1
|
Jiang L, Sun XY, Wang SQ, Liu YL, Lu LJ, Wu WH, Zhi H, Wang ZY, Liu XD, Liu L. Indoxyl sulphate-TNFα axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin 2024; 45:1406-1424. [PMID: 38589687 PMCID: PMC11192958 DOI: 10.1038/s41401-024-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Ling Jiang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Ying Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Lin Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Jue Lu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Han Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhong-Yan Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Faucher Q, van der Made TK, De Lange E, Masereeuw R. Blood-brain barrier perturbations by uremic toxins: key contributors in chronic kidney disease-induced neurological disorders? Eur J Pharm Sci 2023; 187:106462. [PMID: 37169097 DOI: 10.1016/j.ejps.2023.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Chronic kidney disease is multifactorial and estimated to affect more than 840 million people worldwide constituting a major global health crisis. The number of patients will continue to rise mostly because of the ageing population and the increased prevalence of comorbidities such as diabetes and hypertension. Patients with advanced stages display a loss of kidney function leading to an accumulation of, a.o. protein-bound uremic toxins that are poorly eliminated by renal replacement therapies. This systemic retention of toxic metabolites, known as the uremic syndrome, affects other organs. Indeed, neurological complications such as cognitive impairment, uremic encephalopathy, and anxiety have been reported in chronic kidney disease patients. Several factors are involved, including hemodynamic disorders and blood-brain barrier (BBB) impairment. The BBB guarantees the exchange of solutes between the blood and the brain through a complex cellular organization and a diverse range of transport proteins. We hypothesize that the increased exposure of the brain to protein-bound uremic toxins is involved in BBB disruption and induces a perturbation in the activity of endothelial membrane transporters. This phenomenon could play a part in the evolution of neurological disorders driven by this kidney-brain crosstalk impairment. In this review, we present chronic kidney disease-induced neurological complications by focusing on the pathological relationship between the BBB and protein-bound uremic toxins. The importance of mechanistically delineating the impact of protein-bound uremic toxins on BBB integrity and membrane drug transporter expression and function in brain endothelial capillary cells is highlighted. Additionally, we put forward current knowledge gaps in the literature.
Collapse
Affiliation(s)
- Quentin Faucher
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Thomas K van der Made
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Elizabeth De Lange
- Predictive Pharmacology group, Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, The Netherlands.
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Suteanu-Simulescu A, Sarbu M, Ica R, Petrica L, Zamfir AD. Ganglioside analysis in body fluids by liquid-phase separation techniques hyphenated to mass spectrometry. Electrophoresis 2023; 44:501-520. [PMID: 36416190 DOI: 10.1002/elps.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
The expression of gangliosides in central nervous system is a few times higher than in the extraneural tissue, a characteristic highlighting their major role at this level. Although in very low amounts, gangliosides are ubiquitously distributed in body fluids too, where, depending on many factors, including pathological states, their composition fluctuates, thus having diagnostic value. Ganglioside investigation in biological fluids, which, except for cerebrospinal fluid (CSF), may be sampled noninvasively, was for years impeded by the limited sensitivity of the analytical instrumentation available in glycomics. However, because the last decade has witnessed significant developments in biological mass spectrometry (MS) and the hyphenated separation techniques, marked by a major increase in sensitivity, reproducibility, and data reliability, ganglioside research started to be focused on biofluid analysis by separation techniques coupled to MS. In this context, our review presents the achievements in this emerging field of gangliosidomics, with a particular emphasis on modern liquid chromatography (LC), thin-layer chromatography, hydrophilic interaction LC, and ion mobility separation coupled to high-performance MS, as well as the results generated by these systems and allied experimental procedures in profiling and structural analysis of gangliosides in healthy or diseased body fluids, such as CSF, plasma/serum, and milk.
Collapse
Affiliation(s)
- Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Nephrology, County Emergency Hospital, Timisoara, Romania.,Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Department of Neurosciences, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina Diana Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
4
|
Liabeuf S, Pepin M, Franssen CFM, Viggiano D, Carriazo S, Gansevoort RT, Gesualdo L, Hafez G, Malyszko J, Mayer C, Nitsch D, Ortiz A, Pešić V, Wiecek A, Massy ZA. Chronic kidney disease and neurological disorders: are uraemic toxins the missing piece of the puzzle? Nephrol Dial Transplant 2021; 37:ii33-ii44. [PMID: 34718753 PMCID: PMC8713157 DOI: 10.1093/ndt/gfab223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) perturbs the crosstalk with others organs, with the interaction between the kidneys and the heart having been studied most intensively. However, a growing body of data indicates that there is an association between kidney dysfunction and disorders of the central nervous system. In epidemiological studies, CKD is associated with a high prevalence of neurological complications, such as cerebrovascular disorders, movement disorders, cognitive impairment and depression. Along with traditional cardiovascular risk factors (such as diabetes, inflammation, hypertension and dyslipidaemia), non-traditional risk factors related to kidney damage (such as uraemic toxins) may predispose patients with CKD to neurological disorders. There is increasing evidence to show that uraemic toxins, for example indoxyl sulphate, have a neurotoxic effect. A better understanding of factors responsible for the elevated prevalence of neurological disorders among patients with CKD might facilitate the development of novel treatments. Here, we review (i) the potential clinical impact of CKD on cerebrovascular and neurological complications, (ii) the mechanisms underlying the uraemic toxins' putative action (based on pre-clinical and clinical research) and (iii) the potential impact of these findings on patient care.
Collapse
Affiliation(s)
- Sophie Liabeuf
- Department of Pharmacology, Amiens University Medical Center, Amiens, France
- MP3CV Laboratory, EA7517, University of Picardie Jules Verne, Amiens, France
| | - Marion Pepin
- Université Paris-Saclay, UVSQ, Inserm, Clinical Epidemiology Team, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Villejuif, France
- Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
| | - Casper F M Franssen
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Davide Viggiano
- Department of Nephrology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Bari, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Christopher Mayer
- Center for Health and Bioresources, Biomedical Systems, AIT Austrian Institute of Technology, Vienna, Austria
| | - Dorothea Nitsch
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Vesna Pešić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, in Katowice, Katowice, Poland
| | - Ziad A Massy
- Université Paris-Saclay, UVSQ, Inserm, Clinical Epidemiology Team, CESP (Centre de Recherche en Epidémiologie et Santé des Populations), Villejuif, France
- Department of Nephrology, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt/Paris, France
| |
Collapse
|
5
|
Abstract
Uremic encephalopathy encompasses a wide range of central nervous system abnormalities associated with poor kidney function occurring with either progressive chronic kidney disease or acute kidney injury. The syndrome is likely caused by retention of uremic solutes, alterations in hormonal metabolism, changes in electrolyte and acid-base homeostasis, as well as changes in vascular reactivity, blood-brain barrier transport, and inflammation. There are no defining clinical, laboratory, or imaging findings, and the diagnosis is often made retrospectively when symptoms improve after dialysis or transplantation. The diagnosis is also made difficult because of the many confounding and overlapping conditions seen in patients with chronic kidney disease and acute kidney injury. Thus, institution of kidney replacement therapy should be considered as a trial to improve symptoms in the right clinical context. Neurological symptoms that do not improve after improvement in clearance should prompt a search for other explanations. Further knowledge linking possible uremic retention solutes with neurological symptoms is needed to better understand this syndrome as well as to develop more tailored treatments that aim to improve cognitive function.
Collapse
|
6
|
Lara-Prado JI, Pazos-Pérez F, Méndez-Landa CE, Grajales-García DP, Feria-Ramírez JA, Salazar-González JJ, Cruz-Romero M, Treviño-Becerra A. Acute Kidney Injury and Organ Dysfunction: What Is the Role of Uremic Toxins? Toxins (Basel) 2021; 13:toxins13080551. [PMID: 34437422 PMCID: PMC8402563 DOI: 10.3390/toxins13080551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
Acute kidney injury (AKI), defined as an abrupt increase in serum creatinine, a reduced urinary output, or both, is experiencing considerable evolution in terms of our understanding of the pathophysiological mechanisms and its impact on other organs. Oxidative stress and reactive oxygen species (ROS) are main contributors to organ dysfunction in AKI, but they are not alone. The precise mechanisms behind multi-organ dysfunction are not yet fully accounted for. The building up of uremic toxins specific to AKI might be a plausible explanation for these disturbances. However, controversies have arisen around their effects in organs other than the kidney, because animal models usually depict AKI as a kidney-specific injury. Meanwhile, humans present AKI frequently in association with multi-organ failure (MOF). Until now, medium-molecular-weight molecules, such as inflammatory cytokines, have been proven to play a role in endothelial and epithelial injury, leading to increased permeability and capillary leakage, mainly in pulmonary and intestinal tissues.
Collapse
Affiliation(s)
- Jesús Iván Lara-Prado
- Department of Nephrology, General Hospital No. 27, Mexican Social Security Institute, Mexico City 06900, Mexico; (J.I.L.-P.); (D.P.G.-G.)
| | - Fabiola Pazos-Pérez
- Department of Nephrology, Specialties Hospital, National Medical Center “21st Century”, Mexican Social Security Institute, Mexico City 06720, Mexico;
- Correspondence: ; Tel.: +52-55-2699-1941
| | - Carlos Enrique Méndez-Landa
- Department of Nephrology, General Hospital No. 48, Mexican Social Security Institute, Mexico City 02750, Mexico;
| | - Dulce Paola Grajales-García
- Department of Nephrology, General Hospital No. 27, Mexican Social Security Institute, Mexico City 06900, Mexico; (J.I.L.-P.); (D.P.G.-G.)
| | - José Alfredo Feria-Ramírez
- Department of Nephrology, General Hospital No. 29, Mexican Social Security Institute, Mexico City 07910, Mexico;
| | - Juan José Salazar-González
- Department of Nephrology, Regional Hospital No. 1, Mexican Social Security Institute, Mexico City 03100, Mexico;
| | - Mario Cruz-Romero
- Department of Nephrology, Specialties Hospital, National Medical Center “21st Century”, Mexican Social Security Institute, Mexico City 06720, Mexico;
| | | |
Collapse
|
7
|
Chao CT, Lin SH. Uremic Toxins and Frailty in Patients with Chronic Kidney Disease: A Molecular Insight. Int J Mol Sci 2021; 22:ijms22126270. [PMID: 34200937 PMCID: PMC8230495 DOI: 10.3390/ijms22126270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
The accumulation of uremic toxins (UTs) is a prototypical manifestation of uremic milieu that follows renal function decline (chronic kidney disease, CKD). Frailty as a potential outcome-relevant indicator is also prevalent in CKD. The intertwined relationship between uremic toxins, including small/large solutes (phosphate, asymmetric dimethylarginine) and protein-bound ones like indoxyl sulfate (IS) and p-cresyl sulfate (pCS), and frailty pathogenesis has been documented recently. Uremic toxins were shown in vitro and in vivo to induce noxious effects on many organ systems and likely influenced frailty development through their effects on multiple preceding events and companions of frailty, such as sarcopenia/muscle wasting, cognitive impairment/cognitive frailty, osteoporosis/osteodystrophy, vascular calcification, and cardiopulmonary deconditioning. These organ-specific effects may be mediated through different molecular mechanisms or signal pathways such as peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), mitogen-activated protein kinase (MAPK) signaling, aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Runt-related transcription factor 2 (RUNX2), bone morphogenic protein 2 (BMP2), osterix, Notch signaling, autophagy effectors, microRNAs, and reactive oxygen species induction. Anecdotal clinical studies also suggest that frailty may further accelerate renal function decline, thereby augmenting the accumulation of UTs in affected individuals. Judging from these threads of evidence, management strategies aiming for uremic toxin reduction may be a promising approach for frailty amelioration in patients with CKD. Uremic toxin lowering strategies may bear the potential of improving patients’ outcomes and restoring their quality of life, through frailty attenuation. Pathogenic molecule-targeted therapeutics potentially disconnect the association between uremic toxins and frailty, additionally serving as an outcome-modifying approach in the future.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100255, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Nephrology Division, Department of Internal Medicine, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: or
| |
Collapse
|
8
|
Impact of gut microbiota: How it could play roles beyond the digestive system on development of cardiovascular and renal diseases. Microb Pathog 2020; 152:104583. [PMID: 33164814 DOI: 10.1016/j.micpath.2020.104583] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.
Collapse
|
9
|
|
10
|
Ueno H, Miyamoto T, Sanada K, Nakazono K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Serino R, Otsuji Y, Ueta Y. Changes in gene expressions of hypothalamic neuropeptides controlling feeding behaviors in bilateral nephrectomized rats. Neurosci Lett 2019; 711:134426. [PMID: 31401303 DOI: 10.1016/j.neulet.2019.134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Anorexia is one of the most widespread eating disorders that appears to contribute to malnutrition in patients with advanced kidney dysfunction. The changes of neuropeptides controlling feeding behaviors synthesized in the hypothalamus under several physiological condition could induce anorexia. While several mechanisms underlying uremic anorexia have been proposed, the changes of hypothalamic neuropeptides controlling feeding behaviors of uremic patients are poorly understood. The gene expressions of hypothalamic neuropeptides controlling feeding behaviors were evaluated after bilateral nephrectomy, which is a model of acute kidney dysfunction, by in situ hybridization histochemistry. Food consumption decreased markedly in bilateral nephrectomized rats. The mRNA levels of corticotrophin-releasing hormone, proopiomelanocortin, cocaine- and amphetamine-regulated transcript, which suppress feeding behavior, were significantly higher in bilateral nephrectomized rats than in sham-operated rats. On the other hand, the mRNA levels of Agouti-related peptide, neuropeptide Y, melanin-concentrating hormone, and orexin, which promote feeding behavior, were significantly lower in bilateral nephrectomized rats than in sham-operated rats. In addition, the plasma level of leptin, which has an anorexic effect, increased after bilateral nephrectomy. The results suggest that hypothalamic neuropeptides controlling feeding behaviors may be involved in the development of anorexia in bilateral nephrectomized rats. This report is the first step to elucidating the physiological mechanisms of anorexia in patients with kidney dysfunction.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kenya Sanada
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazutoshi Nakazono
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu 808-0034, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|