1
|
Hamelink TL, Ogurlu B, Pamplona CC, Castelein J, Bennedsgaard SS, Qi H, Weiss T, Lantinga VA, Pool MBF, Laustsen C, Jespersen B, Leuvenink HGD, Ringgaard S, Borra RJH, Keller AK, Moers C. Magnetic resonance imaging as a noninvasive adjunct to conventional assessment of functional differences between kidneys in vivo and during ex vivo normothermic machine perfusion. Am J Transplant 2024; 24:1761-1771. [PMID: 38615901 DOI: 10.1016/j.ajt.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Normothermic machine perfusion (NMP) is increasingly considered for pretransplant kidney quality assessment. However, fundamental questions about differences between in vivo and ex vivo renal function, as well as the impact of ischemic injury on ex vivo physiology, remain unanswered. This study utilized magnetic resonance imaging (MRI), alongside conventional parameters to explore differences between in vivo and ex vivo renal function and the impact of warm ischemia on a kidney's behavior ex vivo. Renal MRI scans and samples were obtained from living pigs (n = 30) in vivo. Next, kidney pairs were procured and exposed to minimal, or 75 minutes of warm ischemia, followed by 6 hours of hypothermic machine perfusion. Both kidneys simultaneously underwent 6-hour ex vivo perfusion in MRI-compatible NMP circuits to obtain multiparametric MRI data. Ischemically injured ex vivo kidneys showed a significantly altered regional blood flow distribution compared to in vivo and minimally damaged organs. Both ex vivo groups showed diffusion restriction relative to in vivo. Our findings underscore the differences between in vivo and ex vivo MRI-based renal characteristics. Therefore, when assessing organ viability during NMP, it should be considered to incorporate parameters beyond the conventional functional markers that are common in vivo.
Collapse
Affiliation(s)
- Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Baran Ogurlu
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolina C Pamplona
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes Castelein
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Haiyun Qi
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Weiss
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ronald J H Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anna K Keller
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Echeverria-Chasco R, Martin-Moreno PL, Aramendía-Vidaurreta V, Garcia-Ruiz L, Mora-Gutiérrez JM, Vidorreta M, Villanueva A, Cano D, Bastarrika G, Garcia-Fernandez N, Fernández-Seara MA. Diagnostic and Prognostic Potential of Multiparametric Renal MRI in Kidney Transplant Patients. J Magn Reson Imaging 2024; 60:1650-1663. [PMID: 38240395 DOI: 10.1002/jmri.29235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Multiparametric MRI provides assessment of functional and structural parameters in kidney allografts. It offers a non-invasive alternative to the current reference standard of kidney biopsy. PURPOSE To evaluate the diagnostic and prognostic utility of MRI parameters in the assessment of allograft function in the first 3-months post-transplantation. STUDY TYPE Prospective. SUBJECTS 32 transplant recipients (54 ± 17 years, 20 females), divided into two groups according to estimated glomerular filtration rate (eGFR) at 3-months post-transplantation: inferior graft function (IGF; eGFR<45 mL/min/1.73 m2, n = 10) and superior graft function (SGF; eGFR ≥ 45 mL/min/1.73 m2, n = 22). Further categorization was based on the need for hemodialysis (C1) and decrease in s-creatinine (C2) at 1-week post-transplantation: delayed-graft-function (DGF: n = 4 C1, n = 10 C2) and early graft-function (EGF: n = 28 C1, n = 22 C2). FIELD STRENGTH/SEQUENCE 3-T, pseudo-continuous arterial spin labeling, T1-mapping, and diffusion-weighted imaging. ASSESSMENT Multiparametric MRI was evaluated at 1-week in all patients and 3-months after transplantation in 28 patients. Renal blood flow (RBF), diffusion coefficients (ADC, ΔADC, D, ∆ D, D*, flowing fraction f), T1 and ∆ T1 were calculated in cortex and medulla. The diagnostic and prognostic value of these parameters, obtained at 3-months and 1-week post-transplantation, respectively, was evaluated in the cortex to discriminate between DGF and EGF, and between SGF and IGF. STATISTICAL TESTS Logistic regression, receiver-operating-characteristics, area-under-the-curve (AUC), confidence intervals (CIs), analysis-of-variance, t-test, Wilcoxon-Mann-Whitney test, Fisher's exact test, Pearson's correlation. P-value<0.05 was considered significant. RESULTS DGF patients exhibited significantly lower cortical RBF and f and higher D*. The diagnostic value of MRI for detecting DGF was excellent (AUC = 100%). Significant differences between patients with IGF and SGF were found in RBF, ∆T1, and ∆D. Multiparametric MRI showed higher diagnostic (AUC = 95.32%; CI: 88%-100%) and prognostic (AUC = 97.47%, CI: 92%-100%) values for detecting IGF than eGFR (AUC = 89.50%, CI: 79%-100%). DATA CONCLUSION Multiparametric MRI may show high diagnostic and prognostic value in transplanted patients, yielding better results compared to eGFR measurements. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rebeca Echeverria-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| | - Paloma L Martin-Moreno
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Nephrology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Veronica Aramendía-Vidaurreta
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| | - Leyre Garcia-Ruiz
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| | - José María Mora-Gutiérrez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Nephrology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | | | - Arantxa Villanueva
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
- Electrical Electronics and Communications Engineering Department, Public University of Navarre, Pamplona, Navarra, Spain
- Smart Cities Institute, Public University of Navarre, Pamplona, Navarra, Spain
| | - David Cano
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| | - Nuria Garcia-Fernandez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
- Department of Nephrology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Red de Investigación Renal (REDINREN) and RICORS2040, Spain
| | - Maria A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Navarra, Spain
| |
Collapse
|
3
|
Mukherjee S, Bhaduri S, Harwood R, Murray P, Wilm B, Bearon R, Poptani H. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury. Sci Rep 2024; 14:19922. [PMID: 39198525 PMCID: PMC11358484 DOI: 10.1038/s41598-024-70401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Kidney diseases pose a global healthcare burden, with millions requiring renal replacement therapy. Ischemia/reperfusion injury (IRI) is a common pathology of acute kidney injury, causing hypoxia and subsequent inflammation-induced kidney damage. Accurate detection of acute kidney injury due to IRI is crucial for timely intervention. We used longitudinal, multi-parametric magnetic resonance imaging (MRI) employing arterial spin labelling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE)-MRI to assess IRI induced changes in both the injured and healthy contralateral kidney, in a unilateral IRI mouse model (n = 9). Multi-parametric MRI demonstrated significant differences in kidney volume (p = 0.001), blood flow (p = 0.002), filtration coefficient (p = 0.038), glomerular filtration rate (p = 0.005) and apparent diffusion coefficient (p = 0.048) between the injured kidney and contralateral kidney on day 1 post-IRI surgery. Identification of the injured kidney using principal component analysis including most of the imaging parameters demonstrated an area under the curve (AUC) of 0.97. These results point to the utility of multi-parametric MRI in early detection of IRI-induced kidney damage suggesting that the combination of various MRI parameters may be suitable for monitoring the extent of injury in this model.
Collapse
Affiliation(s)
- Soham Mukherjee
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sourav Bhaduri
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
| | - Rachel Harwood
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Bearon
- Department of Mathematical Science, University of Liverpool, Liverpool, UK
- Department of Mathematics, Kings College, London, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| |
Collapse
|
4
|
Peng J, Gao J, Hong Y, Wu Z, Chen G, Lu G. The value of functional magnetic resonance imaging in evaluating renal allograft function. Asian J Surg 2024; 47:1740-1745. [PMID: 38176978 DOI: 10.1016/j.asjsur.2023.12.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND To explore the value of arterial spin labeled (ASL) and blood oxygen level dependent (BOLD) imaging in evaluating allogeneic kidney function after renal transplantation. METHODS One hundred and thirty-five renal transplant patients were included. Demographic and imaging data were collected. Transplanted renal function, pathology, ASL and BOLD parameters were obtained. The patients were divided into normal, mild and severe injury group. The correlation between BOLD/ASL parameters and clinical data were evaluated. The prediction models were based on ASL and BOLD parameters using multivariate logistic analysis. Cox proportional hazards regression model was used to analyze the effects of gender, age, ASL and BOLD on the survival of renal transplant patients. RESULTS ASL and BOLD parameters were independently associated with renal function injury and renal allograft positive pathology. The AUC of prediction model for renal allograft function based on ASL and BOLD parameters was 0.85, while the AUC based on BOLD parameters was 0.70. Renal transplantation time showed a positive correlation with age, BOLD parameters and SCr,while a negative correlation with ASL parameters and eGFR. ASL parameter was positively correlated with eGFR and negatively correlated with Scr. BOLD parameter was negatively correlated with eGFR, ASL and positively correlated with Scr. Cox proportional hazards regression model showed that the increase of age could reduce the risk of renal function injury and positive pathology. CONCLUSIONS ASL and BOLD were associated with renal function injury and renal allograft positive pathology. ASL and BOLD had some value in predicting renal allograft function.
Collapse
Affiliation(s)
- Jin Peng
- Department of Tumor and Vascular Intervention, Chenggong Hospital, Xiamen University, Xiamen, Fujian, 361003, China
| | - Juan Gao
- Department of Radiology, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210006, China
| | - Yajun Hong
- Department of Medical Record Statistics, Zhongshan Hospital, Fudan University (Xiamen Branch), Fujian, 361015, China
| | - Zhengcan Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Guozhong Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Guangming Lu
- Department of Radiology, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
5
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
6
|
Barbosa ACS, Mauroner LG, Kumar J, Sims-Lucas S. Delayed graft function post renal transplantation: a review on animal models and therapeutics. Am J Physiol Renal Physiol 2023; 325:F817-F825. [PMID: 37855040 PMCID: PMC10878700 DOI: 10.1152/ajprenal.00146.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
The incidence of end-stage renal disease (ESRD) has been increasing worldwide. Its treatment involves renal replacement therapy, either by dialyses or renal transplantation from a living or deceased donor. Although the initial mortality rates for patients on dialysis are comparable with kidney transplant recipients, the quality of life and long-term prognosis are greatly improved in transplanted patients. However, there is a large gap between availability and need for donor kidneys. This has led to the increase in the use of expanded kidney donor criteria. Allograft dysfunction immediately after transplant sets it up for many complications, such as acute rejection and shorter allograft survival. Delayed graft function (DGF) is one of the immediate posttransplant insults to the kidney allograft, which is increasing in prevalence due to efforts to maximize the available donor pool for kidneys and use of expanded kidney donor criteria. In this review, we discuss the risk factors for DGF, its implications for long-term allograft survival, animal models of DGF, and the therapeutic options currently under evaluation for prevention and management of DGF.
Collapse
Affiliation(s)
- Anne C S Barbosa
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, United States
| | - Lillian G Mauroner
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, United States
| | - Juhi Kumar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, United States
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Brumer I, Bauer DF, Schad LR, Zöllner FG. Synthetic Arterial Spin Labeling MRI of the Kidneys for Evaluation of Data Processing Pipeline. Diagnostics (Basel) 2022; 12:1854. [PMID: 36010205 PMCID: PMC9406826 DOI: 10.3390/diagnostics12081854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Accurate quantification of perfusion is crucial for diagnosis and monitoring of kidney function. Arterial spin labeling (ASL), a completely non-invasive magnetic resonance imaging technique, is a promising method for this application. However, differences in acquisition (e.g., ASL parameters, readout) and processing (e.g., registration, segmentation) between studies impede the comparison of results. To alleviate challenges arising solely from differences in processing pipelines, synthetic data are of great value. In this work, synthetic renal ASL data were generated using body models from the XCAT phantom and perfusion was added using the general kinetic model. Our in-house developed processing pipeline was then evaluated in terms of registration, quantification, and segmentation using the synthetic data. Registration performance was evaluated qualitatively with line profiles and quantitatively with mean structural similarity index measures (MSSIMs). Perfusion values obtained from the pipeline were compared to the values assumed when generating the synthetic data. Segmentation masks obtained by semi-automated procedure of the processing pipeline were compared to the original XCAT organ masks using the Dice index. Overall, the pipeline evaluation yielded good results. After registration, line profiles were smoother and, on average, MSSIMs increased by 25%. Mean perfusion values for cortex and medulla were close to the assumed perfusion of 250 mL/100 g/min and 50 mL/100 g/min, respectively. Dice indices ranged 0.80-0.93, 0.78-0.89, and 0.64-0.84 for whole kidney, cortex, and medulla, respectively. The generation of synthetic ASL data allows flexible choice of parameters and the generated data are well suited for evaluation of processing pipelines.
Collapse
Affiliation(s)
- Irène Brumer
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (D.F.B.); (L.R.S.); (F.G.Z.)
| | | | | | | |
Collapse
|
8
|
Hysi E, Kaur H, Young A. Evolving Medical Imaging Techniques for the Assessment of Delayed Graft Function: A Narrative Review. Can J Kidney Health Dis 2021; 8:20543581211048341. [PMID: 34707880 PMCID: PMC8544764 DOI: 10.1177/20543581211048341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/04/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose of review Delayed graft function (DGF) is a significant complication that contributes to poorer graft function and shortened graft survival. In this review, we sought to evaluate the current and emerging role of medical imaging modalities in the assessment of DGF and how it may guide clinical management. Sources of information PubMed, Google Scholar, and ClinicalTrial.gov up until February 2021. Methods This narrative review first examined the pathophysiology of DGF and current clinical management. We then summarized relevant studies that utilized medical imaging to assess posttransplant renal complications, namely, DGF. We focused our attention on noninvasive, evolving imaging modalities with the greatest potential for clinical translation, including contrast-enhanced ultrasound (CEUS) and multiparametric magnetic resonance imaging (MRI). Key findings A kidney biopsy in the setting of DGF can be used to assess the degree of ischemic renal injury and to rule out acute rejection. Biopsies are accompanied by complications and may be limited by sampling bias. Early studies on CEUS and MRI have shown their potential to distinguish between the 2 most common causes of DGF (acute tubular necrosis and acute rejection), but they have generally included only small numbers of patients and have not kept pace with more recent technical advances of these imaging modalities. There remains unharnessed potential with CEUS and MRI, and more robust clinical studies are needed to better evaluate their role in the current era. Limitations The adaptation of emerging approaches for imaging DGF will depend on additional clinical trials to study the feasibility and diagnostic test characteristics of a given modality. This is limited by access to devices, technical competence, and the need for interdisciplinary collaborations to ensure that such studies are well designed to appropriately inform clinical decision-making.
Collapse
Affiliation(s)
- Eno Hysi
- Division of Nephrology, St. Michael's Hospital, Unity Health Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Unity Health Toronto, ON, Canada
| | - Harmandeep Kaur
- Li Ka Shing Knowledge Institute, Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Unity Health Toronto, ON, Canada
| | - Ann Young
- Division of Nephrology, St. Michael's Hospital, Unity Health Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Unity Health Toronto, ON, Canada.,Division of Nephrology, Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
9
|
Zheng X, Li M, Wang P, Li X, Zhang Q, Zeng S, Jiang T, Hu X. Assessment of chronic allograft injury in renal transplantation using diffusional kurtosis imaging. BMC Med Imaging 2021; 21:63. [PMID: 33827457 PMCID: PMC8028790 DOI: 10.1186/s12880-021-00595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/28/2021] [Indexed: 11/12/2022] Open
Abstract
Background Chronic allograft injury (CAI) is a significant reason for which many grafts were lost. The study was conducted to assess the usefulness of diffusional kurtosis imaging (DKI) technology in the non-invasive assessment of CAI. Methods Between February 2019 and October 2019, 110 renal allograft recipients were included to analyze relevant DKI parameters. According to estimated glomerular filtration rate (eGFR) (mL/min/ 1.73 m2) level, they were divided to 3 groups: group 1, eGFR ≥ 60 (n = 10); group 2, eGFR 30–60 (n = 69); group 3, eGFR < 30 (n = 31). We performed DKI on a clinical 3T magnetic resonance imaging system. We measured the area of interest to determine the mean kurtosis (MK), mean diffusivity (MD), and apparent diffusion coefficient (ADC) of the renal cortex and medulla. We performed a Pearson correlation analysis to determine the relationship between eGFR and the DKI parameters. We used the receiver operating characteristic curve to estimate the predicted values of DKI parameters in the CAI evaluation. We randomly selected five patients from group 2 for biopsy to confirm CAI. Results With the increase of creatinine, ADC, and MD of the cortex and medulla decrease, MK of the cortex and medulla gradually increase. Among the three different eGFR groups, significant differences were found in cortical and medullary MK (P = 0.039, P < 0.001, P < 0.001, respectively). Cortical and medullary ADC and MD are negatively correlated with eGFR (r = − 0.49, − 0.44, − 0.57, − 0.57, respectively; P < 0.001), while cortical and medullary MK are positively correlated with eGFR (r = 0.42, 0.38; P < 0.001). When 0.491 was set as the cutoff value, MK's CAI assessment showed 87% sensitivity and 100% specificity. All five patients randomly selected for biopsy from the second group confirmed glomerulosclerosis and tubular atrophy/interstitial fibrosis. Conclusion The DKI technique is related to eGFR as allograft injury progresses and is expected to become a potential non-invasive method for evaluating CAI. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-021-00595-3.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Urology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Min Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Pan Wang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Xiangnan Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Qiang Zhang
- Institute of Urology, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Song Zeng
- Institute of Urology, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.
| | - Xiaopeng Hu
- Institute of Urology, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China. .,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.
| |
Collapse
|
10
|
Srivastava A, Tomar B, Prajapati S, Gaikwad AB, Mulay SR. Advanced non-invasive diagnostic techniques for visualization and estimation of kidney fibrosis. Drug Discov Today 2021; 26:2053-2063. [PMID: 33617976 DOI: 10.1016/j.drudis.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
Kidney fibrosis is marked by excessive extracellular matrix deposition during disease progression. Unfortunately, existing kidney function parameters do not predict the extent of kidney fibrosis. Moreover, the traditional histology methods for the assessment of kidney fibrosis require liquid and imaging biomarkers as well as needle-based biopsies, which are invasive and often associated with kidney injury. The repetitive analyses required to monitor the disease progression are therefore difficult. Hence, there is an unmet medical need for non-invasive and informative diagnostic approaches to monitor kidney fibrosis during the progression of chronic kidney disease. Here, we summarize the modern advances in diagnostic imaging techniques that have shown promise for non-invasive estimation of kidney fibrosis in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Smita Prajapati
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
11
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
12
|
Qiu L, Lai X, Wang JJ, Yeap XY, Han S, Zheng F, Lin C, Zhang Z, Procissi D, Fang D, Li L, Thorp EB, Abecassis MM, Kanwar YS, Zhang ZJ. Kidney-intrinsic factors determine the severity of ischemia/reperfusion injury in a mouse model of delayed graft function. Kidney Int 2020; 98:1489-1501. [PMID: 32822703 PMCID: PMC7814505 DOI: 10.1016/j.kint.2020.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Delayed graft function due to transplant ischemia/reperfusion injury adversely affects up to 50% of deceased-donor kidney transplant recipients. However, key factors contributing to the severity of ischemia/reperfusion injury remain unclear. Here, using a clinically relevant mouse model of delayed graft function, we demonstrated that donor genetic background and kidney-intrinsic MyD88/Trif-dependent innate immunity were key determinants of delayed graft function. Functional deterioration of kidney grafts directly corresponded with the duration of cold ischemia time. The graft dysfunction became irreversible after cold ischemia time exceeded six hours. When cold ischemia time reached four hours, kidney grafts displayed histological features reflective of delayed graft function seen in clinical kidney transplantation. Notably, kidneys of B6 mice exhibited significantly more severe histological and functional impairment than kidneys of C3H or BALB/c mice, regardless of recipient strains or alloreactivities. Furthermore, allografts of B6 mice also showed an upregulation of IL-6, neutrophil gelatinase-associated lipocalin, and endoplasmic reticulum stress genes, as well as an increased influx of host neutrophils and memory CD8 T-cells. In contrast, donor MyD88/Trif deficiency inhibited neutrophil influx and decreased the expression of IL-6 and endoplasmic reticulum stress genes, along with improved graft function and prolonged allograft survival. Thus, kidney-intrinsic factors involving genetic characteristics and innate immunity serve as critical determinants of the severity of delayed graft function. This preclinical murine model allows for further investigations of the mechanisms underlying delayed graft function.
Collapse
Affiliation(s)
- Longhui Qiu
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingqiang Lai
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Organ Transplant Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xin Yi Yeap
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shulin Han
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Feibo Zheng
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Charlie Lin
- Weinberg Art and Science College, Northwestern University, Evanston, Illinois, USA
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, West Hollywood, California, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael M Abecassis
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Medicine (Nephrology and Hypertension), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Early detection of subclinical pathology in patients with stable kidney graft function by arterial spin labeling. Eur Radiol 2020; 31:2687-2695. [PMID: 33151395 DOI: 10.1007/s00330-020-07369-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the utility of arterial spin labeling (ASL) for the identification of kidney allografts with underlying pathologies, particularly those with stable graft function. METHODS A total of 75 patients, including 18 stable grafts with normal histology (normal group), 21 stable grafts with biopsy-proven pathology (subclinical pathology group), and 36 with unstable graft function (unstable graft group), were prospectively examined by ASL magnetic resonance imaging. Receiver operating characteristic curves were generated to calculate the area under the curve (AUC), sensitivity, and specificity. RESULTS Patient demographics among the 3 groups were comparable. Compared with the normal group, kidney allograft cortical ASL values decreased in the subclinical pathology group and the unstable graft group (204.7 ± 44.9 ml/min/100 g vs 152.5 ± 38.9 ml/min/100 g vs 92.3 ± 37.4 ml/min/100 g, p < 0.001). The AUC, sensitivity, and specificity for discriminating allografts with pathologic changes from normal allografts were 0.92 (95% CI, 0.83-0.97), 71.9%, and 100% respectively by cortical ASL and 0.82 (95% CI, 0.72-0.90), 54.4%, and 100% respectively by serum creatinine. The cortical ASL identified allografts with subclinical pathology among patients with stable graft function with an AUC of 0.80 (95% CI, 0.64-0.91), sensitivity of 57.1%, and specificity of 88.9%. Combined use of proteinuria and cortical ASL could improve the sensitivity and specificity to 76.2% and 100% respectively for distinguishing the subclinical pathology group from the normal group. CONCLUSIONS Cortical ASL is useful for the identification of allografts with underlying pathologies. More importantly, ASL showed promise as a non-invasive tool for the clinical translation of identifying kidney allografts with subclinical pathology. KEY POINTS • Cortical ASL values were decreased in kidney allografts with subclinical pathologic changes as compared with normal allografts (152.5 ± 38.9 ml/min/100 g vs 204.7 ± 44.9 ml/min/100 g, p < 0.001). • Cortical ASL differentiated allografts with pathologic changes and subclinical pathology group from normal group with an AUC of 0.92 (95% CI, 0.83-0.97) and 0.80 (95% CI, 0.64-0.91) respectively. • Cortical ASL discriminated allografts with underlying pathologic changes from normal allografts with a specificity of 100%, and combined use of proteinuria and cortical ASL values could also achieve 100% specificity for discriminating allografts with subclinical pathology from normal allografts.
Collapse
|
14
|
Echeverria-Chasco R, Vidorreta M, Aramendía-Vidaurreta V, Cano D, Escalada J, Garcia-Fernandez N, Bastarrika G, Fernández-Seara MA. Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging. Magn Reson Med 2020; 85:1507-1521. [PMID: 33017483 DOI: 10.1002/mrm.28531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To evaluate labeling efficiency of pseudo-continuous arterial spin labeling (PCASL) and to find the gradient parameters that increase PCASL robustness for renal perfusion measurements. METHODS Aortic blood flow was characterized in 3 groups: young healthy volunteers (YHV1), chronic kidney disease (CKD) patients (CKDP), and healthy controls (HCO). PCASL inversion efficiency was evaluated through numeric simulations considering the measured pulsatile flow velocity profiles and off-resonance effects for a wide range of gradient parameters, and the results were assessed in vivo. The most robust PCASL implementation was used to measure renal blood flow (RBF) in CKDP and HCO. RESULTS Aortic blood velocities reached peak values of 120 cm/s in YHV1, whereas for elderly subjects values were lower by approximately a factor of 2. Simulations and experiments showed that by reducing the gradient average (Gave ) and the selective to average gradient ratio (Gmax /Gave ), labeling efficiency was maximized and PCASL robustness to off-resonance was improved. The study in CKDP and HCO showed significant differences in RBF between groups. CONCLUSION An efficient and robust PCASL scheme for renal applications requires a Gmax /Gave ratio of 6-7 and a Gave value that depends on the aortic blood flow velocities (0.5 mT/m being appropriate for CKDP and HCO).
Collapse
Affiliation(s)
- Rebeca Echeverria-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Verónica Aramendía-Vidaurreta
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - David Cano
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Escalada
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Nuria Garcia-Fernandez
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Department of Nephrology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Yu YM, Ni QQ, Wang ZJ, Chen ML, Zhang LJ. Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury. Korean J Radiol 2020; 20:894-908. [PMID: 31132815 PMCID: PMC6536799 DOI: 10.3348/kjr.2018.0540] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.
Collapse
Affiliation(s)
- Yuan Meng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China
| | - Qian Qian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Meng Lin Chen
- Medical Imaging Teaching and Research Office, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Schutter R, Lantinga VA, Borra RJH, Moers C. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:49-61. [PMID: 31879853 DOI: 10.1007/s10334-019-00813-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Kidney transplantation has developed into a widespread procedure to treat end stage renal failure, with transplantation results improving over the years. Postoperative complications have decreased over the past decades, but are still an important cause of morbidity and mortality. Early accurate diagnosis and treatment is the key to prevent renal allograft impairment or even graft loss. Ideally, a diagnostic tool should be able to detect post-transplant renal dysfunction, differentiate between the different causes and monitor renal function during and after therapeutic interventions. Non-invasive imaging modalities for diagnostic purposes show promising results. Magnetic resonance imaging (MRI) techniques have a number of advantages, such as the lack of ionizing radiation and the possibility to obtain relevant tissue information without contrast, reducing the risk of contrast-induced nephrotoxicity. However, most techniques still lack the specificity to distinguish different types of parenchymal diseases. Despite some promising outcomes, MRI is still barely used in the post-transplantation diagnostic process. The aim of this review is to survey the current literature on the relevance and clinical applicability of diagnostic MRI modalities for the detection of various types of complications after kidney transplantation.
Collapse
Affiliation(s)
- Rianne Schutter
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Veerle A Lantinga
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J H Borra
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cyril Moers
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
17
|
Päivärinta J, Oikonen V, Räisänen-Sokolowski A, Tolvanen T, Löyttyniemi E, Iida H, Nuutila P, Metsärinne K, Koivuviita N. Renal vascular resistance is increased in patients with kidney transplant. BMC Nephrol 2019; 20:437. [PMID: 31775670 PMCID: PMC6882025 DOI: 10.1186/s12882-019-1617-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite improvement in short-term outcome of kidney transplants, the long-term survival of kidney transplants has not changed over past decades. Kidney biopsy is the gold standard of transplant pathology but it's invasive. Quantification of transplant blood flow could provide a novel non-invasive method to evaluate transplant pathology. The aim of this retrospective cross-sectional pilot study was to evaluate positron emission tomography (PET) as a method to measure kidney transplant perfusion and find out if there is correlation between transplant perfusion and histopathology. METHODS Renal cortical perfusion of 19 kidney transplantation patients [average time from transplantation 33 (17-54) months; eGFR 55 (47-69) ml/min] and 10 healthy controls were studied by [15 O]H2O PET. Perfusion and Doppler resistance index (RI) of transplants were compared with histology of one-year protocol transplant biopsy. RESULTS Renal cortical perfusion of healthy control subjects and transplant patients were 2.7 (2.4-4.0) ml min- 1 g- 1 and 2.2 (2.0-3.0) ml min- 1 g- 1, respectively (p = 0.1). Renal vascular resistance (RVR) of the patients was 47.0 (36.7-51.4) mmHg mL- 1min- 1g- 1 and that of the healthy 32.4 (24.6-39.6) mmHg mL- 1min-1g-1 (p = 0.01). There was a statistically significant correlation between Doppler RI and perfusion of transplants (r = - 0.51, p = 0.026). Transplant Doppler RI of the group of mild fibrotic changes [0.73 (0.70-0.76)] and the group of no fibrotic changes [0.66 (0.61-0.72)] differed statistically significantly (p = 0.03). No statistically significant correlation was found between cortical perfusion and fibrosis of transplants (p = 0.56). CONCLUSIONS [15 O]H2O PET showed its capability as a method in measuring perfusion of kidney transplants. RVR of transplant patients with stage 2-3 chronic kidney disease was higher than that of the healthy, although kidney perfusion values didn't differ between the groups. Doppler based RI correlated with perfusion and fibrosis of transplants.
Collapse
Affiliation(s)
- Johanna Päivärinta
- Department of Nephrology, Turku University Hospital, PL 52,Kiinanmyllykatu 4-8, 20521, Turku, Finland.
- Department of Medicine, University of Turku, Turku, Finland.
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, Turku, Finland
| | - Anne Räisänen-Sokolowski
- Department of Pathology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Tuula Tolvanen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | | | - Hidehiro Iida
- Turku PET Centre, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Department of Medicine, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
| | - Kaj Metsärinne
- Department of Nephrology, Turku University Hospital, PL 52,Kiinanmyllykatu 4-8, 20521, Turku, Finland
| | - Niina Koivuviita
- Department of Nephrology, Turku University Hospital, PL 52,Kiinanmyllykatu 4-8, 20521, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| |
Collapse
|
18
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Abassi Z, Rosen S, Lamothe S, Heyman SN. Why Have Detection, Understanding and Management of Kidney Hypoxic Injury Lagged Behind those for the Heart? J Clin Med 2019; 8:E267. [PMID: 30795640 PMCID: PMC6406359 DOI: 10.3390/jcm8020267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
The outcome of patients with acute myocardial infarction (AMI) has dramatically improved over recent decades, thanks to early detection and prompt interventions to restore coronary blood flow. In contrast, the prognosis of patients with hypoxic acute kidney injury (AKI) remained unchanged over the years. Delayed diagnosis of AKI is a major reason for this discrepancy, reflecting the lack of symptoms and diagnostic tools indicating at real time altered renal microcirculation, oxygenation, functional derangement and tissue injury. New tools addressing these deficiencies, such as biomarkers of tissue damage are yet far less distinctive than myocardial biomarkers and advanced functional renal imaging technologies are non-available in the clinical practice. Moreover, our understanding of pathogenic mechanisms likely suffers from conceptual errors, generated by the extensive use of the wrong animal model, namely warm ischemia and reperfusion. This model parallels mechanistically type I AMI, which properly represents the rare conditions leading to renal infarcts, whereas common scenarios leading to hypoxic AKI parallel physiologically type II AMI, with tissue hypoxic damage generated by altered oxygen supply/demand equilibrium. Better understanding the pathogenesis of hypoxic AKI and its management requires a more extensive use of models of type II-rather than type I hypoxic AKI.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Ruth & Bruce Rappaport Faculty of Medicine, Technion-IIT, Haifa, 31096, Israel.
- Department of Laboratory Medicine, Rambam Health Care campus, Haifa, 31096, Israel.
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Simon Lamothe
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, 91240, Israel.
| |
Collapse
|
20
|
Nery F, De Vita E, Clark CA, Gordon I, Thomas DL. Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Magn Reson Med 2018; 81:2972-2984. [PMID: 30536817 DOI: 10.1002/mrm.27614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a robust renal arterial spin labeling (ASL) acquisition and processing strategy for mapping renal blood flow (RBF) in a pediatric cohort with severe kidney disease. METHODS A single-shot background-suppressed 3D gradient and spin-echo (GRASE) flow-sensitive alternating inversion recovery (FAIR) ASL acquisition method was used to perform 2 studies. First, an evaluation of the feasibility of single-shot 3D-GRASE and retrospective noise reduction methods was performed in healthy volunteers. Second, a pediatric cohort with severe chronic kidney disease underwent single-shot 3D-GRASE FAIR ASL and RBF was quantified following several retrospective motion correction pipelines, including image registration and threshold-free weighted averaging. The effect of motion correction on the fit errors of saturation recovery (SR) images (required for RBF quantification) and on the perfusion-weighted image (PWI) temporal signal-to-noise ratio (tSNR) was evaluated, as well as the intra- and inter-session repeatability of renal longitudinal relaxation time (T1 ) and RBF. RESULTS The mean cortical and/or functional renal parenchyma RBF in healthy volunteers and CKD patients was 295 ± 97 and 95 ± 47 mL/100 g/min, respectively. Motion-correction reduced image artefacts in both T1 and RBF maps, significantly reduced SR fit errors, significantly increased the PWI tSNR and improved the improved the repeatability of T1 and RBF in the pediatric patient cohort. CONCLUSION Single-shot 3D-GRASE ASL combined with retrospective motion correction enabled repeatable non-invasive RBF mapping in the first pediatric cohort with severe kidney disease undergoing ASL scans.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Isky Gordon
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
21
|
Abstract
Kidney diseases can be caused by a wide range of genetic, hemodynamic, toxic, infectious, and autoimmune factors. The diagnosis of kidney disease usually involves the biochemical analysis of serum and blood, but these tests are often insufficiently sensitive or specific to make a definitive diagnosis. Although radiologic imaging currently has a limited role in the evaluation of most kidney diseases, several new imaging methods hold great promise for improving our ability to non-invasively detect structural, functional, and molecular changes within the kidney. New methods, such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and blood oxygen level-dependent (BOLD) MRI, allow functional imaging of the kidney. The use of novel contrast agents, such as microbubbles and nanoparticles, allows the detection of specific molecules in the kidney. These methods could greatly advance our ability to diagnose disease and also to safely monitor patients over time. This could improve the care of individual patients, and it could also facilitate the evaluation of new treatment strategies.
Collapse
Affiliation(s)
- Joshua Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Abstract
Renal transplantation is the therapy of choice for patients with end-stage renal diseases. Improvement of immunosuppressive therapy has significantly increased the half-life of renal allografts over the past decade. Nevertheless, complications can still arise. An early detection of allograft dysfunction is mandatory for a good outcome. New advances in magnetic resonance imaging (MRI) have enabled the noninvasive assessment of different functional renal parameters in addition to anatomic imaging. Most of these techniques were widely tested on renal allografts in past decades and a lot of clinical data are available. The following review summarizes the comprehensive, functional MRI techniques for the noninvasive assessment of renal allograft function and highlights their potential for the investigations of different etiologies of graft dysfunction.
Collapse
|
23
|
Favi E, Puliatti C, Iesari S, Monaco A, Ferraresso M, Cacciola R. Impact of Donor Age on Clinical Outcomes of Primary Single Kidney Transplantation From Maastricht Category-III Donors After Circulatory Death. Transplant Direct 2018; 4:e396. [PMID: 30498772 PMCID: PMC6233668 DOI: 10.1097/txd.0000000000000835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Standard-criteria donation after circulatory death (DCD) kidney transplants (KTx) have higher primary nonfunction, delayed graft function (DGF), and rejection rates than age-matched donation after brain death (DBD) but similar graft survival. Data on expanded-criteria DCD are conflicting and many centers remain concerned regarding their use. METHODS In this single-center observational study with 5-year follow-up, we analyzed data from 112 primary DCD Maastricht category-III single KTx receiving similar organ preservation and maintenance immunosuppression. Patients were sorted as young DCD (donor <60 years, 72 recipients) or old DCD (donor ≥60 years, 40 recipients). Old DCD outcomes were compared with young DCD and to a DBD control group (old DBD, donor ≥60 years, 40 recipients). RESULTS After 5 years, old DCD showed lower patient survival (66% vs 85%; P = 0.014), death-censored graft survival (63% vs 83%; P = 0.001), and Modification of Diet in Renal Disease estimated glomerular filtration rate (34, 27.0-42.0 mL/min per 1.73 m2 vs 45.0, 33.0-58.0 mL/min per 1.73 m2; P = 0.021) than young DCD with higher DGF (70% vs 47.2%; P = 0.029) and graft thrombosis (12.5% vs 1.4%; P = 0.021). Comparison between old DCD and old DBD showed similar 5-year patient survival (66% vs 67%; P = 0.394) and death-censored graft survival (63% vs 69%; P = 0.518) but higher DGF (70% vs 37.5%; P = 0.007) and lower estimated glomerular filtration rate (34, 27.0-42.0 mL/min per 1.73 m2 vs 41, 40.0-42.0 mL/min per 1.73 m2; P = 0.029). Multivariate Cox regression analysis showed that donor 60 years or older (hazard ratio, 3.135; 95% confidence interval, 1.716-5.729; P < 0.001) and induction with anti-IL2-receptor-α monoclonal antibody (hazard ratio, 0.503; 95% confidence interval, 0.269-0.940, P = 0.031 in favor of induction with rabbit antithymocyte globulin) are independent predictors of transplant loss. CONCLUSIONS Overall, single KTx from DCD Maastricht category-III donors 60 years or older have inferior outcomes than KTx from donors younger than 60 years. Comparison with age-matched DBD showed similar patient and graft survivals. However, the discrepancy in graft function between DCD and DBD deserves further investigation.
Collapse
Affiliation(s)
- Evaldo Favi
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmelo Puliatti
- Renal Transplantation, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Samuele Iesari
- Organ Transplantation, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Monaco
- Renal Transplantation, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Mariano Ferraresso
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Roberto Cacciola
- Renal Transplantation, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| |
Collapse
|
24
|
Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33:ii15-ii21. [PMID: 30137581 PMCID: PMC6106644 DOI: 10.1093/ndt/gfy180] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Renal perfusion provides the driving pressure for glomerular filtration and delivers the oxygen and nutrients to fuel solute reabsorption. Renal ischaemia is a major mechanism in acute kidney injury and may promote the progression of chronic kidney disease. Thus, quantifying renal tissue perfusion is critically important for both clinicians and physiologists. Current reference techniques for assessing renal tissue perfusion have significant limitations. Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that uses magnetic labelling of water in arterial blood as an endogenous tracer to generate maps of absolute regional perfusion without requiring exogenous contrast. The technique holds enormous potential for clinical use but remains restricted to research settings. This statement paper from the PARENCHIMA network briefly outlines the ASL technique and reviews renal perfusion data in 53 studies published in English through January 2018. Renal perfusion by ASL has been validated against reference methods and has good reproducibility. Renal perfusion by ASL reduces with age and excretory function. Technical advancements mean that a renal ASL study can acquire a whole kidney perfusion measurement in less than 5-10 min. The short acquisition time permits combination with other MRI techniques that might inform drug mechanisms and renal physiology. The flexibility of renal ASL has yielded several variants of the technique, but there are limited data comparing these approaches. We make recommendations for acquiring and reporting renal ASL data and outline the knowledge gaps that future research should address.
Collapse
Affiliation(s)
- Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabio Nery
- Developmental Imaging & Biophysics Section, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger G Evans
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Douglas Pendse
- Centre for Medical Imaging, University College London, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
25
|
Thorenz A, Derlin K, Schröder C, Dressler L, Vijayan V, Pradhan P, Immenschuh S, Jörns A, Echtermeyer F, Herzog C, Chen R, Rong S, Bräsen JH, van Kooten C, Kirsch T, Klemann C, Meier M, Klos A, Haller H, Hensen B, Gueler F. Enhanced activation of interleukin-10, heme oxygenase-1, and AKT in C5aR2-deficient mice is associated with protection from ischemia reperfusion injury-induced inflammation and fibrosis. Kidney Int 2018; 94:741-755. [PMID: 29935951 DOI: 10.1016/j.kint.2018.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Severe ischemia reperfusion injury (IRI) results in rapid complement activation, acute kidney injury and progressive renal fibrosis. Little is known about the roles of the C5aR1 and C5aR2 complement receptors in IRI. In this study C5aR1-/- and C5aR2-/- mice were compared to the wild type in a renal IRI model leading to renal fibrosis. C5a receptor expression, kidney morphology, inflammation, and fibrosis were measured in different mouse strains one, seven and 21 days after IRI. Renal perfusion was evaluated by functional magnetic resonance imaging. Protein abundance and phosphorylation were assessed with high content antibody microarrays and Western blotting. C5aR1 and C5aR2 were increased in damaged tubuli and even more in infiltrating leukocytes after IRI in kidneys of wild-type mice. C5aR1-/- and C5aR2-/- animals developed less IRI-induced inflammation and showed better renal perfusion than wild-type mice following IRI. C5aR2-/- mice, in particular, had enhanced tubular and capillary regeneration with less renal fibrosis. Anti-inflammatory IL-10 and the survival/growth kinase AKT levels were especially high in kidneys of C5aR2-/- mice following IRI. LPS caused bone marrow-derived macrophages from C5aR2-/- mice to release IL-10 and to express the stress response enzyme heme oxygenase-1. Thus, C5aR1 and C5aR2 have overlapping actions in which the kidneys of C5aR2-/- mice regenerate better than those in C5aR1-/- mice following IRI. This is mediated, at least in part, by differential production of IL-10, heme oxygenase-1 and AKT.
Collapse
Affiliation(s)
- Anja Thorenz
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | | | - Vijith Vijayan
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Pooja Pradhan
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Department of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Frank Echtermeyer
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Torsten Kirsch
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Christian Klemann
- Department of Pediatric Surgery, Center of Surgery, Hannover Medical School, Hannover, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Imaging Center of the Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | - Andreas Klos
- Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Bennet Hensen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
26
|
Greite R, Thorenz A, Chen R, Jang MS, Rong S, Brownstein MJ, Tewes S, Wang L, Baniassad B, Kirsch T, Bräsen JH, Lichtinghagen R, Meier M, Haller H, Hueper K, Gueler F. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Am J Physiol Renal Physiol 2018; 314:F881-F892. [DOI: 10.1152/ajprenal.00519.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a severe complication of major surgery and a risk factor for increased morbidity and mortality. Here, we investigated mechanisms that might contribute to IRI-induced progression to chronic kidney disease (CKD). Acute kidney injury (AKI) was induced by unilateral IRI for 35 min in CD1 and C57BL/6 (B6) mice. Unilateral IRI was used to overcome early mortality. Renal morphology, NGAL upregulation, and neutrophil infiltration as well as peritubular capillary density were studied by immunohistochemistry. The composition of leukocyte infiltrates in the kidney after IRI was investigated by flow cytometry. Systemic blood pressure was measured with a tail cuff, and renal perfusion was quantified by functional magnetic resonance imaging (fMRI). Mesangial matrix expansion was assessed by silver staining. Following IRI, CD1 and B6 mice developed similar morphological signs of AKI and increases in NGAL expression, but neutrophil infiltration was greater in CD1 than B6 mice. IRI induced an increase in systemic blood pressure of 20 mmHg in CD1, but not in B6 mice; and CD1 mice also had a greater loss of renal perfusion and kidney volume than B6 mice ( P < 0.05). CD1 mice developed substantial interstitial fibrosis and decreased peritubular capillary (PTC) density by day 14 while B6 mice showed only mild renal scarring and almost normal PTC. Our results show that after IRI, CD1 mice develop more inflammation, hypertension, and later mesangial matrix expansion than B6 mice do. Subsequently, CD1 animals suffer from CKD due to impaired renal perfusion and pronounced permanent loss of peritubular capillaries.
Collapse
Affiliation(s)
- Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Hannover, Germany
- The Transplantation Center of the Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | | | - Susanne Tewes
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Li Wang
- Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | | | - Katja Hueper
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Non-Invasive Renal Perfusion Imaging Using Arterial Spin Labeling MRI: Challenges and Opportunities. Diagnostics (Basel) 2018; 8:diagnostics8010002. [PMID: 29303965 PMCID: PMC5871985 DOI: 10.3390/diagnostics8010002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho) physiology. However, non-invasive, practical, and robust methods to measure renal perfusion remain elusive, particularly in the clinic. Arterial spin labeling (ASL), a magnetic resonance imaging (MRI) technique, is arguably the only available method with potential to meet all these needs. Recent developments suggest its viability for clinical application. This review addresses several of these developments and discusses remaining challenges with the emphasis on renal imaging in human subjects.
Collapse
|
28
|
Getzin T, May M, Schmidbauer M, Gutberlet M, Martirosian P, Oertel R, Wacker F, Schindler C, Hueper K. Usability of Functional MRI in Clinical Studies for Fast and Reliable Assessment of Renal Perfusion and Quantification of Hemodynamic Effects on the Kidney. J Clin Pharmacol 2017; 58:466-473. [DOI: 10.1002/jcph.1034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Tobias Getzin
- Department of Diagnostic and Interventional Radiology; Hannover Medical School; Hannover Germany
| | - Marcus May
- Center for Pharmacology and Toxicology; Clinical Research Center, Hannover Medical School; Hannover Germany
| | - Martina Schmidbauer
- Department of Diagnostic and Interventional Radiology; Hannover Medical School; Hannover Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional Radiology; Hannover Medical School; Hannover Germany
| | - Petros Martirosian
- Department of Diagnostic and Interventional Radiology, Section Experimental Radiology, Medical Faculty; University of Tübingen; Tübingen Germany
| | - Reinhard Oertel
- Institute for Clinical Pharmacology, Medical Faculty; Technical University Dresden; Dresden Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology; Hannover Medical School; Hannover Germany
| | - Christoph Schindler
- Center for Pharmacology and Toxicology; Clinical Research Center, Hannover Medical School; Hannover Germany
| | - Katja Hueper
- Department of Diagnostic and Interventional Radiology; Hannover Medical School; Hannover Germany
| |
Collapse
|
29
|
Romero CA, Cabral G, Knight RA, Ding G, Peterson EL, Carretero OA. Noninvasive measurement of renal blood flow by magnetic resonance imaging in rats. Am J Physiol Renal Physiol 2017; 314:F99-F106. [PMID: 28978533 DOI: 10.1152/ajprenal.00332.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Renal blood flow (RBF) provides important information regarding renal physiology and nephropathies. Arterial spin labeling-magnetic resonance imaging (ASL-MRI) is a noninvasive method of measuring blood flow without exogenous contrast media. However, low signal-to-noise ratio and respiratory motion artifacts are challenges for RBF measurements in small animals. Our objective was to evaluate the feasibility and reproducibility of RBF measurements by ASL-MRI using respiratory-gating and navigator correction methods to reduce motion artifacts. ASL-MRI images were obtained from the kidneys of Sprague-Dawley (SD) rats on a 7-Tesla Varian MRI system with a spin-echo imaging sequence. After 4 days, the study was repeated to evaluate its reproducibility. RBF was also measured in animals under unilateral nephrectomy and in renal artery stenosis (RST) to evaluate the sensitivity in high and low RBF models, respectively. RBF was also evaluated in Dahl salt-sensitive (SS) rats and spontaneous hypertensive rats (SHR). In SD rats, the cortical RBFs (cRBF) were 305 ± 59 and 271.8 ± 39 ml·min-1·100 g tissue-1 in the right and left kidneys, respectively. Retest analysis revealed no differences ( P = 0.2). The test-retest reliability coefficient was 92 ± 5%. The cRBFs before and after the nephrectomy were 296.8 ± 30 and 428.2 ± 45 ml·min-1·100 g tissue-1 ( P = 0.02), respectively. The kidneys with RST exhibited a cRBF decrease compared with sham animals (86 ± 17.6 vs. 198 ± 33.7 ml·min-1·100 g tissue-1; P < 0.01). The cRBFs in SD, Dahl-SS, and SHR rats were not different ( P = 0.35). We conclude that ASL-MRI performed with navigator correction and respiratory gating is a feasible and reliable noninvasive method for measuring RBF in rats.
Collapse
Affiliation(s)
- Cesar A Romero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology-NMR Research, Henry Ford Hospital , Detroit, Michigan
| | - Robert A Knight
- Department of Neurology-NMR Research, Henry Ford Hospital , Detroit, Michigan
| | - Guangliang Ding
- Department of Neurology-NMR Research, Henry Ford Hospital , Detroit, Michigan
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Hospital , Detroit, Michigan
| | - Oscar A Carretero
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| |
Collapse
|
30
|
Peperhove M, Vo Chieu VD, Jang MS, Gutberlet M, Hartung D, Tewes S, Warnecke G, Fegbeutel C, Haverich A, Gwinner W, Lehner F, Bräsen JH, Haller H, Wacker F, Gueler F, Hueper K. Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 2017; 28:44-50. [PMID: 28710580 DOI: 10.1007/s00330-017-4943-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/08/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To evaluate T1 mapping as a non-invasive, functional MRI biomarker in patients shortly after solid organ transplantation to detect acute postsurgical kidney damage and to correlate T1 times with renal function. METHODS 101 patients within 2 weeks after solid organ transplantation (49 kidney transplantation, 52 lung transplantation) and 14 healthy volunteers were examined by MRI between July 2012 and April 2015 using the modified Look-Locker inversion recovery (MOLLI) sequence. T1 times in renal cortex and medulla and the corticomedullary difference were compared between groups using one-way ANOVA adjusted for multiple comparison with the Tukey test, and T1 times were correlated with renal function using Pearson's correlation. RESULTS Compared to healthy volunteers T1 times were significantly increased after solid organ transplantation in the renal cortex (healthy volunteers 987 ± 102 ms; kidney transplantation 1299 ± 101 ms, p < 0.001; lung transplantation 1058 ± 96 ms, p < 0.05) and to a lesser extent in the renal medulla. Accordingly, the corticomedullary difference was diminished shortly after solid organ transplantation. T1 changes were more pronounced following kidney compared to lung transplantation, were associated with the stage of renal impairment and significantly correlated with renal function. CONCLUSIONS T1 mapping may be helpful for early non-invasive assessment of acute kidney injury and renal pathology following major surgery such as solid organ transplantation. KEY POINTS • Renal cortical T1 relaxation times are prolonged after solid organ transplantation. • Cortical T1 values increase with higher stages of renal function impairment. • Corticomedullary difference decreases with higher stages of renal function impairment. • Renal cortical T1 relaxation time and corticomedullary difference correlate with renal function. • T1 mapping may be helpful for non-invasive assessment of post-operative renal pathology.
Collapse
Affiliation(s)
- Matti Peperhove
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Van Dai Vo Chieu
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mi-Sun Jang
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Dagmar Hartung
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Susanne Tewes
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Gregor Warnecke
- Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christiane Fegbeutel
- Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Axel Haverich
- Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wilfried Gwinner
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Lehner
- General, Abdominal and Transplant Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan Hinrich Bräsen
- Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hermann Haller
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Katja Hueper
- Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
31
|
Zhang JL. Functional Magnetic Resonance Imaging of the Kidneys-With and Without Gadolinium-Based Contrast. Adv Chronic Kidney Dis 2017; 24:162-168. [PMID: 28501079 DOI: 10.1053/j.ackd.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of renal function with magnetic resonance imaging (MRI) has been actively explored in the past decade. In this review, we introduce the principle of MRI and review recent progress of MRI methods (contrast enhanced and noncontrast) in assessing renal function. Contrast-enhanced MRI using ultra-low dose of gadolinium-based agent has been validated for measuring single-kidney glomerular filtration rate and renal plasma flow accurately. For routine functional test, contrast-enhanced MRI may not replace the simple serum-creatinine method. However, for patients with renal diseases, it is often worthy to perform MRI to accurately monitor renal function, particularly for the diseased kidney. As contrast-enhanced MRI is already an established clinical tool for characterizing renal structural abnormalities, including renal mass and ureteral obstruction, it is possible to adapt the clinical MRI protocol to measure single-kidney glomerular filtration rate and renal plasma flow, as demonstrated by recent studies. What makes MRI unique is the promise of its noncontrast methods. These methods include arterial spin labeling for tissue perfusion, blood oxygen-level dependent for blood and tissue oxygenation, and diffusion-weighted imaging for water diffusion. For each method, we reviewed recent findings and summarized challenges.
Collapse
|
32
|
Hueper K, Schmidbauer M, Thorenz A, Bräsen JH, Gutberlet M, Mengel M, Hartung D, Chen R, Meier M, Haller H, Wacker F, Rong S, Gueler F. Longitudinal evaluation of perfusion changes in acute and chronic renal allograft rejection using arterial spin labeling in translational mouse models. J Magn Reson Imaging 2017; 46:1664-1672. [DOI: 10.1002/jmri.25713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | | | | | | | - Michael Mengel
- Laboratory Medicine and Pathology; University of Alberta; Edmonton Canada
| | | | | | - Martin Meier
- Institute of Laboratory Animal Science, Imaging Center, Hannover Medical School; Germany
| | | | | | - Song Rong
- Nephrology, Hannover Medical School; Germany
- The Transplantation Center of the affiliated hospital, Zunyi Medical College; Zunyi China
| | | |
Collapse
|
33
|
Hueper K, Gutberlet M, Bräsen JH, Jang MS, Thorenz A, Chen R, Hertel B, Barrmeyer A, Schmidbauer M, Meier M, von Vietinghoff S, Khalifa A, Hartung D, Haller H, Wacker F, Rong S, Gueler F. Multiparametric Functional MRI: Non-Invasive Imaging of Inflammation and Edema Formation after Kidney Transplantation in Mice. PLoS One 2016; 11:e0162705. [PMID: 27632553 PMCID: PMC5025122 DOI: 10.1371/journal.pone.0162705] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background Kidney transplantation (ktx) in mice is used to learn about rejection and to develop new treatment strategies. Past studies have mainly been based on histological or molecular biological methods. Imaging techniques to monitor allograft pathology have rarely been used. Methods Here we investigated mice after isogenic and allogenic ktx over time with functional MRI with diffusion-weighted imaging (DWI) and mapping of T2-relaxation time (T2-mapping) to assess graft inflammation and edema formation. To characterize graft pathology, we used PAS-staining, counted CD3-positive T-lymphocytes, analyzed leukocytes by means flow cytometry. Results DWI revealed progressive restriction of diffusion of water molecules in allogenic kidney grafts. This was paralleled by enhanced infiltration of the kidney by inflammatory cells. Changes in tissue diffusion were not seen following isogenic ktx. T2-times in renal cortex were increased after both isogenic and allogenic transplantation, consistent with tissue edema due to ischemic injury following prolonged cold ischemia time of 60 minutes. Lack of T2 increase in the inner stripe of the inner medulla in allogenic kidney grafts matched loss of tubular autofluorescence and may result from rejection-driven reductions in tubular water content due to tubular dysfunction and renal functional impairment. Conclusions Functional MRI is a valuable non-invasive technique for monitoring inflammation, tissue edema and tubular function. It permits on to differentiate between acute rejection and ischemic renal injury in a mouse model of ktx.
Collapse
Affiliation(s)
- Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Mi-Sun Jang
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- The kidney disease centre of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Barbara Hertel
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Amelie Barrmeyer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Martina Schmidbauer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | | | - Dagmar Hartung
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- The Transplantation Center of the affiliated hospital, Zunyi Medical College, Zunyi, China
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
34
|
Hanssen O, Erpicum P, Lovinfosse P, Meunier P, Weekers L, Tshibanda L, Krzesinski JM, Hustinx R, Jouret F. Non-invasive approaches in the diagnosis of acute rejection in kidney transplant recipients. Part I. In vivo imaging methods. Clin Kidney J 2016. [PMID: 28643821 PMCID: PMC5469561 DOI: 10.1093/ckj/sfw062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kidney transplantation (KTx) represents the best available treatment for patients with end-stage renal disease. Still, full benefits of KTx are undermined by acute rejection (AR). The diagnosis of AR ultimately relies on transplant needle biopsy. However, such an invasive procedure is associated with a significant risk of complications and is limited by sampling error and interobserver variability. In the present review, we summarize the current literature about non-invasive approaches for the diagnosis of AR in kidney transplant recipients (KTRs), including in vivo imaging, gene expression profiling and omics analyses of blood and urine samples. Most imaging techniques, like contrast-enhanced ultrasound and magnetic resonance, exploit the fact that blood flow is significantly lowered in case of AR-induced inflammation. In addition, AR-associated recruitment of activated leukocytes may be detectable by 18F-fluoro-deoxy-glucose positron emission tomography. In parallel, urine biomarkers, including CXCL9/CXCL10 or a three-gene signature of CD3ε, IP-10 and 18S RNA levels, have been identified. None of these approaches has been adopted yet in the clinical follow-up of KTRs, but standardization of procedures may help assess reproducibility and compare diagnostic yields in large prospective multicentric trials.
Collapse
Affiliation(s)
- Oriane Hanssen
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), Avenue Hippocrate, 13, B-4000 Liège, Belgium
| | - Pauline Erpicum
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), Avenue Hippocrate, 13, B-4000 Liège, Belgium.,GIGA Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Pierre Lovinfosse
- Division of Nuclear Medicine, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - Paul Meunier
- Division of Radiology, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - Laurent Weekers
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), Avenue Hippocrate, 13, B-4000 Liège, Belgium
| | - Luaba Tshibanda
- Division of Radiology, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - Jean-Marie Krzesinski
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), Avenue Hippocrate, 13, B-4000 Liège, Belgium.,GIGA Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine, University of Liège Academic Hospital (ULg CHU), Liège, Belgium
| | - François Jouret
- Division of Nephrology, University of Liège Academic Hospital (ULg CHU), Avenue Hippocrate, 13, B-4000 Liège, Belgium.,GIGA Cardiovascular Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
35
|
Hueper K, Khalifa AA, Bräsen JH, Vo Chieu VD, Gutberlet M, Wintterle S, Lehner F, Richter N, Peperhove M, Tewes S, Weber K, Haller H, Wacker F, Gwinner W, Gueler F, Hartung D. Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging 2016; 44:112-21. [PMID: 26778459 DOI: 10.1002/jmri.25158] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/29/2015] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To combine diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) for detection of allograft dysfunction in patients early after kidney transplantation and to correlate diffusion parameters with renal function and renal histology of allograft biopsies. MATERIALS AND METHODS Between day 4 and 11 after kidney transplantation 33 patients with initial graft function and 31 patients with delayed graft function (DGF) were examined with a 1.5T magnetic resonance imaging (MRI) scanner. DTI and DWI sequences were acquired and fractional anisotropy (FA), apparent diffusion coefficient (ADCmono), pure diffusion (ADCdiff ), and the perfusion fraction (Fp) were calculated. Kidney biopsies in 26 patients were analyzed for allograft pathology, ie, acute tubular injury, inflammation, edema, renal fibrosis, and rejection. Histological results were correlated with MRI parameters. RESULTS In the renal medulla FA (0.25 ± 0.06 vs. 0.29 ± 0.06, P < 0.01) and ADCmono (1.73 ± 0.13*10(-3) vs. 1.93 ± 0.16*10(-3) mm(2) /s, P < 0.001) were significantly reduced in DGF patients compared with patients with initial function. For ADCdiff and Fp similar reductions were observed. FA and ADCmono significantly correlated with renal function (r = 0.53 and r = 0.57, P < 0.001) and were inversely correlated with the amount of renal fibrosis (r = -0.63 and r = -0.65, P < 0.05). CONCLUSION Combined DTI and DWI detected allograft dysfunction early after kidney transplantation and correlated with allograft fibrosis. J. Magn. Reson. Imaging 2016;44:112-121.
Collapse
Affiliation(s)
- Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Jan H Bräsen
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Van Dai Vo Chieu
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Sabine Wintterle
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank Lehner
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Nicolas Richter
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Matti Peperhove
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Susanne Tewes
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Kristina Weber
- Institute for Biostatistics, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Wilfried Gwinner
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Clinic for Nephrology, Hannover Medical School, Hannover, Germany
| | - Dagmar Hartung
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
36
|
Lanzman RS, Notohamiprodjo M, Wittsack HJ. [Functional magnetic resonance imaging of the kidneys]. Radiologe 2015; 55:1077-87. [PMID: 26628260 DOI: 10.1007/s00117-015-0044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interest in functional renal magnetic resonance imaging (MRI) has significantly increased in recent years. This review article provides an overview of the most important functional imaging techniques and their potential clinical applications for assessment of native and transplanted kidneys, with special emphasis on the clarification of renal tumors.
Collapse
|