidneys of a canine with CKD. MATERIALS AND METHODS The kidneys were collected from two dog carcasses from Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Chiang Mai University. The kidney tissue was prepared for immunohistochemistry and investigated the expression and localization of tissue's AQP2 and AVPR2. For statistical analysis, the Mann-Whitney U-test was applied to the data. RESULTS By immunohistochemistry, AQP2 was expressed strongly in the basolateral and apical membranes of the principal cells, whereas AVPR2 was localized in the principal cell's basolateral membrane in both renal cortex and renal medulla. In the normal kidney, the semi-quantitative immunohistochemistry for the percentage of protein expression of AQP2 and AVPR2 was 5.062±0.4587 and 4.306±0.7695, respectively. In contrast, protein expression of AQP2 and AVPR2 in CKD was found to be 1.218±0.1719 and 0.8536±0.1396, respectively. The data shows that the percentage of AQP2 and AVPR2 expression was decreased, corresponding to a 4-fold and 5-fold in CKD (p<0.001). CONCLUSION Our findings revealed that CKD was a marked decrease in AQP2 and AVPR2 expression. The central role of specific AQP2 and AVPR2 in regulating water homeostasis will provide correlations in case of CKD with polyuria.
Collapse
Affiliation(s)
- Pitchaya Matchimakul
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wanpitak Pongkan
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Piyamat Kongtung
- Central Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Integrative Research Center for Veterinary Circulatory Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
4
|
Liu Q, Kong Y, Guo X, Liang B, Xie H, Hu S, Han M, Zhao X, Feng P, Lyu Q, Dong W, Liang X, Wang W, Li C. GSK-3β inhibitor TDZD-8 prevents reduction of aquaporin-1 expression via activating autophagy under renal ischemia reperfusion injury. FASEB J 2021; 35:e21809. [PMID: 34314052 DOI: 10.1096/fj.202100549r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI). Aquaporin (AQP)-1 water channel in the kidney is critical for the maintenance of water homeostasis and the urinary concentrating ability. Increasing evidence supports an important role of autophagy in the pathogenesis of AKI induced by renal I/R. The purpose of the present study is to investigate whether activation of autophagy prevents downregulation of AQP1 protein induced by renal I/R and potential molecular mechanisms. Renal I/R induced consistently reduced protein expression of AQP1, 2, and 3, as well as sodium cotransporters Na+ -K+ -2Cl- cotransporter and α-Na,K-ATPase, which was associated with increased urine output and decreased creatinine clearance in rats. Renal I/R also suppressed autophagy and increased inflammatory responses in the kidney. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), the glycogen synthase kinase-3β inhibitor, ameliorated renal injury under I/R, activated autophagy and markedly increased expression of AQPs and sodium transporters in the kidney, which was associated with improved urine output and creatinine clearance in rats. Hypoxia/reoxygenation (H/R) induced suppression of autophagy and downregulation of AQP1 in murine inner medullary collecting duct 3 (IMCD3) cells, which was fully prevented by TDZD-8 treatment. Inhibition of autophagy by 3-methyladenine or Atg5 gene knockdown attenuated recovery of AQP1 protein expression induced by TDZD-8 in IMCD3 cells with H/R. Interleukin-1 beta (IL-1β) decreased the abundance of AQP1 protein in IMCD3 cells. H/R induced increases in protein expression of nod-like receptor pyrin domain-containing 3 and IL-1β, which was reversed by TDZD-8. In conclusion, TDZD-8 treatment prevented downregulation of AQP1 expression under renal I/R injury, likely via activating autophagy and decreasing IL-1β production.
Collapse
Affiliation(s)
- Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Dong
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
|
6
|
Parente Filho SLA, Gomes PEADC, Forte GA, Lima LLL, Silva Júnior GBD, Meneses GC, Martins AMC, Daher EDF. Kidney disease associated with androgenic-anabolic steroids and vitamin supplements abuse: Be aware! Nefrologia 2019; 40:26-31. [PMID: 31585781 DOI: 10.1016/j.nefro.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023] Open
Abstract
The excessive chase for beauty standards and the rise of muscle dysmorphia have ultimately led to an increase in androgenic-anabolic steroids (AAS) and intramuscular injections of vitamins A, D and E (ADE) abuse, which is associated with several adverse effects and has become a public health issue. This review of literature discusses kidney injury associated with the use of AAS and ADE, highlighting the mechanisms of acute and chronic renal lesion, such as direct renal toxicity, glomerular hyperfiltration and hypercalcemia. Future perspectives regarding evaluation and early diagnosis of kidney injury in these patients are also discussed.
Collapse
Affiliation(s)
- Sérgio Luiz Arruda Parente Filho
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Guilherme Aguiar Forte
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Laio Ladislau Lopes Lima
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Gdayllon Cavalcante Meneses
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, School of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Elizabeth De Francesco Daher
- Medical Sciences Post-Graduation Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
7
|
Jung HJ, Kwon TH. New insights into the transcriptional regulation of aquaporin-2 and the treatment of X-linked hereditary nephrogenic diabetes insipidus. Kidney Res Clin Pract 2019; 38:145-158. [PMID: 31189221 PMCID: PMC6577206 DOI: 10.23876/j.krcp.19.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
The kidney collecting duct (CD) is a tubular segment of the kidney where the osmolality and final flow rate of urine are established, enabling urine concentration and body water homeostasis. Water reabsorption in the CD depends on the action of arginine vasopressin (AVP) and a transepithelial osmotic gradient between the luminal fluid and surrounding interstitium. AVP induces transcellular water reabsorption across CD principal cells through associated signaling pathways after binding to arginine vasopressin receptor 2 (AVPR2). This signaling cascade regulates the water channel protein aquaporin-2 (AQP2). AQP2 is exclusively localized in kidney connecting tubules and CDs. Specifically, AVP stimulates the intracellular translocation of AQP2-containing vesicles to the apical plasma membrane, increasing the osmotic water permeability of CD cells. Moreover, AVP induces transcription of the Aqp2 gene, increasing AQP2 protein abundance. This review provides new insights into the transcriptional regulation of the Aqp2 gene in the kidney CD with an overview of AVP and AQP2. It summarizes current therapeutic approaches for X-linked nephrogenic diabetes insipidus caused by AVPR2 gene mutations.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
8
|
Ranieri M, Di Mise A, Tamma G, Valenti G. Vasopressin-aquaporin-2 pathway: recent advances in understanding water balance disorders. F1000Res 2019; 8. [PMID: 30800291 PMCID: PMC6364380 DOI: 10.12688/f1000research.16654.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
The alteration of water balance and related disorders has emerged as being strictly linked to the state of activation of the vasopressin–aquaporin-2
(vasopressin–AQP2) pathway. The lack of responsiveness of the kidney to the vasopressin action impairs its ability to concentrate the urine, resulting in polyuria, polydipsia, and risk of severe dehydration for patients. Conversely, non-osmotic release of vasopressin is associated with an increase in water permeability in the renal collecting duct, producing water retention and increasing the circulatory blood volume. This review highlights some of the new insights and recent advances in therapeutic intervention targeting the dysfunctions in the vasopressin–AQP2 pathway causing diseases characterized by water balance disorders such as congenital nephrogenic diabetes insipidus, syndrome of inappropriate antidiuretic hormone secretion, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The recent clinical data suggest that targeting the vasopressin–AQP2 axis can provide therapeutic benefits in patients with water balance disorders.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Rome, Roma, Italy, 00136, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Rome, Roma, Italy, 00136, Italy.,Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy, 70125, Italy
| |
Collapse
|
9
|
Umejiego EN, Wang Y, Knepper MA, Chou CL. Roflumilast and aquaporin-2 regulation in rat renal inner medullary collecting duct. Physiol Rep 2017; 5:5/2/e13121. [PMID: 28108651 PMCID: PMC5269416 DOI: 10.14814/phy2.13121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
Roflumilast is a cyclic nucleotide phosphodiesterase inhibitor that is FDA‐approved for treatment of chronic obstructive pulmonary disease. With a view toward possible use for treatment of patients with X‐linked nephrogenic diabetes insipidus (NDI) due to hemizygous mutations in the V2 vasopressin receptor, this study sought to determine the effect of roflumilast on aquaporin‐2 (AQP2) phosphorylation, AQP2 trafficking, and water permeability in the rat inner medullary collecting duct (IMCD). In the presence of the vasopressin analog dDAVP (0.1 nmol/L), both roflumilast and its active metabolite roflumilast N‐oxide (RNO) significantly increased phosphorylation at S256, S264, and S269, and decreased phosphorylation at S261 (immunoblotting) in IMCD suspensions in a dose‐dependent manner (3–3000 nmol/L). Another commonly used phosphodiesterase inhibitor, IBMX, affected phosphorylation only at the highest concentration in this range. However, neither roflumilast nor RNO had an effect on AQP2 phosphorylation in the absence of vasopressin. Furthermore, roflumilast alone did not increase AQP2 trafficking to the plasma membrane (immunofluorescence) or increase water permeability in freshly microdissected perfused IMCD segments. We conclude that roflumilast can be used to enhance vasopressin's action on AQP2 activity in the renal collecting duct, but has no detectable effect in the absence of vasopressin. These findings suggest that roflumilast may not have a beneficial effect in X‐linked NDI, but could find useful application in acquired NDI.
Collapse
Affiliation(s)
- Ezigbobiara N Umejiego
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, 30322
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| |
Collapse
|
10
|
Milano S, Carmosino M, Gerbino A, Svelto M, Procino G. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update. Int J Mol Sci 2017; 18:ijms18112385. [PMID: 29125546 PMCID: PMC5713354 DOI: 10.3390/ijms18112385] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/17/2022] Open
Abstract
Under physiological conditions, excessive loss of water through the urine is prevented by the release of the antidiuretic hormone arginine-vasopressin (AVP) from the posterior pituitary. In the kidney, AVP elicits a number of cellular responses, which converge on increasing the osmotic reabsorption of water in the collecting duct. One of the key events triggered by the binding of AVP to its type-2 receptor (AVPR2) is the exocytosis of the water channel aquaporin 2 (AQP2) at the apical membrane the principal cells of the collecting duct. Mutations of either AVPR2 or AQP2 result in a genetic disease known as nephrogenic diabetes insipidus, which is characterized by the lack of responsiveness of the collecting duct to the antidiuretic action of AVP. The affected subject, being incapable of concentrating the urine, presents marked polyuria and compensatory polydipsia and is constantly at risk of severe dehydration. The molecular bases of the disease are fully uncovered, as well as the genetic or clinical tests for a prompt diagnosis of the disease in newborns. A real cure for nephrogenic diabetes insipidus (NDI) is still missing, and the main symptoms of the disease are handled with s continuous supply of water, a restrictive diet, and nonspecific drugs. Unfortunately, the current therapeutic options are limited and only partially beneficial. Further investigation in vitro or using the available animal models of the disease, combined with clinical trials, will eventually lead to the identification of one or more targeted strategies that will improve or replace the current conventional therapy and grant NDI patients a better quality of life. Here we provide an updated overview of the genetic defects causing NDI, the most recent strategies under investigation for rescuing the activity of mutated AVPR2 or AQP2, or for bypassing defective AVPR2 signaling and restoring AQP2 plasma membrane expression.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy.
| |
Collapse
|
11
|
Khositseth S, Charngkaew K, Boonkrai C, Somparn P, Uawithya P, Chomanee N, Payne DM, Fenton RA, Pisitkun T. Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus. Kidney Int 2017; 91:1070-1087. [PMID: 28139295 DOI: 10.1016/j.kint.2016.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022]
Abstract
Hypercalcemia can cause renal dysfunction such as nephrogenic diabetes insipidus (NDI), but the mechanisms underlying hypercalcemia-induced NDI are not well understood. To elucidate the early molecular changes responsible for this disorder, we employed mass spectrometry-based proteomic analysis of inner medullary collecting ducts (IMCD) isolated from parathyroid hormone-treated rats at onset of hypercalcemia-induced NDI. Forty-one proteins, including the water channel aquaporin-2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the downregulated proteins were associated with cytoskeletal protein binding, regulation of actin filament polymerization, and cell-cell junctions. Targeted LC-MS/MS and immunoblot studies confirmed the downregulation of 16 proteins identified in the initial proteomic analysis and in additional experiments using a vitamin D treatment model of hypercalcemia-induced NDI. Evaluation of transcript levels and estimated half-life of the downregulated proteins suggested enhanced protein degradation as the possible regulatory mechanism. Electron microscopy showed defective intercellular junctions and autophagy in the IMCD cells from both vitamin D- and parathyroid hormone-treated rats. A significant increase in the number of autophagosomes was confirmed by immunofluorescence labeling of LC3. Colocalization of LC3 and Lamp1 with aquaporin-2 and other downregulated proteins was found in both models. Immunogold electron microscopy revealed aquaporin-2 in autophagosomes in IMCD cells from both hypercalcemia models. Finally, parathyroid hormone withdrawal reversed the NDI phenotype, accompanied by termination of aquaporin-2 autophagic degradation and normalization of both nonphoshorylated and S256-phosphorylated aquaporin-2 levels. Thus, enhanced autophagic degradation of proteins plays an important role in the initial mechanism of hypercalcemic-induced NDI.
Collapse
Affiliation(s)
- Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Panapat Uawithya
- Department of Physiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nusara Chomanee
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - D Michael Payne
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Aarhus, Denmark
| | - Trairak Pisitkun
- Systems Biology Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| |
Collapse
|
12
|
Tokonami N, Cheval L, Monnay I, Meurice G, Loffing J, Feraille E, Houillier P. Endothelin-1 mediates natriuresis but not polyuria during vitamin D-induced acute hypercalcaemia. J Physiol 2017; 595:2535-2550. [PMID: 28120456 DOI: 10.1113/jp273610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. ABSTRACT Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein β and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria.
Collapse
Affiliation(s)
- Natsuko Tokonami
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Lydie Cheval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| | - Isabelle Monnay
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Guillaume Meurice
- Bioinformatic Core Facility, UMS AMMICA, INSERM US23, CNRS UMS3665, Gustave Roussy, Villejuif, France
| | | | - Eric Feraille
- University of Geneva, Department of Cell Physiology and Metabolism, Service of Nephrology University Medical Center, Geneva, Switzerland
| | - Pascal Houillier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138 team 3, Centre de Recherche des Cordeliers, CNRS ERL 8228, Paris, France
| |
Collapse
|
13
|
Abstract
Aquaporins (AQPs) are a 13 member family (AQP0-12) of proteins that act as channels, through which water and, for some family members, glycerol, urea and other small solutes can be transported. Aquaporins are highly abundant in kidney epithelial cells where they play a critical role with respect to water balance. In this review we summarize the current knowledge with respect to the localization and function of AQPs within the kidney tubule, and their role in mammalian water homeostasis and the water balance disorders. Overviews of practical aspects with regard to differential diagnosis for some of these disorders, alongside treatment strategies are also discussed.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Cecilia H Fuglsang
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark
| | - Robert A Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport, Aarhus University, Denmark.
| |
Collapse
|
14
|
Aksakal N, Erçetin C, Özçınar B, Aral F, Erbil Y. Lithium-associated primary hyperparathyroidism complicated by nephrogenic diabetes insipidus. ULUSAL CERRAHI DERGISI 2015; 31:166-9. [PMID: 26504422 DOI: 10.5152/ucd.2014.2859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/23/2014] [Indexed: 11/22/2022]
Abstract
Lithium-associated hyperparathyroidism is the leading cause of hypercalcemia in lithium-treated patients. Lithium may lead to exacerbation of pre-existing primary hyperparathyroidism or cause an increased set-point of calcium for parathyroid hormone suppression, leading to parathyroid hyperplasia. Lithium may cause renal tubular concentration defects directly by the development of nephrogenic diabetes insipidus or indirectly by the effects of hypercalcemia. In this study, we present a female patient on long-term lithium treatment who was evaluated for hypercalcemia. Preoperative imaging studies indicated parathyroid adenoma and multinodular goiter. Parathyroidectomy and thyroidectomy were planned. During the postoperative course, prolonged intubation was necessary because of agitation and delirium. During this period, polyuria, severe dehydration, and hypernatremia developed, which responded to controlled hypotonic fluid infusions and was unresponsive to parenteral desmopressin. A diagnosis of nephrogenic diabetes insipidus was apparent. A parathyroid adenoma and multifocal papillary thyroid cancer were detected on histopathological examination. It was thought that nephrogenic diabetes insipidus was masked by hypercalcemia preoperatively. A patient on lithium treatment should be carefully followed up during or after surgery to prevent life-threatening complications of previously unrecognized nephrogenic diabetes insipidus, and the possibility of renal concentrating defects on long-term lithium use should be sought, particularly in patients with impaired consciousness.
Collapse
Affiliation(s)
- Nihat Aksakal
- Department of General Surgery, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Candaş Erçetin
- Department of General Surgery, Bağcılar Training and Research Hospital, İstanbul, Turkey
| | - Beyza Özçınar
- Department of General Surgery, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Ferihan Aral
- Department of Endocrinology, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Yeşim Erbil
- Department of General Surgery, İstanbul University İstanbul Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
15
|
Huang H, Liao D, Liang L, Song L, Zhao W. Genistein inhibits rotavirus replication and upregulates AQP4 expression in rotavirus-infected Caco-2 cells. Arch Virol 2015; 160:1421-33. [PMID: 25877820 DOI: 10.1007/s00705-015-2404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
Rotavirus (RV) is the primary cause of severe dehydrating gastroenteritis and acute diarrheal disease in infants and young children. Previous studies have revealed that genistein can inhibit the infectivity of enveloped or nonenveloped viruses. Although the biological properties of genistein are well studied, the mechanisms of action underlying their anti-rotavirus properties have not been fully elucidated. Here, we report that genistein significantly inhibits RV-Wa replication in vitro by repressing viral RNA transcripts, and possibly viral protein synthesis. Interestingly, we also found that aquaporin 4 (AQP4) mRNA and protein expression, which was downregulated in RV-infected Caco-2 cells, can be upregulated by genistein in a time- and dose-dependent manner. Further experiments confirmed that genistein triggers CREB phosphorylation through PKA activation and subsequently promotes AQP4 gene transcription. These findings suggest that the pathophysiological mechanism of RV infection involves decreased expression of AQP4 and that genistein may be a useful candidate for developing a new anti-RV strategy by inhibiting rotavirus replication and upregulating AQP4 expression via the cAMP/PKA/CREB signaling pathway. Further studies on the effect of genistein on RV-induced diarrhea are warranted.
Collapse
Affiliation(s)
- Haohai Huang
- School of Pharmacy, Guangdong Medical College, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, China
| | | | | | | | | |
Collapse
|
16
|
Sim JH, Himmel NJ, Redd SK, Pulous FE, Rogers RT, Black LN, Hong SM, von Bergen TN, Blount MA. Absence of PKC-alpha attenuates lithium-induced nephrogenic diabetes insipidus. PLoS One 2014; 9:e101753. [PMID: 25006961 PMCID: PMC4090211 DOI: 10.1371/journal.pone.0101753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/11/2014] [Indexed: 01/01/2023] Open
Abstract
Lithium, an effective antipsychotic, induces nephrogenic diabetes insipidus (NDI) in ∼40% of patients. The decreased capacity to concentrate urine is likely due to lithium acutely disrupting the cAMP pathway and chronically reducing urea transporter (UT-A1) and water channel (AQP2) expression in the inner medulla. Targeting an alternative signaling pathway, such as PKC-mediated signaling, may be an effective method of treating lithium-induced polyuria. PKC-alpha null mice (PKCα KO) and strain-matched wild type (WT) controls were treated with lithium for 0, 3 or 5 days. WT mice had increased urine output and lowered urine osmolality after 3 and 5 days of treatment whereas PKCα KO mice had no change in urine output or concentration. Western blot analysis revealed that AQP2 expression in medullary tissues was lowered after 3 and 5 days in WT mice; however, AQP2 was unchanged in PKCα KO. Similar results were observed with UT-A1 expression. Animals were also treated with lithium for 6 weeks. Lithium-treated WT mice had 19-fold increased urine output whereas treated PKCα KO animals had a 4-fold increase in output. AQP2 and UT-A1 expression was lowered in 6 week lithium-treated WT animals whereas in treated PKCα KO mice, AQP2 was only reduced by 2-fold and UT-A1 expression was unaffected. Urinary sodium, potassium and calcium were elevated in lithium-fed WT but not in lithium-fed PKCα KO mice. Our data show that ablation of PKCα preserves AQP2 and UT-A1 protein expression and localization in lithium-induced NDI, and prevents the development of the severe polyuria associated with lithium therapy.
Collapse
Affiliation(s)
- Jae H. Sim
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nathaniel J. Himmel
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sara K. Redd
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Fadi E. Pulous
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard T. Rogers
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lauren N. Black
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Seongun M. Hong
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Tobias N. von Bergen
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mitsi A. Blount
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
17
|
Abstract
Aquaporins (AQPs) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen aquaporins have been characterized. They are distributed wildly in specific cell types in multiple organs and tissues. Each AQP channel consists of six membrane-spanning alpha-helices that have a central water-transporting pore. Four AQP monomers assemble to form tetramers, which are the functional units in the membrane. Some of AQPs also transport urea, glycerol, ammonia, hydrogen peroxide, and gas molecules. AQP-mediated osmotic water transport across epithelial plasma membranes facilitates transcellular fluid transport and thus water reabsorption. AQP-mediated urea and glycerol transport is involved in energy metabolism and epidermal hydration. AQP-mediated CO2 and NH3 transport across membrane maintains intracellular acid-base homeostasis. AQPs are also involved in the pathophysiology of a wide range of human diseases (including water disbalance in kidney and brain, neuroinflammatory disease, obesity, and cancer). Further work is required to determine whether aquaporins are viable therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
|
18
|
Kortenoeven MLA, Fenton RA. Renal aquaporins and water balance disorders. Biochim Biophys Acta Gen Subj 2013; 1840:1533-49. [PMID: 24342488 DOI: 10.1016/j.bbagen.2013.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics. GENERAL SIGNIFICANCE In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
19
|
Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders. Clin Exp Nephrol 2013; 18:558-70. [DOI: 10.1007/s10157-013-0878-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/24/2013] [Indexed: 12/11/2022]
|
20
|
Park EJ, Lim JS, Jung HJ, Kim E, Han KH, Kwon TH. The role of 70-kDa heat shock protein in dDAVP-induced AQP2 trafficking in kidney collecting duct cells. Am J Physiol Renal Physiol 2013; 304:F958-71. [DOI: 10.1152/ajprenal.00469.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been reported that several proteins [heat shock protein 70 (Hsp70 and Hsc70), annexin II, and tropomyosin 5b] interact with the Ser256 residue on the COOH terminus of aquaporin-2 (AQP2), where vasopressin-induced phosphorylation occurs for mediating AQP2 trafficking. However, it remains unknown whether these proteins, particularly Hsp70, play a role in AQP2 trafficking. Semiquantitative immunoblotting revealed that renal expression of AQP2 and Hsp70 was significantly increased in water-restricted or dDAVP-infused rats. In silico analysis of the 5′-flanking regions of AQP2, Hsp70-1, and Hsp70-2 genes revealed that transcriptional regulator binding elements associated with cAMP response were identified at both the Hsp70-1 and Hsp70-2 promoter regions, in addition to AQP2. Luciferase reporter assay demonstrated the significant increase of luminescence after dDAVP stimulation (10−8 M, 6 h) in the LLC-PK1 cells transfected with luciferase vector containing 1 kb of the 5′-flanking region of Hsp70-2 gene. Hsp70-2 protein expression was also increased in mpkCCDc14 cells treated by dDAVP in a concentration-dependent manner. Cell surface biotinylation analysis demonstrated that forskolin (10−5 M, 15 min)-induced AQP2 targeting to the apical plasma membrane was significantly attenuated in the mpkCCDc14 cells with Hsp70-2 knockdown. Moreover, forskolin-induced AQP2 phosphorylation (Ser256) was not significantly induced in the mpkCCDc14 cells with Hsp70-2 knockdown. In contrast, Hsp70-2 knockdown did not affect the dDAVP-induced AQP2 abundance. In addition, siRNA-directed knockdown of Hsp70 significantly decreased cell viability. The results suggest that Hsp70 is likely to play a role in AQP2 trafficking to the apical plasma membrane, partly through affecting AQP2 phosphorylation at Ser256 and cell viability.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Jung-Suk Lim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Hyun Jun Jung
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Eunjung Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| |
Collapse
|
21
|
Moeller HB, Rittig S, Fenton RA. Nephrogenic diabetes insipidus: essential insights into the molecular background and potential therapies for treatment. Endocr Rev 2013; 34:278-301. [PMID: 23360744 PMCID: PMC3610677 DOI: 10.1210/er.2012-1044] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The water channel aquaporin-2 (AQP2), expressed in the kidney collecting ducts, plays a pivotal role in maintaining body water balance. The channel is regulated by the peptide hormone arginine vasopressin (AVP), which exerts its effects through the type 2 vasopressin receptor (AVPR2). Disrupted function or regulation of AQP2 or the AVPR2 results in nephrogenic diabetes insipidus (NDI), a common clinical condition of renal origin characterized by polydipsia and polyuria. Over several years, major research efforts have advanced our understanding of NDI at the genetic, cellular, molecular, and biological levels. NDI is commonly characterized as hereditary (congenital) NDI, arising from genetic mutations in the AVPR2 or AQP2; or acquired NDI, due to for exmple medical treatment or electrolyte disturbances. In this article, we provide a comprehensive overview of the genetic, cell biological, and pathophysiological causes of NDI, with emphasis on the congenital forms and the acquired forms arising from lithium and other drug therapies, acute and chronic renal failure, and disturbed levels of calcium and potassium. Additionally, we provide an overview of the exciting new treatment strategies that have been recently proposed for alleviating the symptoms of some forms of the disease and for bypassing G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Hanne B Moeller
- Department of Biomedicine, Aarhus University, and Department of Pediatrics, Aarhus University Hospital, Wilhelm Meyers Alle 3, Building 1234, Aarhus 8000, Denmark.
| | | | | |
Collapse
|
22
|
Congenital nephrogenic diabetes insipidus: the current state of affairs. Pediatr Nephrol 2012; 27:2183-204. [PMID: 22427315 DOI: 10.1007/s00467-012-2118-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 01/02/2023]
Abstract
The anti-diuretic hormone arginine vasopressin (AVP) is released from the pituitary upon hypovolemia or hypernatremia, and regulates water reabsorption in the renal collecting duct principal cells. Binding of AVP to the arginine vasopressin receptor type 2 (AVPR2) in the basolateral membrane leads to translocation of aquaporin 2 (AQP2) water channels to the apical membrane of the collecting duct principal cells, inducing water permeability of the membrane. This results in water reabsorption from the pro-urine into the medullary interstitium following an osmotic gradient. Congenital nephrogenic diabetes insipidus (NDI) is a disorder associated with mutations in either the AVPR2 or AQP2 gene, causing the inability of patients to concentrate their pro-urine, which leads to a high risk of dehydration. This review focuses on the current knowledge regarding the cell biological aspects of congenital X-linked, autosomal-recessive and autosomal-dominant NDI while specifically addressing the latest developments in the field. Based on deepened mechanistic understanding, new therapeutic strategies are currently being explored, which we also discuss here.
Collapse
|
23
|
Sasaki S. Aquaporin 2: From its discovery to molecular structure and medical implications. Mol Aspects Med 2012; 33:535-46. [DOI: 10.1016/j.mam.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
24
|
Brown D, Bouley R, Păunescu TG, Breton S, Lu HAJ. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells. Am J Physiol Cell Physiol 2012; 302:C1421-33. [PMID: 22460710 DOI: 10.1152/ajpcell.00085.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
Collapse
Affiliation(s)
- Dennis Brown
- MGH Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Simches Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Tae-Hwan Kwon
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Wang X, Harris PC, Somlo S, Batlle D, Torres VE. Effect of calcium-sensing receptor activation in models of autosomal recessive or dominant polycystic kidney disease. Nephrol Dial Transplant 2008; 24:526-34. [PMID: 18826972 PMCID: PMC2639335 DOI: 10.1093/ndt/gfn527] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Antagonists of relevant Gs protein-coupled and agonists of relevant Gi protein-coupled receptors lower renal cAMP and inhibit growth of renal cysts in animal models of human ARPKD (PCK rat) and/or ADPKD (Pkd2(-/WS25) mouse). A calcium-sensing receptor (CaR) is expressed in various tubular segments and couples to Gq, thereby activating phospholipase Cgamma, InsP3 generation and calcium mobilization from intracellular stores, and Gi proteins. By both mechanisms, CaR activation could lower intracellular cAMP and inhibit renal cyst growth. METHODS PCK rat and Pkd2(-/WS25) mouse littermates were fed rodent chow without or with R-568, a type 2 calcimimetic, at a concentration of 0.05% or 0.1% between 3 and 10 or 16 weeks of age. Histomorphometric analysis was performed with Meta-Morph software. Western analysis and immunohistochemical staining were performed using antibodies for aquaporin-2, urea transporter UT-A1 and CaR. Northern blot hybridization was used to quantify the expression of vasopressin V2 receptor and aquaporin 2 mRNAs. Cyclic AMP was measured using an enzyme immunoassay kit. RESULTS R-568 had no effect on kidney weight, cyst volume, plasma BUN concentration or severity of the polycystic liver disease. A significant reduction in renal interstitial fibrosis was detected in PCK rats, but not in Pkd2(-/WS25) mice. R-568 administration, as anticipated, resulted in hypocalcemia and hyperphosphatemia, and significant increases in urine output, osmolar clearance, and urinary excretions of sodium, potassium and calcium. CONCLUSIONS CaR activation had no detectable effect on cystogenesis in models of autosomal recessive or dominant polycystic kidney disease. The lack of protective effect could be due to the absence of CaR in the outer medullary and cortical collecting ducts, the reduction in extracellular calcium and the unaffected levels of renal cAMP and renal expression of cAMP-dependent genes. A possible beneficial effect on interstitial fibrosis deserves further study at more advanced stages of the disease.
Collapse
Affiliation(s)
- Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
27
|
Masoumi A, Reed-Gitomer B, Kelleher C, Schrier RW. Potential pharmacological interventions in polycystic kidney disease. Drugs 2008; 67:2495-510. [PMID: 18034588 DOI: 10.2165/00003495-200767170-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polycystic kidney diseases (autosomal dominant and autosomal recessive) are progressive renal tubular cystic diseases, which are characterised by cyst expansion and loss of normal kidney structure and function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common life- threatening, hereditary disease. ADPKD is more prevalent than Huntington's disease, haemophilia, sickle cell disease, cystic fibrosis, myotonic dystrophy and Down's syndrome combined. Early diagnosis and treatment of hypertension with inhibitors of the renin-angiotensin-aldosterone system (RAAS) and its potential protective effect on left ventricular hypertrophy has been one of the major therapeutic goals to decrease cardiac complications and contribute to improved prognosis of the disease. Advances in the understanding of the genetics, molecular biology and pathophysiology of the disease are likely to facilitate the improvement of treatments for these diseases. Developments in describing the role of intracellular calcium ([Ca(2+)](i)) and its correlation with cellular signalling systems, Ras/Raf/mitogen extracellular kinase (MEK)/extracellular signal-regulated protein kinase (ERK), and interaction of these pathways with cyclic adenosine monophosphate (cAMP) levels, provide new insights on treatment strategies. Blocking the vasopressin V(2) receptor, a major adenylyl cyclase agonist, demonstrated significant improvements in inhibiting cytogenesis in animal models. Because of activation of the mammalian target of rapamycin (mTOR) pathway, the use of sirolimus (rapamycin) an mTOR inhibitor, markedly reduced cyst formation and decreased polycystic kidney size in several animal models. Caspase inhibitors have been shown to decrease cytogenesis and renal failure in rats with cystic disease. Cystic fluid secretion results in cyst enlargement and somatostatin analogues have been shown to decrease renal cyst progression in patients with ADPKD. The safety and efficacy of these classes of drugs provide potential interventions for experimental and clinical trials.
Collapse
Affiliation(s)
- Amirali Masoumi
- Department of Medicine, Health Sciences Center, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|
28
|
Bustamante M, Hasler U, Leroy V, de Seigneux S, Dimitrov M, Mordasini D, Rousselot M, Martin PY, Féraille E. Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol 2007; 19:109-16. [PMID: 18032798 DOI: 10.1681/asn.2007010092] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Recent evidence suggests that arginine vasopressin (AVP)-dependent aquaporin-2 expression is modulated by the extracellular calcium-sensing receptor (CaSR) in principal cells of the collecting duct, but the signaling pathways mediating this effect are unknown. Using a mouse cortical collecting duct cell line (mpkCCD(cl4)), we found that increasing the concentration of apical extracellular calcium or treating with the CaSR agonists neomycin or Gd(3+) attenuated AVP-dependent accumulation of aquaporin-2 mRNA and protein; CaSR gene-silencing prevented this effect. Calcium reduced the AVP-induced accumulation of cAMP, but this did not occur by increased degradation of cAMP by phosphodiesterases or by direct inhibition of adenylate cyclase. Notably, the effect of extracellular calcium on AVP-dependent aquaporin-2 expression was prevented by inhibition of calmodulin. In summary, our results show that high concentrations of extracellular calcium attenuate AVP-induced aquaporin-2 expression by activating the CaSR and reducing coupling efficiency between V(2) receptor and adenylate cyclase via a calmodulin-dependent mechanism in cultured cortical collecting duct cells.
Collapse
Affiliation(s)
- Mauro Bustamante
- Service of Nephrology, Fondation pour Recherches Médicales, 64 Ave de la Roseraie, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Torres VE, Harris PC. Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases. ACTA ACUST UNITED AC 2006; 2:40-55; quiz 55. [PMID: 16932388 DOI: 10.1038/ncpneph0070] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/27/2005] [Indexed: 12/21/2022]
Abstract
Autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease are the best known of a large family of inherited diseases characterized by the development of renal cysts of tubular epithelial cell origin. Autosomal dominant and recessive polycystic kidney diseases have overlapping but distinct pathogeneses. Identification of the causative mutated genes and elucidation of the function of their encoded proteins is shedding new light on the mechanisms that underlie tubular epithelial cell differentiation. This review summarizes recent literature on the role of primary cilia, intracellular calcium homeostasis, and signaling involving Wnt, cyclic AMP and Ras/MAPK, in the pathogenesis of polycystic kidney disease. Improved understanding of pathogenesis and the availability of animal models orthologous to the human diseases provide an excellent opportunity for the development of pathophysiology-based therapies. Some of these have proven effective in preclinical studies, and clinical trials have begun.
Collapse
Affiliation(s)
- Vicente E Torres
- Mayo Clinic College of Medicine, Eisenberg S33B, Nephrology, 200 First St SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
30
|
Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci U S A 2006; 103:14217-22. [PMID: 16968783 PMCID: PMC1599937 DOI: 10.1073/pnas.0602331103] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Indexed: 01/16/2023] Open
Abstract
Frame-shift mutations within the C terminus of aquaporin 2 (AQP2) cause autosomal-dominant nephrogenic diabetes insipidus (AD-NDI). To identify the molecular mechanism(s) of this disease in vivo and to test possible therapeutic strategies, we generated a mutant AQP2 (763-772 del) knockin mouse. Heterozygous knockin mice showed a severely impaired urine-concentrating ability. However, they were able to slightly increase urine osmolality after dehydration. This milder phenotype, when compared with autosomal-recessive NDI, is a feature of AD-NDI in humans, thus suggesting successful establishment of an AD-NDI mouse model. Immunofluorescence of collecting duct cells in the AD-NDI mouse revealed that the mutant AQP2 was missorted to the basolateral instead of apical plasma membrane. Furthermore, the mutant AQP2 formed a heterooligomer with wild-type AQP2 and showed a dominant-negative effect on the normal apical sorting of wild-type AQP2 even under dehydration. Using this knockin mouse, we tested several drugs for treatment of AD-NDI and found that rolipram, a phosphodiesterase 4 inhibitor, was able to increase urine osmolality. Phosphodiesterase inhibitors may thus be useful drugs for the treatment of AD-NDI. This animal model demonstrates that a mutant monomer gains a dominant-negative effect that reverses the normal polarized sorting of multimers.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- Animals
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 4
- DNA Mutational Analysis
- Diabetes Insipidus, Nephrogenic/drug therapy
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/physiopathology
- Disease Models, Animal
- Female
- Frameshift Mutation
- Genes, Dominant
- Humans
- Kidney Concentrating Ability/drug effects
- Kidney Concentrating Ability/physiology
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Osmolar Concentration
- Phosphodiesterase Inhibitors/therapeutic use
- Protein Transport
- Rolipram/therapeutic use
- Urine/chemistry
Collapse
Affiliation(s)
- Eisei Sohara
- *Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Tatemitsu Rai
- *Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Sung-Sen Yang
- *Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Keiko Uchida
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan; and
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan; and
| | - Shigeru Horita
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan; and
| | - Mayuko Ohno
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan; and
| | - Akihiro Harada
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Shouwamachi, Maebashi, Gunma 371-8512, Japan
| | - Sei Sasaki
- *Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| | - Shinichi Uchida
- *Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8519, Japan
| |
Collapse
|
31
|
McDill BW, Li SZ, Kovach PA, Ding L, Chen F. Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci U S A 2006; 103:6952-7. [PMID: 16641094 PMCID: PMC1459000 DOI: 10.1073/pnas.0602087103] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Congenital progressive hydronephrosis (cph) is a spontaneous recessive mutation that causes severe hydronephrosis and obstructive nephropathy in affected mice. The mutation has been mapped to the distal end of mouse chromosome 15, but the mutated gene has not been found. Here, we describe the identification of a single base pair change in aquaporin-2 (Aqp2) in cph mutants through genetic linkage mapping. The C-T change led to the substitution of a Ser (S256) by a Leu in the cytoplasmic tail of the Aqp2 protein, preventing its phosphorylation at S256 and the subsequent accumulation of Aqp2 on the apical membrane of the collecting duct principal cells. The interference with normal trafficking of Aqp2 by this mutation resulted in a severe urine concentration defect. cph homozygotes demonstrated polydipsia and produced a copious amount of hypotonic urine. The urine concentration defect could not be corrected by [deamino-Cys1,D-Arg8]-vasopressin (DDAVP, a vasopressin analog), characteristic of nephrogenic diabetes insipidus. The nephrogenic diabetes insipidus symptoms and the absence of developmental defects in the pyeloureteral peristaltic machinery in the mutants before the onset of hydronephrosis suggest that the congenital obstructive nephropathy is most likely a result of the polyuria. This study has revealed the genetic basis for the classical cph mutation and has provided direct genetic evidence that S256 in Aqp2 is indispensable for the apical accumulation, but not the general glycosylation or membrane association, of Aqp2.
Collapse
Affiliation(s)
- Bradley W. McDill
- *Renal Division, Department of Internal Medicine, Department of Cell Biology and Physiology, and
| | - Song-Zhe Li
- *Renal Division, Department of Internal Medicine, Department of Cell Biology and Physiology, and
| | - Paul A. Kovach
- *Renal Division, Department of Internal Medicine, Department of Cell Biology and Physiology, and
| | - Li Ding
- Genome Sequencing Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Feng Chen
- *Renal Division, Department of Internal Medicine, Department of Cell Biology and Physiology, and
- To whom correspondence should be addressed at:
Department of Internal Medicine/Renal Division, Campus Box 8126, Washington University School of Medicine, St. Louis, MO 63110. E-mail:
| |
Collapse
|
32
|
Yamashita H, Ishimaru M, Yamaguchi H, Yamauchi H, Sugiura A, Kitayama J, Nagawa H. Massive postoperative polyuria following total gastrectomy for gastric cancer. J Anesth 2006; 20:36-9. [PMID: 16421675 DOI: 10.1007/s00540-005-0357-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 08/31/2005] [Indexed: 11/29/2022]
Abstract
Massive postoperative polyuria is rare, except in neurosurgery patients. Here we report excessive polyuria in a 59-year-old woman following total gastrectomy for advanced gastric cancer. The etiology of the patient's polyuria was unknown. Urine output was measured hourly and replaced with Ringer's lactate solution at 80% of measured volume. The rate of urine output during 9 postoperative days ranged from 900 to 2700 ml.h(-1). Several administrations of an antidiuretic hormone (ADH) analogue were ineffective in reducing urine output, suggesting a possible relationship of the massive polyuria to nephrogenic diabetes insipidus. Following oral administration of a thiazide diuretic, known to exert an antidiuretic action in nephrogenic diabetes insipidus, urine output was dramatically reduced. We conclude that this case of massive polyuria probably resulted from postoperative nephrogenic diabetes insipidus.
Collapse
|
33
|
van Vonderen IK, Wolfswinkel J, van den Ingh TSGAM, Mol JA, Rijnberk A, Kooistra HS. Urinary aquaporin-2 excretion in dogs: a marker for collecting duct responsiveness to vasopressin. Domest Anim Endocrinol 2004; 27:141-53. [PMID: 15219933 DOI: 10.1016/j.domaniend.2004.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 03/21/2004] [Indexed: 11/21/2022]
Abstract
In humans, the urinary aquaporin-2 (U-AQP2) excretion closely parallels changes in vasopressin (VP) action and has been proposed as a marker for collecting duct responsiveness to VP. This report describes the development of a radioimmunoassay for the measurement of U-AQP2 excretion in dogs. In addition, the localization of AQP2 in the canine kidney was investigated by immunohistochemistry. Basal U-AQP2 excretion was highly variable among healthy dogs. Two hours after oral water loading, the mean U-AQP2/creatinine ratio decreased significantly from (231 +/- 30) x 10(-9) to (60 +/- 15) x 10(-9) (P = 0.01), while the median plasma VP concentration decreased from 4.2 pmol/l (range 2.2-4.8 pmol/l) to 1.2 pmol/l (range 1.0-1.9 pmol/l). Subsequent intravenous administration of desmopressin led to a significantly increased mean U-AQP2/creatinine ratio of (258 +/- 56) x 10(-9) (P = 0.01). Two hours of intravenous hypertonic saline infusion (20% NaCl, 0.03 ml/kg body weight/min) significantly increased the mean U-AQP2/creatinine ratio from (86 +/- 6) x 10(-9) to (145 +/- 23) x 10(-9) (P = 0.045), while the median plasma VP concentration increased significantly from 2.2 pmol/l (range 1.1-6.3 pmol/l) to 17.1 pmol/l (range 8.4-67 pmol/l) (P < 0.001). Immunohistochemistry revealed extensive labeling for AQP2 in the kidney collecting duct cells, predominantly localized in the apical and subapical region. As in humans, U-AQP2 excretion in dogs closely reflects changes in VP exposure. Urinary AQP2 excretion may become a diagnostic tool in dogs for the differentiation of polyuric conditions such as (partial) central or nephrogenic diabetes insipidus, primary polydipsia, and inappropriate VP release.
Collapse
Affiliation(s)
- I K van Vonderen
- Department of Clinical Sciences of Companion Animals, Utrecht University, P.O. Box 80.154, Yalelaan 8, 3508 TD, The Netherlands
| | | | | | | | | | | |
Collapse
|