1
|
Swanson M, Yun J, Collier DM, Challagundla L, Dogan M, Kuscu C, Garrett MR, Regner KR, Chung JH, Park F. Removal of the catalytic subunit of DNA-protein kinase in the proximal tubules promotes DNA and tubular damage during kidney injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609216. [PMID: 39229063 PMCID: PMC11370575 DOI: 10.1101/2024.08.22.609216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Tubular epithelial cell damage can be repaired through a series of complex signaling pathways. An early event in many forms of tubular damage is the observation of DNA damage, which can be repaired by specific pathways depending upon the type of genomic alteration.. In this study, we report that the catalytic subunit of DNA protein kinase (DNA-PKcs), a central DNA repair enzyme involved in sensing DNA damage and performing double stranded DNA break repair, plays an important role in the extent of tubular epithelial cell damage following exposure to injurious acute and chronic stimuli. Selective loss of DNA-PKcs in the proximal tubules led to increased markers of kidney dysfunction, DNA damage, and tubular epithelial cell injury in multiple models of acute kidney injury, specifically bilateral renal ischemia-reperfusion injury and single dose of cisplatin (15 mg/kg IP). In contrast, in a mouse model of kidney fibrosis and chronic kidney disease (UUO),the protective effects of DNA-PKcs was not as obvious histologically from the tissue sections. In the absence of proximal tubular DNA-PKcs, there was reduced levels of fibrotic markers, α-SMA and fibronectin, which suggests that there may be a biphasic role of DNA-PKcs depending upon the conditions exerted upon the kidney. In conclusion, this study demonstrates that the catalytic subunit of DNA-PKcs plays a context-dependent role in the kidney to reduce DNA damage during exposure to various types of acute, but not chronic forms of injurious stimuli.
Collapse
|
2
|
Liang S, Wang Y, Kang M, Deng J, Chen L, Hong X, Hou FF, Zhang F. Generation and characterization of an inducible renal proximal tubule-specific CreERT2 mouse. Front Cell Dev Biol 2023; 11:1171637. [PMID: 37215091 PMCID: PMC10196630 DOI: 10.3389/fcell.2023.1171637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Protein reabsorption in renal proximal tubules is essential for maintaining nutrient homeostasis. Renal proximal tubule-specific gene knockout is a powerful method to assess the function of genes involved in renal proximal tubule protein reabsorption. However, the lack of inducible renal proximal tubule-specific Cre recombinase-expressing mouse strains hinders the study of gene function in renal proximal tubules. To facilitate the functional study of genes in renal proximal tubules, we developed an AMN CreERT2 knock-in mouse strain expressing a Cre recombinase-estrogen receptor fusion protein under the control of the promoter of the amnionless (AMN) gene, a protein reabsorption receptor in renal proximal tubules. AMN CreERT2 knock-in mice were generated using the CRISPR/Cas9 strategy, and the tissue specificity of Cre activity was investigated using the Cre/loxP reporter system. We showed that the expression pattern of CreERT2-mEGFP in AMN CreERT2 mice was consistent with that of the endogenous AMN gene. Furthermore, we showed that the Cre activity in AMN CreERT2 knock-in mice was only detected in renal proximal tubules with high tamoxifen induction efficiency. As a proof-of-principle study, we demonstrated that renal proximal tubule-specific knockout of Exoc4 using AMNCreERT2 led to albumin accumulation in renal proximal tubular epithelial cells. The AMN CreERT2 mouse is a powerful tool for conditional gene knockout in renal proximal tubules and should offer useful insight into the physiological function of genes expressed in renal proximal tubules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fan Fan Hou
- *Correspondence: Fan Fan Hou, ; Fujian Zhang,
| | | |
Collapse
|
3
|
Liu C, Li S, Ji S, Zhang J, Zheng F, Guan Y, Yang G, Chen L. Proximal tubular Bmal1 protects against chronic kidney injury and renal fibrosis by maintaining of cellular metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166572. [PMID: 36252941 DOI: 10.1016/j.bbadis.2022.166572] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Recent studies suggest that deletion of the core clock gene Bmal1 in the kidney has a significant influence on renal physiological functions. However, the role of renal Bmal1 in chronic kidney disease (CKD) remains poorly understood. Here by generating mice lacking Bmal1 in proximal tubule (Bmal1flox/flox-KAP-Cre+, ptKO) and inducing CKD with the adenine diet model, we found that lack of Bmal1 in proximal tubule did not alter renal water and electrolyte homeostasis. However, adenine-induced renal injury indexes, including blood urea nitrogen, serum creatinine, and proteinuria, were markedly augmented in the ptKO mice. The ptKO kidneys also developed aggravated tubulointerstitial fibrosis and epithelial-mesenchymal transformation. Mechanistically, RNAseq analysis revealed significant downregulation of the expression of genes related to energy and substance metabolism, in particular fatty acid oxidation and glutathione/homocysteine metabolism, in the ptKO kidneys. Consistently, the renal contents of ATP and glutathione were markedly reduced in the ptKO mice, suggesting the disruption of cellular metabolic homeostasis. Moreover, we demonstrated that Bmal1 can activate the transcription of cystathionine β-synthase (CBS), a key enzyme for homocysteine metabolism and glutathione biosynthesis, through direct recruitment to the E-box motifs of its promoter. Supporting the in vivo findings, knockdown of Bmal1 in cultured proximal tubular cells inhibited CBS expression and amplified albumin-induced cell injury and fibrogenesis, while glutathione supplementation remarkably reversed these changes. Taken together, we concluded that deletion of Bmal1 in proximal tubule may aggravate chronic kidney injury and exacerbate renal fibrosis, the mechanism is related to suppressing CBS transcription and disturbing glutathione related metabolic homeostasis. These findings suggest a protective role of Bmal1 in chronic tubular injury and offer a novel target for treating CKD.
Collapse
Affiliation(s)
- Chengcheng Liu
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuyao Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai 200241, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
4
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
5
|
Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim Res 2018; 34:147-159. [PMID: 30671100 PMCID: PMC6333611 DOI: 10.5625/lar.2018.34.4.147] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models are commonly preferred for studying the human disease due to genetic and pathophysiological similarities between mice and humans. In particular, Cre-loxP system is widely used as an integral experimental tool for generating the conditional. This system has enabled researchers to investigate genes of interest in a tissue/cell (spatial control) and/or time (temporal control) specific manner. A various tissue-specific Cre-driver mouse lines have been generated to date, and new Cre lines are still being developed. This review provides a brief overview of Cre-loxP system and a few commonly used promoters for expression of tissue-specific Cre recombinase. Also, we finally introduce some available links to the Web sites that provides detailed information about Cre mouse lines including their characterization.
Collapse
|
6
|
Blood pressure regulation by the angiotensin type 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens 2018; 27:1-7. [PMID: 29045337 DOI: 10.1097/mnh.0000000000000373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of hypertension. Homeostatic actions of the RAS, such as increasing blood pressure (BP) and vasoconstriction, are mediated via type 1 (AT1) receptors for angiotensin II. All components of the RAS are present in the renal proximal tubule, which reabsorbs the bulk of the glomerular filtrate, making this segment of the nephron a location of great interest for solute handling under RAS influence. This review highlights recent studies that illustrate the key role of renal proximal tubule AT1 receptors in BP regulation. RECENT FINDINGS A variety of investigative approaches have demonstrated that angiotensin II signaling via AT1a receptors, specifically in the renal proximal tubule, is a major regulator of BP and sodium homeostasis. Reduction of proximal tubule AT1a receptors led to lower BPs, whereas overexpression generally caused increased BPs. SUMMARY AT1a receptors in the proximal tubule are critical to the regulation of BP by the kidney and the RAS. The pattern of BP modulation is associated with alterations in sodium transporters. As a key site for sodium homeostasis, the renal proximal tubule could hence be a potential target in the treatment of hypertension.
Collapse
|
7
|
Central role of the proximal tubular αKlotho/FGF receptor complex in FGF23-regulated phosphate and vitamin D metabolism. Sci Rep 2018; 8:6917. [PMID: 29720668 PMCID: PMC5932018 DOI: 10.1038/s41598-018-25087-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) plays critical roles in phosphate handling and vitamin D metabolism in the kidney. However, the effector cells of FGF23 in the kidney remain unclear. αKlotho, a putative enzyme possessing β-glucuronidase activity and also a permissive co-receptor for FGF23 to bind to FGF receptors (FGFRs), is expressed most abundantly in distal convoluted tubules, whereas it is expressed modestly in proximal tubules. Key molecular players of phosphate homeostasis and vitamin D-metabolizing enzymes are known to localize in proximal tubules. To clarify the direct function of FGF23 on proximal tubules, we ablated αKlotho or Fgfr1-4 genes specifically from these tubules using the Cre-loxP-mediated genetic recombination. Both conditional knockout mouse lines showed similar phenotypes that resembled those of systemic αKlotho or Fgf23 knockout mice. Compared with control mice, they showed significantly elevated levels of plasma phosphate, FGF23 and 1,25-dihydroxyvitamin D, ectopic calcification in the kidney and aging-related phenotypes like growth retardation, osteoporosis and shortened lifespan. These findings suggest that the primary function of FGF23 on mineral metabolism is mediated through αKlotho/FGFR co-receptors expressed in proximal tubular cells, and that the putative enzymatic function of αKlotho in the proximal tubule has a minor role in systemic mineral metabolism.
Collapse
|
8
|
Cheng R, Ding L, He X, Takahashi Y, Ma JX. Interaction of PPARα With the Canonic Wnt Pathway in the Regulation of Renal Fibrosis. Diabetes 2016; 65:3730-3743. [PMID: 27543085 PMCID: PMC5127249 DOI: 10.2337/db16-0426] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/04/2016] [Indexed: 01/02/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) displays renoprotective effects with an unclear mechanism. Aberrant activation of the canonical Wnt pathway plays a key role in renal fibrosis. Renal levels of PPARα were downregulated in both type 1 and type 2 diabetes models. The PPARα agonist fenofibrate and overexpression of PPARα both attenuated the expression of fibrotic factors, and suppressed high glucose-induced or Wnt3a-induced Wnt signaling in renal cells. Fenofibrate inhibited Wnt signaling in the kidney of diabetic rats. A more renal prominent activation of Wnt signaling was detected both in PPARα-/- mice with diabetes or obstructive nephropathy and in PPARα-/- tubular cells treated with Wnt3a. PPARα did not block the transcriptional activity of β-catenin induced by a constitutively active mutant of lipoprotein receptor-related protein 6 (LRP6) or β-catenin. LRP6 stability was decreased by overexpression of PPARα and increased in PPARα-/- tubular cells, suggesting that PPARα interacts with Wnt signaling at the Wnt coreceptor level. 4-Hydroxynonenal-induced reactive oxygen species production, which resulted in LRP6 stability, was suppressed by overexpression of PPARα and dramatically enhanced in PPARα-/- tubular cells. Diabetic PPARα-/- mice showed more prominent NADPH oxidase-4 overexpression compared with diabetic wild-type mice, suggesting that the inhibitory effect of PPARα on Wnt signaling may be ascribed to its antioxidant activity. These observations identified a novel interaction between PPARα and the Wnt pathway, which is responsible, at least partially, for the therapeutic effects of fenofibrate on diabetic nephropathy.
Collapse
Affiliation(s)
- Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lexi Ding
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xuemin He
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yusuke Takahashi
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
9
|
Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, Smith EMK. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep 2016; 6:30739. [PMID: 27491826 PMCID: PMC4974510 DOI: 10.1038/srep30739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC.
Collapse
Affiliation(s)
- Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Birgitte Rönö
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Martin Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 205 02 Malmö, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Christina Möller
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Emma M K Smith
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| |
Collapse
|
10
|
Ide N, Olauson H, Sato T, Densmore MJ, Wang H, Hanai JI, Larsson TE, Lanske B. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int 2016; 90:348-362. [DOI: 10.1016/j.kint.2016.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 01/11/2023]
|
11
|
Tomlinson JAP, Caplin B, Boruc O, Bruce-Cobbold C, Cutillas P, Dormann D, Faull P, Grossman RC, Khadayate S, Mas VR, Nitsch DD, Wang Z, Norman JT, Wilcox CS, Wheeler DC, Leiper J. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage. J Am Soc Nephrol 2015; 26:3045-59. [PMID: 25855779 DOI: 10.1681/asn.2014030280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 02/16/2015] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function.
Collapse
Affiliation(s)
- James A P Tomlinson
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom;
| | - Ben Caplin
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - Olga Boruc
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Claire Bruce-Cobbold
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Pedro Cutillas
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Dirk Dormann
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Peter Faull
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Rebecca C Grossman
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - Sanjay Khadayate
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Valeria R Mas
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dorothea D Nitsch
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom; and
| | - Zhen Wang
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| | - Jill T Norman
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - Christopher S Wilcox
- Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, DC
| | - David C Wheeler
- Centre for Nephrology, UCL Medical School Royal Free, London, United Kingdom
| | - James Leiper
- Medical Research Council Clinical Sciences Centre, Imperial College, London, United Kingdom
| |
Collapse
|
12
|
Gall JM, Wang Z, Bonegio RG, Havasi A, Liesa M, Vemula P, Borkan SC. Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J Am Soc Nephrol 2014; 26:1092-102. [PMID: 25201884 DOI: 10.1681/asn.2014010126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/13/2014] [Indexed: 01/23/2023] Open
Abstract
Proximal tubule (PT) cells are critical targets of acute ischemic injury. Elimination of the mitochondrial fusion protein mitofusin 2 (Mfn2) sensitizes PT cells to apoptosis in vitro. However, the role of PT Mfn2 in ischemic AKI in vivo is unknown. To test its role, we evaluated the effects of conditional KO of PT Mfn2 (cKO-PT-Mfn2) on animal survival after transient bilateral renal ischemia associated with severe AKI. Forty-eight hours after ischemia, 28% of control mice survived compared with 86% of cKO-PT-Mfn2 animals (P<0.001 versus control). Although no significant differences in histologic injury score, apoptosis, or necrosis were detected between genotypes, cKO-PT-Mfn2 kidneys exhibited a 3.5-fold increase in cell proliferation restricted to the intrarenal region with Mfn2 deletion. To identify the signals responsible for increased proliferation, primary PT cells with Mfn2 deficiency were subjected to stress by ATP depletion in vitro. Compared with normal Mfn2 expression, Mfn2 deficiency significantly increased PT cell proliferation and persistently activated extracellular signal-regulated kinase 1/2 (ERK1/2) during recovery from stress. Furthermore, stress and Mfn2 deficiency decreased the interaction between Mfn2 and Ras detected by immunoprecipitation, and purified Mfn2 dose-dependently decreased Ras activity in a cell-free assay. Ischemia in vivo also reduced the Mfn2-RAS interaction and increased both RAS and p-ERK1/2 activity in the renal cortical homogenates of cKO-PT-Mfn2 mice. Our results suggest that, in contrast to its proapoptotic effects in vitro, selective PT Mfn2 deficiency accelerates recovery of renal function and enhances animal survival after ischemic AKI in vivo, partly by increasing Ras-ERK-mediated cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Marc Liesa
- The Obesity Center, Boston Medical Center, Boston, Massachusetts
| | | | | |
Collapse
|
13
|
Marini JC, Didelija IC, Fiorotto ML. Extrarenal citrulline disposal in mice with impaired renal function. Am J Physiol Renal Physiol 2014; 307:F660-5. [PMID: 25056350 DOI: 10.1152/ajprenal.00289.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endogenous synthesis of arginine, a semiessential amino acid, relies on the production of citrulline by the gut and its conversion into arginine by the kidney in what has been called the "intestinal-renal axis" for arginine synthesis. Although the kidney is the main site for citrulline disposal, it only accounts for ~60-70% of the citrulline produced. Because the only known fate for citrulline is arginine synthesis and the enzymes that catalyze this reaction are widespread among body tissues, we hypothesized that citrulline can be utilized directly by tissues to meet, at least partially, their arginine needs. To test this hypothesis, we used stable and radioactive tracers in conscious, partially nephrectomized (½ and ⅚) and anesthetized acutely kidney-ligated mouse models. Nephrectomy increased plasma citrulline concentration but did not affect citrulline synthesis rates, thus reducing its clearance. Nephrectomy (⅚) reduced the amount of citrulline accounted for as plasma arginine from 88 to 42%. Acute kidney ligation increased the half-life and mean retention time of citrulline. Whereas the rate of citrulline conversion into plasma arginine was reduced, it was not eliminated. In addition, we observed direct utilization of citrulline for arginine synthesis and further incorporation into tissue protein in kidney-ligated mice. These observations indicate that a fraction of the citrulline produced is utilized directly by multiple tissues to meet their arginine needs and that extrarenal sites contribute to plasma arginine. Furthermore, when the interorgan synthesis of arginine is impaired, these extrarenal sites are able to increase their rate of citrulline utilization.
Collapse
Affiliation(s)
- Juan C Marini
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Inka C Didelija
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Droguett A, Krall P, Burgos ME, Valderrama G, Carpio D, Ardiles L, Rodriguez-Diez R, Kerr B, Walz K, Ruiz-Ortega M, Egido J, Mezzano S. Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS One 2014; 9:e101879. [PMID: 25036148 PMCID: PMC4103765 DOI: 10.1371/journal.pone.0101879] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage progression. This transgenic mouse model could be used as a new tool for enhancing the knowledge of renal disease progression.
Collapse
Affiliation(s)
- Alejandra Droguett
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - M. Eugenia Burgos
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Graciela Valderrama
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Carpio
- Hystopathology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Leopoldo Ardiles
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Raquel Rodriguez-Diez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | | | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | - Jesus Egido
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
15
|
Liang L, Li L, Tian J, Lee SO, Dang Q, Huang CK, Yeh S, Erturk E, Bushinsky D, Chang LS, He D, Chang C. Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol 2014; 28:1291-303. [PMID: 24956378 PMCID: PMC4116591 DOI: 10.1210/me.2014-1047] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Males develop kidney stones far more frequently than females with a ratio of 2–3:1, suggesting that androgen receptor (AR) signaling might play a key role in the development of nephrolithiasis. Using the cre-loxP system to selectively knock out AR in glyoxylate-induced calcium oxalate (CaOx) crystal mouse models, we found that the mice lacking hepatic AR had less oxalate biosynthesis, which might lead to lower CaOx crystal formation, and that the mice lacking kidney proximal or distal epithelial AR also had lower CaOx crystal formation. We found that AR could directly up-regulate hepatic glycolate oxidase and kidney epithelial NADPH oxidase subunit p22-PHOX at the transcriptional level. This up-regulation might then increase oxalate biosynthesis and oxidative stress that resulted in induction of kidney tubular injury. Targeting AR with the AR degradation enhancer ASC-J9 led to suppression of CaOx crystal formation via modulation of oxalate biosynthesis and oxidative stress in both in vitro and in vivo studies. Taken together, these results established the roles of AR in CaOx crystal formation.
Collapse
Affiliation(s)
- Liang Liang
- Sex Hormone Research Center (L.Liang, L.Li, Q.D., L.S.C., D.H.), Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; George H. Whipple Laboratory for Cancer Research (L.Liang, L.Li, J.T., S.O.L., Q.D., C.-K.H., S.Y., E.E., D.B., C.C.), Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642; and Sex Hormone Research Center (C.C.), China Medical University/Hospital, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Clar J, Gri B, Calderaro J, Birling MC, Hérault Y, Smit GPA, Mithieux G, Rajas F. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int 2014; 86:747-56. [PMID: 24717294 DOI: 10.1038/ki.2014.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and progressive glomerular hyperperfusion and hyperfiltration preceding the development of microalbuminuria and proteinuria. To better understand the end-stage nephropathy in glycogen storage disease type 1a, we generated a novel kidney-specific G6pc knockout (K-G6pc(-/-)) mouse, which exhibited normal life expectancy. After 6 months, K-G6pc(-/-) mice showed glycogen overload leading to nephromegaly and tubular dilation. Moreover, renal accumulation of lipids due to activation of de novo lipogenesis was observed. This led to the activation of the renin-angiotensin system and the development of epithelial-mesenchymal transition process and podocyte injury by transforming growth factor β1 signaling. The K-G6pc(-/-) mice developed microalbuminuria caused by the impairment of the glomerular filtration barrier. Thus, renal G6pc deficiency alone is sufficient to induce the development of the early-onset nephropathy observed in glycogen storage disease type 1a, independent of the liver disease. The K-G6pc(-/-) mouse model is a unique tool to decipher the molecular mechanisms underlying renal failure and to evaluate potential therapeutic strategies.
Collapse
Affiliation(s)
- Julie Clar
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Blandine Gri
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Julien Calderaro
- Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Marie-Christine Birling
- Institut Clinique de la Souris, Phenomin IGBMC, CNRS, Université de Strasbourg INSERM, U964, Illkirch, France
| | - Yann Hérault
- Institut Clinique de la Souris, Phenomin IGBMC, CNRS, Université de Strasbourg INSERM, U964, Illkirch, France
| | - G Peter A Smit
- Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Gilles Mithieux
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Fabienne Rajas
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| |
Collapse
|
17
|
Liu S, Yao Y, Lu S, Aldous K, Ding X, Mei C, Gu J. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models. Toxicol Appl Pharmacol 2013; 272:230-7. [PMID: 23732084 DOI: 10.1016/j.taap.2013.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200mg/kg. Blood, liver and kidney samples were obtained at 24h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity.
Collapse
Affiliation(s)
- Senyan Liu
- Kidney Institute & Division of Nephrology, Changzheng Hospital, Shanghai 200003, China; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Li H, Weatherford ET, Davis DR, Keen HL, Grobe JL, Daugherty A, Cassis LA, Allen AM, Sigmund CD. Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1067-77. [PMID: 21753145 DOI: 10.1152/ajpregu.00124.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
All components of the renin angiotensin system necessary for ANG II generation and action have been reported to be present in renal proximal convoluted tubules. Given the close relationship between renal sodium handling and blood pressure regulation, we hypothesized that modulating the action of ANG II specifically in the renal proximal tubules would alter the chronic level of blood pressure. To test this, we used a proximal tubule-specific, androgen-dependent, promoter construct (KAP2) to generate mice with either overexpression of a constitutively active angiotensin type 1A receptor transgene or depletion of endogenous angiotensin type 1A receptors. Androgen administration to female transgenic mice caused a robust induction of the transgene in the kidney and increased baseline blood pressure. In the receptor-depleted mice, androgen administration to females resulted in a Cre recombinase-mediated deletion of angiotensin type 1A receptors in the proximal tubule and reduced blood pressure. In contrast to the changes observed at baseline, there was no difference in the blood pressure response to a pressor dose of ANG II in either experimental model. These data, from two separate mouse models, provide evidence that ANG II signaling via the type 1A receptor in the renal proximal tubule is a regulator of systemic blood pressure under baseline conditions.
Collapse
Affiliation(s)
- Huiping Li
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li S, Nagothu KK, Desai V, Lee T, Branham W, Moland C, Megyesi JK, Crew MD, Portilla D. Transgenic expression of proximal tubule peroxisome proliferator-activated receptor-alpha in mice confers protection during acute kidney injury. Kidney Int 2009; 76:1049-62. [PMID: 19710628 DOI: 10.1038/ki.2009.330] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.
Collapse
Affiliation(s)
- Shenyang Li
- Division of Nephrology, Departments of Internal Medicine and Immunology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rubera I, Hummler E, Beermann F. Transgenic mice and their impact on kidney research. Pflugers Arch 2008; 458:211-22. [PMID: 19084992 DOI: 10.1007/s00424-008-0624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 12/12/2022]
Abstract
The kidney is a key organ in the maintenance of ion and fluid homeostasis and specific transport systems localized along the nephron guarantee this function. Due to its large functional heterogeneity, experiments on the whole organ level cannot be easily performed, and thus more refined tools are needed, like for example the development of specific recombination systems to gain knowledge on the physiological role of single proteins implicated in ion transport. This review introduces the transgenic technology developed over the past decades, and then focuses on recent strategies for generating kidney-specific gene targeting, over-expression, and gene ablation in mice, that will help to understand the physiological role of proteins implicated in salt and water balance in the kidney.
Collapse
|