1
|
Phelps C, Chess-Williams R, Moro C. The role of intracellular calcium and Rho kinase pathways in G protein-coupled receptor-mediated contractions of urinary bladder urothelium and lamina propria. Am J Physiol Cell Physiol 2023; 324:C787-C797. [PMID: 36689673 PMCID: PMC10027080 DOI: 10.1152/ajpcell.00441.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of extracellular and intracellular calcium on smooth muscle contractile activity varies between organs. In response to G protein-coupled receptor (GPCR) stimulation, the urinary bladder detrusor muscle has shown a 70% dependence on extracellular calcium, whereas the urothelium and lamina propria (U&LP) has a 20%-50% dependence. However, as this only accounts for partial contractile activity, the contribution of intracellular calcium and calcium sensitization pathways remains unclear. This study assessed the role of intracellular signaling pathways on GPCR-mediated urinary bladder U&LP contraction. Porcine U&LP responses to activation of the Gq/11-coupled muscarinic, histamine, 5-hydroxytryptamine (serotonin), neurokinin, prostaglandin, and angiotensin II receptors were assessed with three selective inhibitors of store-released intracellular calcium, 2-aminoethyl diphenylborinate (2-APB), cyclopiazonic acid (CPA), and ruthenium red, and three Rho kinase inhibitors, fasudil, Y-27632, and GSK269962. There was no discernible impact on receptor agonist-induced contractions of the U&LP after blocking intracellular calcium pathways, suggesting that this tissue is more sensitive to alterations in the availability of extracellular calcium. However, an alternative mechanism of action for GPCR-mediated contraction was identified to be the activation of Rho kinase, such as when Y-27632 significantly reduced the GPCR-mediated contractile activity of the U&LP by approximately 50% (P < 0.05, n = 8). This suggests that contractile responses of the bladder U&LP do not involve a significant release of calcium from intracellular stores, but that Gq/11-coupled receptor activation causes calcium sensitization via Rho kinase. This study highlights a key role for Rho kinase in the urinary bladder, which may provide a novel target in the future pharmaceutical management of bladder contractile disorders.
Collapse
Affiliation(s)
- Charlotte Phelps
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Christian Moro
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Andersson KE, Behr-Roussel D, Denys P, Giuliano F. Acute Intravesical Capsaicin for the Study of TRPV1 in the Lower Urinary Tract: Clinical Relevance and Potential for Innovation. Med Sci (Basel) 2022; 10:50. [PMID: 36135835 PMCID: PMC9504433 DOI: 10.3390/medsci10030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Capsaicin acts on sensory nerves via vanilloid receptors. TRPV1 has been extensively studied with respect to functional lower urinary tract (LUT) conditions in rodents and humans. We aimed to (1) provide background information on capsaicin and TRPV1 and its mechanisms of action and basis for clinical use, (2) review the use of acute intravesical capsaicin instillation (AICI) in rodents to mimic various LUT disorders in which capsaicin sensitive C-fibers are involved and (3) discuss future innovative treatments. A comprehensive search of the major literature databases until June 2022 was conducted. Both capsaicin-sensitive and resistant unmyelinated bladder afferent C-fibers are involved in non-neurogenic overactive bladder/detrusor overactivity (OAB/DO). AICI is a suitable model to study afferent hyperactivity mimicking human OAB. Capsaicin-sensitive C-fibers are also involved in neurogenic DO (NDO) and potential targets for NDO treatment. AICI has been successfully tested for NDO treatment in humans. Capsaicin-sensitive bladder afferents are targets for NDO treatment. TRPV1-immunoreactive nerve fibers are involved in the pathogenesis of interstitial cystitis/painful bladder syndrome (IC/PBS). The AICI experimental model appears relevant for the preclinical study of treatments targeting bladder afferents for refractory IC/BPS. The activity of capsaicin-sensitive bladder afferents is increased in experimental bladder outlet obstruction (BOO). The AICI model may also be relevant for bladder disorders resulting from C-fiber hyperexcitabilities related to BOO. In conclusion, there is a rationale for the selective blockade of TRPV1 channels for various bladder disorders. The AICI model is clinically relevant for the investigation of pathophysiological conditions in which bladder C-fiber afferents are overexcited and for assessing innovative treatments for bladder disorders based on their pathophysiology.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA
- Division of Clinical Chemistry and Pharmacology, Lund University, 22242 Lund, Sweden
| | | | - Pierre Denys
- Neuro-Uro-Andrology R.Poincare Academic Hospital, AP-HP, 104 bvd R. Poincare, 92380 Garches, France
- Faculty of Medicine, U1179 Inserm/Versailles Saint Quentin University, Paris Saclay, 78180 Montigny-le-Bretonneux, France
| | - Francois Giuliano
- Faculty of Medicine, U1179 Inserm/Versailles Saint Quentin University, Paris Saclay, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
3
|
Clayton DR, Ruiz WG, Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. Studies of ultrastructure, gene expression, and marker analysis reveal that mouse bladder PDGFRA + interstitial cells are fibroblasts. Am J Physiol Renal Physiol 2022; 323:F299-F321. [PMID: 35834272 PMCID: PMC9394772 DOI: 10.1152/ajprenal.00135.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Fibroblasts are crucial to normal and abnormal organ and tissue biology, yet we lack basic insights into the fibroblasts that populate the bladder wall. Candidates may include bladder interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells), which express the fibroblast-associated marker PDGFRA along with VIM and CD34 but whose form and function remain enigmatic. By applying the latest insights in fibroblast transcriptomics, coupled with studies of gene expression, ultrastructure, and marker analysis, we observe the following: 1) that mouse bladder PDGFRA+ cells exhibit all of the ultrastructural hallmarks of fibroblasts including spindle shape, lack of basement membrane, abundant endoplasmic reticulum and Golgi, and formation of homotypic cell-cell contacts (but not heterotypic ones); 2) that they express multiple canonical fibroblast markers (including Col1a2, CD34, LY6A, and PDGFRA) along with the universal fibroblast genes Col15a1 and Pi16 but they do not express Kit; and 3) that PDGFRA+ fibroblasts include suburothelial ones (which express ACTA2, CAR3, LY6A, MYH10, TNC, VIM, Col1a2, and Col15a1), outer lamina propria ones (which express CD34, LY6A, PI16, VIM, Col1a2, Col15a1, and Pi16), intermuscular ones (which express CD34, VIM, Col1a2, Col15a1, and Pi16), and serosal ones (which express CD34, PI16, VIM, Col1a2, Col15a1, and Pi16). Collectively, our study revealed that the ultrastructure of PDFRA+ interstitial cells combined with their expression of multiple canonical and universal fibroblast-associated gene products indicates that they are fibroblasts. We further propose that there are four regionally distinct populations of fibroblasts in the bladder wall, which likely contribute to bladder function and dysfunction.NEW & NOTEWORTHY We currently lack basic insights into the fibroblasts that populate the bladder wall. By exploring the ultrastructure of mouse bladder connective tissue cells, combined with analyses of their gene and protein expression, our study revealed that PDGRA+ interstitial cells (also referred to as myofibroblasts, telocytes, and interstitial cells of Cajal-like cells) are fibroblasts and that the bladder wall contains multiple, regionally distinct populations of these cells.
Collapse
Affiliation(s)
- Dennis R Clayton
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wily G Ruiz
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marianela G Dalghi
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Perkins M, Girard BM, Campbell SE, Hennig GW, Vizzard MA. Imatinib Mesylate Reduces Neurotrophic Factors and pERK and pAKT Expression in Urinary Bladder of Female Mice With Cyclophosphamide-Induced Cystitis. Front Syst Neurosci 2022; 16:884260. [PMID: 35528149 PMCID: PMC9072830 DOI: 10.3389/fnsys.2022.884260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 01/28/2023] Open
Abstract
Imatinib mesylate is a tyrosine kinase inhibitor that inhibits platelet-derived growth factor receptor (PDGFR)-α, -β, stem cell factor receptor (c-KIT), and BCR-ABL. PDGFRα is expressed in a subset of interstitial cells in the lamina propria (LP) and detrusor muscle of the urinary bladder. PDGFRα + interstitial cells may contribute to bladder dysfunction conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) or overactive bladder (OAB). We have previously demonstrated that imatinib prevention via oral gavage or treatment via intravesical infusion improves urinary bladder function in mice with acute (4 hour, h) cyclophosphamide (CYP)-induced cystitis. Here, we investigate potential underlying mechanisms mediating the bladder functional improvement by imatinib using a prevention or treatment experimental design. Using qRT-PCR and ELISAs, we examined inflammatory mediators (NGF, VEGF, BDNF, CCL2, IL-6) previously shown to affect bladder function in CYP-induced cystitis. We also examined the distribution of phosphorylated (p) ERK and pAKT expression in the LP with immunohistochemistry. Imatinib prevention significantly (0.0001 ≤ p ≤ 0.05) reduced expression for all mediators examined except NGF, whereas imatinib treatment was without effect. Imatinib prevention and treatment significantly (0.0001 ≤ p ≤ 0.05) reduced pERK and pAKT expression in the upper LP (U. LP) and deeper LP (D. LP) in female mice with 4 h CYP-induced cystitis. Although we have previously demonstrated that imatinib prevention or treatment improves bladder function in mice with cystitis, the current studies suggest that reductions in inflammatory mediators contribute to prevention benefits of imatinib but not the treatment benefits of imatinib. Differential effects of imatinib prevention or treatment on inflammatory mediators may be influenced by the route and frequency of imatinib administration and may also suggest other mechanisms (e.g., changes in transepithelial resistance of the urothelium) through which imatinib may affect urinary bladder function following CYP-induced cystitis.
Collapse
Affiliation(s)
- Megan Perkins
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Grant W. Hennig
- Department of Pharmacology, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
5
|
Phelps C, Chess-Williams R, Moro C. The Dependence of Urinary Bladder Responses on Extracellular Calcium Varies Between Muscarinic, Histamine, 5-HT (Serotonin), Neurokinin, Prostaglandin, and Angiotensin Receptor Activation. Front Physiol 2022; 13:841181. [PMID: 35431993 PMCID: PMC9008219 DOI: 10.3389/fphys.2022.841181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
With many common bladder diseases arising due to abnormal contractions, a greater understanding of the receptor systems involved may aid the development of future treatments. The aim of this study was to identify any difference in the involvement of extracellular calcium (Ca2+) across prominent contractile-mediating receptors within cells lining the bladder. Strips of porcine urothelium and lamina propria were isolated from the urinary bladder dome and mounted in isolated tissue baths containing Krebs-bicarbonate solution, perfused with carbogen gas at 37°C. Tissue contractions, as well as changes to the frequency and amplitude of spontaneous activity were recorded after the addition of muscarinic, histamine, 5-hydroxytryptamine, neurokinin-A, prostaglandin E2, and angiotensin II receptor agonists in the absence and presence of 1 µM nifedipine or nominally zero Ca2+ solution. The absence of extracellular Ca2+ influx after immersion into nominally zero Ca2+ solution, or the addition of nifedipine, significantly inhibited the contractile responses (p < 0.05 for all) after stimulation with carbachol (1 µM), histamine (100 µM), 5-hydroxytryptamine (100 µM), neurokinin-A (300 nM), prostaglandin E2 (10 µM), and angiotensin II (100 nM). On average, Ca2+ influx from extracellular sources was responsible for between 20–50% of receptor-mediated contractions. This suggests that although the specific requirement of Ca2+ on contractile responses varies depending on the receptor, extracellular Ca2+ plays a key role in mediating G protein-coupled receptor contractions of the urothelium and lamina propria.
Collapse
|
6
|
Fry CH, McCloskey KD. Purinergic signalling in the urinary bladder - When function becomes dysfunction. Auton Neurosci 2021; 235:102852. [PMID: 34329833 DOI: 10.1016/j.autneu.2021.102852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/23/2023]
Abstract
Knowledge of the participation of ATP and related purines in urinary tract physiology has been established over the last five decades through the work of many independent groups, inspired by, and building on the pioneering studies of Professor Geoffrey Burnstock and his coworkers. As part of a series of reviews in this tribute edition, the present article summarises our current understanding of purines and purinergic signalling in modulating and regulating urinary tract function. Purinergic mechanisms underlying the origin of bladder pain; sensations of bladder filling and urinary tract motility; and regulation of detrusor smooth muscle contraction are described, encompassing the relevant history of discovery and consolidation of knowledge as methodologies and pharmacological tools have developed. We consider normal physiology, including development and ageing and then move to pathophysiology, discussing the causal and consequential contribution of purinergic signalling mechanism and their constituent components (receptors, signal transduction, effector molecules) to bladder dysfunction.
Collapse
Affiliation(s)
- Christopher H Fry
- School of Physiology, Pharmacology & Neuroscience, Faculty of Health Sciences, University of Bristol, Bristol, UK.
| | - Karen D McCloskey
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|
7
|
Hardy CC, Al-Naggar IM, Kuo CL, Kuchel GA, Smith PP. Aging Changes in Bladder Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels Are Associated With Increasing Heterogeneity of Adrenergic/Mucosal Influence on Detrusor Control in the Mouse. J Gerontol A Biol Sci Med Sci 2021; 76:1153-1160. [PMID: 33693872 DOI: 10.1093/gerona/glab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/14/2022] Open
Abstract
A geroscience-informed approach to the increasing prevalence of bladder control problems in older adults requires understanding the impact of aging on dynamic mechanisms that ensure resilience in response to stressors challenging asymptomatic voluntary control over urine storage and voiding. Bladder control is predicated on sensory neural information about bladder volume. Modulation of volume-induced bladder wall tensions by autonomic and mucosal factors controls neural sensitivity to bladder volume. We hypothesized that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels integrate these factors and thereby mediate adrenergic detrusor tension control. Furthermore, loss of HCN expression compromises that integration and could result in loss of precision of detrusor control. Using a life-span mouse model, reverse transcription quantitative real-time PCR and pharmacologic studies in pretensioned intact and mucosa-denuded bladder strips were made. The dominant hcn1 expression declines with maturation and aging; however, aging is also associated with increased variance around mean values. In strips from Mature animals, isoproterenol had less effect in denuded muscle strips than in intact strips, and HCN blockade diminished isoproterenol responsiveness. With aging, variances about mean response values significantly increased, paralleling hcn1 expression. Our findings support a role for HCN in providing neuroendocrine/paracrine integration and suggest an association of increased heterogeneity of HCN expression in aging with reductions in response precision to neuroendocrine control. The functional implication is an increased risk of dysfunction of brainstem/bladder regulation of neuronal sensitivity to bladder volume. This supports the clinical model of the aging bladder phenotype as an expression of loss of resilience, and not as emerging bladder pathology with aging.
Collapse
Affiliation(s)
- Cara C Hardy
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA
| | - Iman M Al-Naggar
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA
| | - Chia-Ling Kuo
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, USA
| | - George A Kuchel
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA
| | - Phillip P Smith
- Center on Aging, University of Connecticut School of Medicine, Farmington, USA.,Department of Neuroscience, University of Connecticut School of Medicine, Farmington, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, USA
| |
Collapse
|
8
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Mechanosensitivity Is a Characteristic Feature of Cultured Suburothelial Interstitial Cells of the Human Bladder. Int J Mol Sci 2020; 21:ijms21155474. [PMID: 32751838 PMCID: PMC7432121 DOI: 10.3390/ijms21155474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder dysfunction is characterized by urgency, frequency (pollakisuria, nocturia), and dysuria and may lead to urinary incontinence. Most of these symptoms can be attributed to disturbed bladder sensitivity. There is growing evidence that, besides the urothelium, suburothelial interstitial cells (suICs) are involved in bladder afferent signal processing. The massive expansion of the bladder during the filling phase implicates mechanical stress delivered to the whole bladder wall. Little is known about the reaction of suICs upon mechanical stress. Therefore, we investigated the effects of mechanical stimulation in cultured human suICs. We used fura-2 calcium imaging as a major physiological readout. We found spontaneous intracellular calcium activity in 75 % of the cultured suICs. Defined local pressure application via a glass micropipette led to local increased calcium activity in all stimulated suICs, spreading over the whole cell. A total of 51% of the neighboring cells in a radius of up to 100 µm from the stimulated cell showed an increased activity. Hypotonic ringer and shear stress also induced calcium transients. We found an 18-times increase in syncytial activity compared to unstimulated controls, resulting in an amplification of the primary calcium signal elicited in single cells by 50%. Our results speak in favor of a high sensitivity of suICs for mechanical stress and support the view of a functional syncytium between suICs, which can amplify and distribute local stimuli. Previous studies of connexin expression in the human bladder suggest that this mechanism could also be relevant in normal and pathological function of the bladder in vivo.
Collapse
|
10
|
Roberts MWG, Sui G, Wu R, Rong W, Wildman S, Montgomery B, Ali A, Langley S, Ruggieri MR, Wu C. TRPV4 receptor as a functional sensory molecule in bladder urothelium: Stretch-independent, tissue-specific actions and pathological implications. FASEB J 2020; 34:263-286. [PMID: 31914645 PMCID: PMC6973053 DOI: 10.1096/fj.201900961rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022]
Abstract
The newly recognized sensory role of bladder urothelium has generated intense interest in identifying its novel sensory molecules. Sensory receptor TRPV4 may serve such function. However, specific and physiologically relevant tissue actions of TRPV4, stretch-independent responses, and underlying mechanisms are unknown and its role in human conditions has not been examined. Here we showed TRPV4 expression in guinea-pig urothelium, suburothelium, and bladder smooth muscle, with urothelial predominance. Selective TRPV4 activation without stretch evoked significant ATP release-key urothelial sensory process, from live mucosa tissue, full-thickness bladder but not smooth muscle, and sustained muscle contractions. ATP release was mediated by Ca2+-dependent, pannexin/connexin-conductive pathway involving protein tyrosine kinase, but independent from vesicular transport and chloride channels. TRPV4 activation generated greater Ca2+ rise than purinergic activation in urothelial cells. There was intrinsic TRPV4 activity without exogeneous stimulus, causing ATP release. TRPV4 contributed to 50% stretch-induced ATP release. TRPV4 activation also triggered superoxide release. TRPV4 expression was increased with aging. Human bladder mucosa presented similarities to guinea pigs. Overactive bladders exhibited greater TRPV4-induced ATP release with age dependence. These data provide the first evidence in humans for the key functional role of TRPV4 in urothelium with specific mechanisms and identify TRPV4 up-regulation in aging and overactive bladders.
Collapse
Affiliation(s)
| | - Guiping Sui
- Guy's and St Thomas Hospitals NHS TrustLondonUK
| | - Rui Wu
- University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Weifang Rong
- Department of PhysiologyShanghai Jiaotong University School of MedicineShanghaiChina
| | | | | | | | | | | | - Changhao Wu
- School of Biosciences and MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
11
|
Traini C, Vannucchi MG. The Botulinum Treatment of Neurogenic Detrusor Overactivity: The Double-Face of the Neurotoxin. Toxins (Basel) 2019; 11:E614. [PMID: 31652991 PMCID: PMC6891665 DOI: 10.3390/toxins11110614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022] Open
Abstract
Botulinum neurotoxin (BoNT) can counteract the highly frequent involuntary muscle contractions and the uncontrolled micturition events that characterize the neurogenic detrusor overactivity (NDO) due to supra-sacral spinal cord lesions. The ability of the toxin to block the neurotransmitter vesicular release causes the reduction of contractions and improves the compliance of the muscle and the bladder filling. BoNT is the second-choice treatment for NDO once the anti-muscarinic drugs have lost their effects. However, the toxin shows a time-dependent efficacy reduction up to a complete loss of activity. The cellular mechanisms responsible for BoNT effects exhaustion are not yet completely defined. Similarly, also the sites of its action are still under identification. A growing amount of data suggest that BoNT, beyond the effects on the efferent terminals, would act on the sensory system recently described in the bladder mucosa. The specimens from NDO patients no longer responding to BoNT treatment displayed a significant increase of the afferent terminals, likely excitatory, and signs of a chronic neurogenic inflammation in the mucosa. In summary, beyond the undoubted benefits in ameliorating the NDO symptomatology, BoNT treatment might bring to alterations in the bladder sensory system able to shorten its own effectiveness.
Collapse
Affiliation(s)
- Chiara Traini
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, 50139 Florence, Italy.
| | - Maria Giuliana Vannucchi
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, 50139 Florence, Italy.
| |
Collapse
|
12
|
Lamina propria: The connective tissue of rat urinary bladder mucosa. Neurourol Urodyn 2019; 38:2093-2103. [DOI: 10.1002/nau.24085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022]
|
13
|
Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:675-694. [DOI: 10.1007/s00210-018-1510-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
|
14
|
Acute radiation impacts contractility of guinea-pig bladder strips affecting mucosal-detrusor interactions. PLoS One 2018. [PMID: 29513744 PMCID: PMC5841802 DOI: 10.1371/journal.pone.0193923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Radiation-induced bladder toxicity is associated with radiation therapy for pelvic malignancies, arising from unavoidable irradiation of neighbouring normal bladder tissue. This study aimed to investigate the acute impact of ionizing radiation on the contractility of bladder strips and identify the radiation-sensitivity of the mucosa vs the detrusor. Guinea-pig bladder strips (intact or mucosa-free) received ex vivo sham or 20Gy irradiation and were studied with in vitro myography, electrical field stimulation and Ca2+-fluorescence imaging. Frequency-dependent, neurogenic contractions in intact strips were reduced by irradiation across the force-frequency graph. The radiation-difference persisted in atropine (1μM); subsequent addition of PPADs (100μM) blocked the radiation effect at higher stimulation frequencies and decreased the force-frequency plot. Conversely, neurogenic contractions in mucosa-free strips were radiation-insensitive. Radiation did not affect agonist-evoked contractions (1μM carbachol, 5mM ATP) in intact or mucosa-free strips. Interestingly, agonist-evoked contractions were larger in irradiated mucosa-free strips vs irradiated intact strips suggesting that radiation may have unmasked an inhibitory mucosal element. Spontaneous activity was larger in control intact vs mucosa-free preparations; this difference was absent in irradiated strips. Spontaneous Ca2+-transients in smooth muscle cells within tissue preparations were reduced by radiation. Radiation affected neurogenic and agonist-evoked bladder contractions and also reduced Ca2+-signalling events in smooth muscle cells when the mucosal layer was present. Radiation eliminated a positive modulatory effect on spontaneous activity by the mucosa layer. Overall, the findings suggest that radiation impairs contractility via mucosal regulatory mechanisms independent of the development of radiation cystitis.
Collapse
|
15
|
Kubota Y, Hamakawa T, Osaga S, Okada A, Hamamoto S, Kawai N, Kohri K, Yasui T. A kit ligand, stem cell factor as a possible mediator inducing overactive bladder. Neurourol Urodyn 2017; 37:1258-1265. [DOI: 10.1002/nau.23449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yasue Kubota
- Department of Clinical PhysiologyNagoya City University School of Nursing Graduate School of NursingNagoyaJapan
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takashi Hamakawa
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoshi Osaga
- Clinical Research Management CenterNagoya City University HospitalNagoyaJapan
| | - Atsushi Okada
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shuzo Hamamoto
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriyasu Kawai
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kenjiro Kohri
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takahiro Yasui
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
16
|
Koh SD, Lee H, Ward SM, Sanders KM. The Mystery of the Interstitial Cells in the Urinary Bladder. Annu Rev Pharmacol Toxicol 2017; 58:603-623. [PMID: 28992432 DOI: 10.1146/annurev-pharmtox-010617-052615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrinsic mechanisms to restrain smooth muscle excitability are present in the bladder, and premature contractions during filling indicate a pathological phenotype. Some investigators have proposed that c-Kit+ interstitial cells (ICs) are pacemakers and intermediaries in efferent and afferent neural activity, but recent findings suggest these cells have been misidentified and their functions have been misinterpreted. Cells reported to be c-Kit+ cells colabel with vimentin antibodies, but vimentin is not a specific marker for c-Kit+ cells. A recent report shows that c-Kit+ cells in several species coexpress mast cell tryptase, suggesting that they are likely to be mast cells. In fact, most bladder ICs labeled with vimentin antibodies coexpress platelet-derived growth factor receptor α (PDGFRα). Rather than an excitatory phenotype, PDGFRα+ cells convey inhibitory regulation in the detrusor, and inhibitory mechanisms are activated by purines and stretch. PDGFRα+ cells restrain premature development of contractions during bladder filling, and overactive behavior develops when the inhibitory pathways in these cells are blocked. PDGFRα+ cells are also a prominent cell type in the submucosa and lamina propria, but little is known about their function in these locations. Effective pharmacological manipulation of bladder ICs depends on proper identification and further study of the pathways in these cells that affect bladder functions.
Collapse
Affiliation(s)
- Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA;
| |
Collapse
|
17
|
Chen SF, Jiang YH, Kuo HC. Urinary biomarkers in patients with detrusor underactivity with and without bladder function recovery. Int Urol Nephrol 2017; 49:1763-1770. [PMID: 28770419 DOI: 10.1007/s11255-017-1666-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Detrusor underactivity (DU) is frequently encountered in elderly patients. Part of patients with DU might have bladder function recovery after treatment. This study investigated urinary proteins in these DU patients with and without bladder function recovery. METHODS A total of 37 patients with chronic urinary retention and urodynamically proven DU were enrolled. After treatment, 24 DU patients had bladder function recovery whereas 13 had not, after 1-year follow-up. Urine collection at baseline was performed, and the urinary protein including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2) were measured by ELISA. Twenty urodynamically normal, 34 detrusor overactivity (DO) and 15 detrusor hyperactivity and inadequate contractility (DHIC) patients served as comparative groups. RESULTS Urinary NGF levels were significantly higher than normal in patients with DU (9.2 ± 20.3 vs 1.85 ± 2.9 pg/ml, p = 0.037). Urinary BDNF level was only significantly higher in patients with DU than that of the control group (153 ± 199 vs 77.4 ± 47.7 pg/ml, p = 0.033) but not in patients with DHIC or DO. Compared with the control group, the urinary BDNF level was significantly higher in DU patients with bladder function recovery (190 ± 239 pg/ml, p = 0.033) but not in patients without recovery (85.8 ± 43.7 pg/ml, p = 0.612). The PGE2 level was significantly higher than the control group in DU patients with bladder function recovery (1290 ± 836 pg/ml, p < 0.0001) but not in patients without recovery (383 ± 237 pg/ml, p = 0.130). CONCLUSION Patients with DU and higher urinary PGE2 and BDNF levels might have a chance to recover bladder function than those with a lower protein level.
Collapse
Affiliation(s)
- Sheng-Fu Chen
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Buddhist Tzu Chi General Hospital and Tzu Chi University, 707, Section 3, Chung-Yang Road, Hualien, Taiwan.
| |
Collapse
|
18
|
Neuhaus J, Schröppel B, Dass M, Zimmermann H, Wolburg H, Fallier‐Becker P, Gevaert T, Burkhardt CJ, Do HM, Stolzenburg J. 3D‐electron microscopic characterization of interstitial cells in the human bladder upper lamina propria. Neurourol Urodyn 2017; 37:89-98. [DOI: 10.1002/nau.23270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jochen Neuhaus
- Department of UrologyResearch Laboratory, University LeipzigLeipzigGermany
| | - Birgit Schröppel
- Natural and Medical Sciences Institute (NMI) at the University of TuebingenReutlingenGermany
| | - Martin Dass
- Carl Zeiss Microscopy GmbH, TrainingApplication and Support Center (TASC) Application Support EMMunichGermany
| | - Hans Zimmermann
- Carl Zeiss Microscopy GmbH, TrainingApplication and Support Center (TASC) Application Support EMMunichGermany
| | - Hartwig Wolburg
- Institute of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Petra Fallier‐Becker
- Institute of Pathology and NeuropathologyUniversity Hospital TuebingenTuebingenGermany
| | - Thomas Gevaert
- Department of Development and RegenerationKU Leuven, Laboratory of Experimental UrologyLeuvenBelgium
| | - Claus J. Burkhardt
- Natural and Medical Sciences Institute (NMI) at the University of TuebingenReutlingenGermany
| | - Hoang Minh Do
- Department of UrologyUniversity Leipzig, University Hospital LeipzigLeipzigGermany
| | - Jens‐Uwe Stolzenburg
- Department of UrologyUniversity Leipzig, University Hospital LeipzigLeipzigGermany
| |
Collapse
|
19
|
Fry CH, Vahabi B. The Role of the Mucosa in Normal and Abnormal Bladder Function. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:57-62. [PMID: 27228303 DOI: 10.1111/bcpt.12626] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022]
Abstract
The internal face of the detrusor smooth muscle wall of the urinary bladder is covered by a mucosa, separating muscle from the hostile environment of urine. However, the mucosa is more than a very low permeability structure and offers a sensory function that monitors the extent of bladder filling and composition of the urine. The mucosa may be considered as a single functional structure and comprises a tight epithelial layer under which is a basement membrane and lamina propria. The latter region itself is a complex of afferent nerves, blood vessels, interstitial cells and in some species including human beings a muscularis mucosae. Stress on the bladder wall through physical or chemical stressors elicits release of chemicals, such as ATP, acetylcholine, prostaglandins and nitric oxide that modulate the activity of either afferent nerves or the muscular components of the bladder wall. The release and responses are graded so that the mucosa forms a dynamic sensory structure, and there is evidence that the gain of this system is increased in pathologies such as overactive bladder and bladder pain syndrome. This system therefore potentially provides a number of drug targets against these conditions, once a number of fundamental questions are answered. These include how is mediator release regulated; what are the intermediate roles of interstitial cells that surround afferent nerves and blood vessels; and what is the mode of communication between urothelium and muscle - by diffusion of mediators or by cell-to-cell communication?
Collapse
Affiliation(s)
- Christopher H Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK.
| | - Bahareh Vahabi
- Department of Biological, Biomedical and Analytical Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
20
|
Gonzalez EJ, Heppner TJ, Nelson MT, Vizzard MA. Purinergic signalling underlies transforming growth factor-β-mediated bladder afferent nerve hyperexcitability. J Physiol 2016; 594:3575-88. [PMID: 27006168 DOI: 10.1113/jp272148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS The sensory components of the urinary bladder are responsible for the transduction of bladder filling and are often impaired with neurological injury or disease. Elevated extracellular ATP contributes, in part, to bladder afferent nerve hyperexcitability during urinary bladder inflammation or irritation. Transforming growth factor-β1 (TGF-β1) may stimulate ATP release from the urothelium through vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels to increase bladder afferent nerve discharge. Bladder afferent nerve hyperexcitability and urothelial ATP release with CYP-induced cystitis is decreased with TGF-β inhibition. These results establish a causal link between an inflammatory mediator, TGF-β, and intrinsic signalling mechanisms of the urothelium that may contribute to the altered sensory processing of bladder filling. ABSTRACT The afferent limb of the micturition reflex is often compromised following bladder injury, disease and inflammatory conditions. We have previously demonstrated that transforming growth factor-β (TGF-β) signalling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Despite the functional presence of TGF-β in bladder inflammation, the precise mechanisms of TGF-β mediating bladder dysfunction are not yet known. Thus, the present studies investigated the sensory components of the urinary bladder that may underlie the pathophysiology of aberrant TGF-β activation. We utilized bladder-pelvic nerve preparations to characterize bladder afferent nerve discharge and the mechanisms of urothelial ATP release with distention. Our findings indicate that bladder afferent nerve discharge is sensitive to elevated extracellular ATP during pathological conditions of urinary bladder inflammation or irritation. We determined that TGF-β1 may increase bladder afferent nerve excitability by stimulating ATP release from the urothelium via vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels. Furthermore, blocking aberrant TGF-β signalling in cyclophosphamide-induced cystitis with TβR-1 inhibition decreased afferent nerve hyperexcitability with a concomitant decrease in urothelial ATP release. Taken together, these results establish a role for purinergic signalling mechanisms in TGF-β-mediated bladder afferent nerve activation that may ultimately facilitate increased voiding frequency. The synergy between intrinsic urinary bladder signalling mechanisms and an inflammatory mediator provides novel insight into bladder dysfunction and supports new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Thomas J Heppner
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, 05405, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
21
|
Koeck I, Burkhard FC, Monastyrskaya K. Activation of common signaling pathways during remodeling of the heart and the bladder. Biochem Pharmacol 2015; 102:7-19. [PMID: 26390804 DOI: 10.1016/j.bcp.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Collapse
Affiliation(s)
- Ivonne Koeck
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Department of Urology, University Hospital, Bern, Switzerland.
| |
Collapse
|
22
|
Abstract
OBJECTIVES To characterise separately the pharmacological profiles of spontaneous contractions from the mucosa and detrusor layers of the bladder wall and to describe the relationship in mucosa between adenosine triphosphate (ATP) release and spontaneous contractions. MATERIALS AND METHODS Spontaneous contractions were measured (36 °C) from isolated mucosa or detrusor preparations, and intact (mucosa + detrusor) preparations from guinea-pig bladders. Potential modulators were added to the superfusate. The percentage of smooth muscle was measured in haematoxylin and eosin stained sections. ATP release was measured in superfusate samples from a fixed point above the preparation using a luciferin-luciferase assay. RESULTS The magnitude of spontaneous contractions was in the order intact >mucosa >detrusor. The percentage of smooth muscle was least in mucosa and greatest in detrusor preparations. The pharmacological profiles of spontaneous contractions were different in mucosa and detrusor in response to P2X or P2Y receptor agonists, adenosine and capsaicin. The intact preparations showed responses intermediate to those from mucosa and detrusor preparations. Low extracellular pH generated large changes in detrusor, but not mucosa preparations. The mucosa preparations released ATP in a cyclical manner, followed by variations in spontaneous contractions. ATP release was greater in mucosa compared with detrusor, augmented by carbachol and reversed by the M2 -selective antagonist, methoctramine. CONCLUSIONS The different pharmacological profiles of bladder mucosa and detrusor, implies different pathways for contractile activation. Also, the intermediate responses from intact preparations implies functional interaction. The temporal relationship between cyclical variation of ATP release and amplitude of spontaneous contractions is consistent with ATP release controlling spontaneous activity. Carbachol-mediated ATP release was independent of active contractile force.
Collapse
Affiliation(s)
- Nobuhiro Kushida
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Christopher H Fry
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
23
|
Wu C, Sui G, Archer SN, Sassone-Corsi P, Aitken K, Bagli D, Chen Y. Local receptors as novel regulators for peripheral clock expression. FASEB J 2014; 28:4610-6. [PMID: 25145629 PMCID: PMC4200324 DOI: 10.1096/fj.13-243295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mammalian circadian control is determined by a central clock in the brain suprachiasmatic nucleus (SCN) and synchronized peripheral clocks in other tissues. Increasing evidence suggests that SCN-independent regulation of peripheral clocks also occurs. We examined how activation of excitatory receptors influences the clock protein PERIOD 2 (PER2) in a contractile organ, the urinary bladder. PERIOD2::LUCIFERASE-knock-in mice were used to report real-time PER2 circadian dynamics in the bladder tissue. Rhythmic PER2 activities occurred in the bladder wall with a cycle of ∼24 h and peak at ∼12 h. Activation of the muscarinic and purinergic receptors by agonists shifted the peak to an earlier time (7.2±2.0 and 7.2±0.9 h, respectively). PER2 expression was also sensitive to mechanical stimulation. Aging significantly dampened PER2 expression and its response to the agonists. Finally, muscarinic agonist-induced smooth muscle contraction also exhibited circadian rhythm. These data identified novel regulators, endogenous receptors, in determining local clock activity, in addition to mediating the central control. Furthermore, the local clock appears to reciprocally align receptor activity to circadian rhythm for muscle contraction. The interaction between receptors and peripheral clock represents an important mechanism for maintaining physiological functions and its dysregulation may contribute to age-related organ disorders.—Wu, C., Sui, G., Archer, S. N., Sassone-Corsi, P., Aitken, K., Bagli, D., Chen, Y. Local receptors as novel regulators for peripheral clock expression.
Collapse
Affiliation(s)
- Changhao Wu
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK;
| | - Guiping Sui
- Oesophageal Laboratory, Guy's and St. Thomas Hospitals National Health Service Trust, London, UK
| | - Simon N Archer
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, University of California, Irvine, California, USA; and
| | - Karen Aitken
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Darius Bagli
- Department of Urology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ying Chen
- Department of Biochemistry and Physiology, University of Surrey, Surrey, UK
| |
Collapse
|
24
|
Distribution of interstitial cells of Cajal in the neurogenic urinary bladder of children with myelomeningocele. Adv Med Sci 2014; 58:388-93. [PMID: 24243750 DOI: 10.2478/ams-2013-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE C-kit positive interstitial cells of Cajal (ICCs) play an important role in the regulation of the smooth muscle motility, acting as pacemakers to provide the slow wave activity in various organs. Recent studies have shown that c-kit positive ICCs are widely distributed in the urinary tract of animals and humans. The aim of our study was to examine the distribution of ICCs in the children's neurogenic bladder. METHODS An immunohistochemical study of specimens obtained from neurogenic urinary bladder (from the trigonum and the corpus) of children with meningomyelocele and during autopsy was performed using antibody against c-kit (CD 117). Histological morphometry of immunoexpression of c-kit positive ICCs was performed by means of an image analyzing system. RESULTS Our investigation demonstrated ICCs located in the vesical muscle layers. The distribution of those cells is different in the trigonum and the corpus of the urinary bladder. No remarkable differences were observed in c-kit immunoexpression between the neurogenic and the control group. CONCLUSION There was no difference in the distribution of ICCs in the urinary bladder of healthy children as compared to children with myelomeningocele. Biopsy revealed different distribution of ICCs in particular parts of the bladder (trigonum/ corpus) in both groups of children.
Collapse
|
25
|
Gonzalez EJ, Merrill L, Vizzard MA. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function. Am J Physiol Regul Integr Comp Physiol 2014; 306:R869-78. [PMID: 24760999 PMCID: PMC4159737 DOI: 10.1152/ajpregu.00030.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/19/2014] [Indexed: 01/19/2023]
Abstract
Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
26
|
Hanna-Mitchell AT, Kashyap M, Chan WV, Andersson KE, Tannenbaum C. Pathophysiology of idiopathic overactive bladder and the success of treatment: a systematic review from ICI-RS 2013. Neurourol Urodyn 2014; 33:611-7. [PMID: 24844598 DOI: 10.1002/nau.22582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
Abstract
AIMS To investigate the frequency of phenotype profiling of patients with idiopathic overactive bladder (OAB) syndrome, and to determine the effectiveness of treatment among individuals with different pathophysiologic profiles. METHODS The electronic databases MEDLINE, EMBASE, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, and CINAHL were searched from January 1, 1980 to August 12, 2013 for interventional randomized controlled treatment trials (RCTs) of idiopathic OAB. Phenotying for pathophysiologies originating in the urothelial/mucosal layer of the bladder, the detrusor muscle cell layer, and the central nervous system were sought. Articles that analyzed urgency outcomes based on pathophysiologic profiling were selected. Due to the heterogeneity of the included interventions and outcome assessment measures, meta-analysis was not appropriate and a qualitative synthesis was undertaken. RESULTS Of 239 original RCTs of idiopathic OAB, 48 (20%) profiled participants on underlying pathophysiology. Less than half of these (n = 20) reported treatment efficacy for urgency symptoms by pathophysiological sub-type. One examined the effect of botulinum A toxin on interstitial cell protein expression. Four compared treatment efficacy in OAB patients with and without involuntary detrusor contractions. Fifteen compared the effect of treatment on urgency reduction in patients with detrusor overactivity. There were no consistent trends in treatment efficacy according to pathophysiologic sub-type. No studies examined urothelial dysfunction or abnormal central processing of bladder afferent signaling in response to treatment. CONCLUSIONS In order to advance the field of idiopathic OAB, more trials are needed that profile and test urgency outcomes in participants according to suspected underlying pathophysiology. Neurourol. Urodynam. 33:611-617, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann T Hanna-Mitchell
- University Hospitals Case Medical Center and Department of Urology, Urology Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | | | | | | |
Collapse
|
27
|
Chacko S, Cortes E, Drake MJ, Fry CH. Does altered myogenic activity contribute to OAB symptoms from detrusor overactivity? ICI-RS 2013. Neurourol Urodyn 2014; 33:577-80. [DOI: 10.1002/nau.22599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sam Chacko
- Department of Pathobiology; Division of Urology; University of Pennsylvania; Philadelphia Pennsylvania
| | - Eduard Cortes
- Women's Health Academic Centre; King's College London; London United Kingdom
| | - Marcus J. Drake
- School of Clinical Sciences; University of Bristol; Bristol United Kingdom
| | - Christopher H. Fry
- Department of Biochemistry and Physiology; FHMS; University of Surrey; Guildford United Kingdom
| |
Collapse
|
28
|
Kanai A, Fry C, Hanna-Mitchell A, Birder L, Zabbarova I, Bijos D, Ikeda Y. Do we understand any more about bladder interstitial cells?-ICI-RS 2013. Neurourol Urodyn 2014; 33:573-6. [PMID: 24838179 DOI: 10.1002/nau.22591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Abstract
AIMS To present a brief review on discussions from "Do we understand any more about lower urinary tract interstitial cells?" session at the 2013 International Consultation on Incontinence-Research Society (ICI-RS) meeting in Bristol, UK. METHODS Discussion focused on bladder interstitial cell (IC) subtypes, their localization and characterization, and communication between themselves, the urothelium, and detrusor smooth muscle. The role of ICs in bladder pathologies and new methods for studying ICs were also addressed. RESULTS ICs have been studied extensively in the lower urinary tract and have been characterized based on comparisons with ICs of Cajal in the gastro-intestinal tract. In fetal bladders it is believed that ICs drive intrinsic contractions to expel urine through the urachus. These contractions diminish postpartum as bladder innervation develops. Voiding in human neonates occurs when filling triggers a spinal cord reflex that contracts the detrusor; in rodents, maternal stimulation of the perineum triggers voiding. Following spinal cord injury, intrinsic contractions, and spinal micturition reflexes develop, similar to those seen during neonatal development. These enhanced contractions may stimulate nociceptive and mechanosensitive afferents contributing to neurogenic detrusor overactivity and incontinence. The IC-mediated activity is believed to be initiated in the lamina propria by responding to urothelial factors. These IC may act syncytially through gap junction coupling and modulate detrusor activity through unknown mechanisms. CONCLUSION There has been a great deal of information discovered regarding bladder ICs, however, many of their (patho)physiological functions and mechanisms are still unclear and necessitates further research. Neurourol. Urodynam. 33:573-576, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
|
29
|
Rusu MC, Folescu R, Mănoiu VS, Didilescu AC. Suburothelial interstitial cells. Cells Tissues Organs 2014; 199:59-72. [PMID: 24801000 DOI: 10.1159/000360816] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
The suburothelium has received renewed interest because of its role in sensing bladder fullness. Various studies evaluated suburothelial myofibroblasts (MFs), interstitial cells (ICs), interstitial Cajal cells (ICCs) or telocytes (TCs), which resulted in inconsistencies in terminology and difficulties in understanding the suburothelial structure. In order to elucidate these issues, the use of electron microscopy seems to be an ideal choice. It was hypothesized that the cell population of the suburothelial band is heterogeneous in an attempt to clarify the above-mentioned inconsistencies. The suburothelial ICs of the bladder were evaluated by immunohistochemistry (IHC) and transmission electron microscopy (TEM). Bladder samples from 6 Wistar rats were used for IHC and TEM studies and human bladder autopsy samples were used for IHC. Desmin labeled only the detrusor muscle, while all the myoid structures of the bladder wall were positive for α-smooth muscle actin (SMA). A distinctive α-SMA-positive suburothelial layer was identified. A layered structure of the immediate suburothelial band was detected using TEM: (1) the inner suburothelial layer consisted of fibroblasts equipped for matrix synthesis; (2) the middle suburothelial layer consisted of smooth muscle cells (SMCs) and myoid ICCs, and (3) the outer suburothelial layer consisted of ICs with TC morphology, building a distinctive network. In conclusion, the suburothelial layer consists of distinctive types of ICs but not MFs. The myoid layer, with SMCs and ICCs, which could be considered identical to the α-SMA-positive cells in the suburothelial band, seems the best-equipped layer for pacemaking and signaling. Noteworthy, the network of ICs also seems suitable for stromal signaling.
Collapse
|
30
|
Sui G, Fry CH, Montgomery B, Roberts M, Wu R, Wu C. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol Renal Physiol 2013; 306:F286-98. [PMID: 24285497 PMCID: PMC3920053 DOI: 10.1152/ajprenal.00291.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: purinergic and muscarinic agonists on ATP release and its paracrine effect. Guinea pig and human urothelial mucosa were mounted in a perfusion trough; superfusate ATP was measured using a luciferin-luciferase assay, and tissue contractions were recorded with a tension transducer. Intracellular Ca2+ was measured in isolated urothelial cells with fura-2. The P2Y agonist UTP but not the P2X agonist α,β-methylene-ATP generated ATP release. The muscarinic agonist carbachol and the M2-preferential agonist oxotremorine also generated ATP release, which was antagonized by the M2-specific agent methoctramine. Agonist-evoked ATP release was accompanied by mucosal contractions. Urothelial ATP release was differentially mediated by intracellular Ca2+ release, cAMP, exocytosis, or connexins. Urothelium-attached smooth muscle exhibited spontaneous contractions that were augmented by subthreshold concentrations of carbachol, which had little direct effect on smooth muscle. This activity was attenuated by desensitizing P2X receptors on smooth muscle. Urothelial ATP release was increased in aging bladders. Purinergic and muscarinic agents produced similar effects in human urothelial tissue. This is the first demonstration of specific modulation of urothelial ATP release in native tissue by purinergic and muscarinic neurotransmitters via distinct mechanisms. Released ATP produces paracrine effects on underlying tissues. This process is altered during aging and has relevance to human bladder pathologies.
Collapse
Affiliation(s)
- Guiping Sui
- Dept. of Biochemistry and Physiology, Faculty of Health and Medical Science, Univ. of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Kurahashi M, Nakano Y, Peri LE, Townsend JB, Ward SM, Sanders KM. A novel population of subepithelial platelet-derived growth factor receptor α-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 2013; 304:G823-34. [PMID: 23429582 PMCID: PMC3652001 DOI: 10.1152/ajpgi.00001.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently platelet-derived growth factor-α-positive cells (PDGFRα(+) cells), previously called "fibroblast-like" cells, have been described in the muscle layers of the gastrointestinal tract. These cells form networks and are involved in purinergic motor neurotransduction. Examination of colon from mice with enhanced green fluorescent protein (eGFP) driven from the endogenous Pdgfra (PDGFRα-eGFP mice) revealed a unique population of PDGFRα(+) cells in the mucosal layer of colon. We investigated the phenotype and potential role of these cells, which have not been characterized previously. Expression of PDGFRα and several additional proteins was surveyed in human and murine colonic mucosae by immunolabeling; PDGFRα(+) cells in colonic mucosa were isolated from PDGFRα-eGFP mice, and the gene expression profile was analyzed by quantitative polymerase chain reaction. We found for the first time that PDGFRα was expressed in subepithelial cells (subepithelial PDGFRα(+) cells) forming a pericryptal sheath from the base to the tip of crypts. These cells were in close proximity to the basolateral surface of epithelial cells and distinct from subepithelial myofibroblasts, which were identified by expression of α-smooth muscle actin and smooth muscle myosin. PDGFRα(+) cells also lay in close proximity to varicose processes of nerve fibers. Mouse subepithelial PDGFRα(+) cells expressed Toll-like receptor genes, purinergic receptor genes, 5-hydroxytryptamine (5-HT) 4 receptor gene, and hedgehog signaling genes. Subepithelial PDGFRα(+) cells occupy an important niche in the lamina propria and may function in transduction of sensory and immune signals and in the maintenance of mucosal homeostasis.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yasuko Nakano
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Lauren E. Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jared B. Townsend
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
32
|
TOBU S, NOGUCHI M, HATADA T, MORI KI, MATSUO M, SAKAI H. Upregulation of Angiotensin II Receptor and Connexin 43 in Increased Suburothelial Myofibroblasts in the Rat Inflammatory Bladder. Low Urin Tract Symptoms 2013; 5:90-5. [DOI: 10.1111/j.1757-5672.2012.00167.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Gevaert T, Hutchings G, Everaerts W, Prenen H, Roskams T, Nilius B, De Ridder D. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties. Neurourol Urodyn 2013; 33:461-8. [DOI: 10.1002/nau.22415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/21/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Thomas Gevaert
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven Belgium
- Department of Imaging and Pathology; KU Leuven Belgium
| | | | - Wouter Everaerts
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven Belgium
| | - Hans Prenen
- Department of Clinical Oncology; University Hospitals Gasthuisberg; Leuven Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; KU Leuven Belgium
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine; KU Leuven Belgium
| | - Dirk De Ridder
- Laboratory of Experimental Urology; Department of Development and Regeneration; KU Leuven Belgium
| |
Collapse
|
34
|
Deng J, Zhang Y, Wang L, Zhao J, Song B, Li L. The effects of Glivec on the urinary bladder excitation of rats with suprasacral or sacral spinal cord transection. J Surg Res 2013; 183:598-605. [PMID: 23608618 DOI: 10.1016/j.jss.2013.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/31/2013] [Accepted: 02/19/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND To investigate the effects of the c-kit blocker imatinib mesylate (Glivec) on the bladders of animals with suprasacral cord injury (SSCI) and sacral cord injury (SCI). MATERIALS AND METHODS We randomized 60 female Sprague-Dawley rats into control, sham, SSCI (T8/9 transection), and SCI (S1-3 transection) groups. Six weeks later, we evaluated the effects of stepwise Glivec administrations on urinary bladder contraction using cystometry and the detrusor strip stretch-test. We investigated spontaneous calcium transients of kit-positive interstitial cells of Cajal (ICCs) with the preloaded Ca(2+) indicator fluo-3AM. The expression levels of c-kit and the number of ICCs in those bladders were determined using Western blot and fluorescence staining analyses, respectively. RESULTS Bladder capacity and compliance were decreased in SSCI bladders and increased in SCI bladders (P<0.05). The amplitude and frequency of spontaneous contractions of detrusor strips, the frequency and relative fluorescence intensity of the spontaneous Ca(2+) waves, and c-kit expression in the bladder were significantly increased in the SSCI group and decreased in the SCI group compared with the control and sham groups (P<0.05). The dose-dependent effects of Glivec also confirmed consistent functional variations in bladder activity. CONCLUSIONS The expressions and effects of Glivec were enhanced in SSCI bladders and inhibited in SCI bladders, which may indicate potential roles of ICCs for the c-kit signaling pathway in the pathogenesis of SSCI and SCI bladder.
Collapse
Affiliation(s)
- Jianping Deng
- Department of Urology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | | | | | | | | | | |
Collapse
|
35
|
Barcellos LM, Costa WS, Medeiros JL, Rocha BR, Sampaio FJB, Cardoso LEM. Protective effects of l-glutamine on the bladder wall of rats submitted to pelvic radiation. Micron 2013; 47:18-23. [PMID: 23465886 DOI: 10.1016/j.micron.2013.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/24/2012] [Accepted: 01/05/2013] [Indexed: 11/27/2022]
Abstract
Radiotherapy is often used to treat prostate tumors, but the normal bladder is usually adversely affected. Using an animal model of pelvic radiation, we investigated whether glutamine nutritional supplementation can prevent radiation-induced damage to the bladder, especially in its more superficial layers. Male rats aged 3-4 months were divided into groups of 8 animals each: controls, which consisted intact animals; radiated-only rats, which were sacrificed 7 (R7) or 15 (R15) days after a radiation session (10Gy aimed at the pelvico-abdominal region); and radiated rats receiving l-glutamine supplementation (0.65g/kg body weight/day), which were sacrificed 7 (RG7) or 15 (RG15) days after the radiation session. Cells and blood vessels in the vesical lamina propria, as well as the urothelium, were then measured using histological methods. The effects of radiation were evaluated by comparing controls vs. either R7 or R15, while a protective effect of glutamine was assessed by comparing R7 vs. RG7 and R15 vs. RG15. The results showed that, in R7, epithelial thickness, epithelial cell density, and cell density in the lamina propria were not significantly affected. However, density of blood vessels in R7 was reduced by 48% (p<0.05) and this alteration was mostly prevented by glutamine (p<0.02). In R15, density of blood vessels in the lamina propria was not significantly modified. However, epithelial thickness was reduced by 25% (p<0.05) in R15, and this effect was prevented by glutamine (p<0.01). In R15, epithelial cell density was increased by 35% (p<0.02), but glutamine did not protect against this radiation-induced increase. Cell density in the lamina propria was likewise unaffected in R15. Density of mast cells in the lamina propria was markedly reduced in R7 and R15. The density was still reduced in RG7, but a higher density in RG15 suggested a glutamine-mediated recovery. Alpha-actin positive cells in the lamina propria formed a suburothelial layer and were identified as myofibroblasts. Thickness of this layer was increased in R7, but was similar to controls in RG7, while changes in R15 and RG15 were less evident. In conclusion, pelvic radiation leads to significant acute and post-acute alterations in the composition and structural features of the vesical lamina propria and epithelium. Most of these changes, however, can be prevented by glutamine nutritional supplementation. These results emphasize, therefore, the potential use of this aminoacid as a radioprotective drug.
Collapse
Affiliation(s)
- Leilane M Barcellos
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Gray SM, McGeown JG, McMurray G, McCloskey KD. Functional innervation of Guinea-pig bladder interstitial cells of cajal subtypes: neurogenic stimulation evokes in situ calcium transients. PLoS One 2013; 8:e53423. [PMID: 23326426 PMCID: PMC3541194 DOI: 10.1371/journal.pone.0053423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
Several populations of interstitial cells of Cajal (ICC) exist in the bladder, associated with intramural nerves. Although ICC respond to exogenous agonists, there is currently no evidence of their functional innervation. The objective was to determine whether bladder ICC are functionally innervated. Guinea-pig bladder tissues, loaded with fluo-4AM were imaged with fluorescent microscopy and challenged with neurogenic electrical field stimulation (EFS). All subtypes of ICC and smooth muscle cells (SMC) displayed spontaneous Ca2+-oscillations. EFS (0.5 Hz, 2 Hz, 10 Hz) evoked tetrodotoxin (1 µM)-sensitive Ca2+-transients in lamina propria ICC (ICC-LP), detrusor ICC and perivascular ICC (PICC) associated with mucosal microvessels. EFS responses in ICC-LP were significantly reduced by atropine or suramin. SMC and vascular SMC (VSM) also responded to EFS. Spontaneous Ca2+-oscillations in individual ICC-LP within networks occurred asynchronously whereas EFS evoked coordinated Ca2+-transients in all ICC-LP within a field of view. Non-correlated Ca2+-oscillations in detrusor ICC and adjacent SMC pre-EFS, contrasted with simultaneous neurogenic Ca2+ transients evoked by EFS. Spontaneous Ca2+-oscillations in PICC were little affected by EFS, whereas large Ca2+-transients were evoked in pre-EFS quiescent PICC. EFS also increased the frequency of VSM Ca2+-oscillations. In conclusion, ICC-LP, detrusor ICC and PICC are functionally innervated. Interestingly, Ca2+-activity within ICC-LP networks and between detrusor ICC and their adjacent SMC were synchronous under neural control. VSM and PICC Ca2+-activity was regulated by bladder nerves. These novel findings demonstrate functional neural control of bladder ICC. Similar studies should now be carried out on neurogenic bladder to elucidate the contribution of impaired nerve-ICC communication to bladder pathophysiology.
Collapse
Affiliation(s)
- Susannah M Gray
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Belfast, Northern Ireland, United Kingdom
| | | | | | | |
Collapse
|
37
|
McCloskey KD. Bladder interstitial cells: an updated review of current knowledge. Acta Physiol (Oxf) 2013; 207:7-15. [PMID: 23034074 DOI: 10.1111/apha.12009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/22/2012] [Accepted: 09/10/2012] [Indexed: 01/12/2023]
Abstract
The field of bladder research has been energized by the study of novel interstitial cells (IC) over the last decade. Several subgroups of IC are located within the bladder wall and make structural interactions with nerves and smooth muscle, indicating integration with intercellular communication and key physiological functions. Significant progress has been made in the study of bladder ICs' cellular markers, ion channels and receptor expression, electrical and calcium signalling, yet their specific functions in normal bladder filling and emptying remain elusive. There is increasing evidence that the distribution of IC is altered in bladder pathophysiologies suggesting that changes in IC may be linked with the development of bladder dysfunction. This article summarizes the current state of the art of our knowledge of IC in normal bladder and reviews the literature on IC in dysfunctional bladder.
Collapse
Affiliation(s)
- K. D. McCloskey
- Centre for Cancer Research and Cell Biology; Queen's University Belfast; Belfast; Northern Ireland; UK
| |
Collapse
|
38
|
Koh BH, Roy R, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP, Hatton WJ, Ward SM, Sanders KM, Koh SD. Platelet-derived growth factor receptor-α cells in mouse urinary bladder: a new class of interstitial cells. J Cell Mol Med 2012; 16:691-700. [PMID: 22151424 PMCID: PMC3822840 DOI: 10.1111/j.1582-4934.2011.01506.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Specific classes of interstitial cells exist in visceral organs and have been implicated in several physiological functions including pacemaking and mediators in neurotransmission. In the bladder, Kit(+) interstitial cells have been reported to exist and have been suggested to be neuromodulators. More recently a second interstitial cell, which is identified using antibodies against platelet-derived growth factor receptor-α (PDGFR-α) has been described in the gastrointestinal (GI) tract and has been implicated in enteric motor neurotransmission. In this study, we examined the distribution of PDGFR-α(+) cells in the murine urinary bladder and the relation that these cells may have with nerve fibres and smooth muscle cells. Platelet-derived growth factor receptor-α(+) cells had a spindle shape or stellate morphology and often possessed multiple processes that contacted one another forming a loose network. These cells were distributed throughout the bladder wall, being present in the lamina propria as well as throughout the muscularis of the detrusor. These cells surrounded and were located between smooth muscle bundles and often came into close morphological association with intramural nerve fibres. These data describe a new class of interstitial cells that express a specific receptor within the bladder wall and provide morphological evidence for a possible neuromodulatory role in bladder function.
Collapse
Affiliation(s)
- Byoung H Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fry CH, Young JS, Jabr RI, McCarthy C, Ikeda Y, Kanai AJ. Modulation of spontaneous activity in the overactive bladder: the role of P2Y agonists. Am J Physiol Renal Physiol 2012; 302:F1447-54. [PMID: 22357922 DOI: 10.1152/ajprenal.00436.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord transection (SCT) leads to an increase in spontaneous contractile activity in the isolated bladder that is reminiscent of an overactive bladder syndrome in patients with similar damage to the central nervous system. An increase in interstitial cell number in the suburothelial space between the urothelium and detrusor smooth muscle layer occurs in SCT bladders, and these cells elicit excitatory responses to purines and pyrimidines such as ATP, ADP, and UTP. We have investigated the hypothesis that these agents underlie the increase in spontaneous activity. Rats underwent lower thoracic spinal cord transection, and their bladder sheets or strips, with intact mucosa except where specified, were used for experiments. Isometric tension was recorded and propagating Ca(2+) and membrane potential (E(m)) waves were recorded by fluorescence imaging using photodiode arrays. SCT bladders were associated with regular spontaneous contractions (2.9 ± 0.4/min); ADP, UTP, and UDP augmented the amplitude but not their frequency. With strips from such bladders, a P2Y(6)-selective agonist (PSB0474) exerted similar effects. Fluorescence imaging of bladder sheets showed that ADP or UTP increased the conduction velocity of Ca(2+)/E(m) waves that were confined to regions of the bladder wall with an intact mucosa. When transverse bladder sections were used, Ca(2+)/E(m) waves originated in the suburothelial space and propagated to the detrusor and urothelium. Analysis of wave propagation showed that the suburothelial space exhibited properties of an electrical syncitium. These experiments are consistent with the hypothesis that P2Y-receptor agonists increase spontaneous contractile activity by augmenting functional activity of the cellular syncitium in the suburothelial space.
Collapse
Affiliation(s)
- C H Fry
- The Institute of Biosciences and Medicine, University of Surrey, Guildford, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Kanai A, Zabbarova I, Oefelein M, Radziszewski P, Ikeda Y, Andersson KE. Mechanisms of action of botulinum neurotoxins, β3-adrenergic receptor agonists, and PDE5 inhibitors in modulating detrusor function in overactive bladders: ICI-RS 2011. Neurourol Urodyn 2012; 31:300-8. [DOI: 10.1002/nau.21246] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/07/2011] [Indexed: 01/01/2023]
|
41
|
Birder LA, Ruggieri M, Takeda M, van Koeveringe G, Veltkamp S, Korstanje C, Parsons B, Fry CH. How does the urothelium affect bladder function in health and disease? ICI-RS 2011. Neurourol Urodyn 2012; 31:293-9. [PMID: 22275289 DOI: 10.1002/nau.22195] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/06/2011] [Indexed: 11/11/2022]
Abstract
The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally, consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery.
Collapse
Affiliation(s)
- L A Birder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Urothelial/Lamina Propria Spontaneous Activity and the Role of M3 Muscarinic Receptors in Mediating Rate Responses to Stretch and Carbachol. Urology 2011; 78:1442.e9-15. [DOI: 10.1016/j.urology.2011.08.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/10/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022]
|
43
|
Kanai A, Zabbarova I, Ikeda Y, Yoshimura N, Birder L, Hanna-Mitchell A, de Groat W. Sophisticated models and methods for studying neurogenic bladder dysfunction. Neurourol Urodyn 2011; 30:658-67. [PMID: 21661010 DOI: 10.1002/nau.21120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To describe how the use of new and established animal models and methods can generate vital and far reaching experimental data in the study of mechanism underlying neurogenic bladder overactivity. METHODS Bladder and colonic irradiated mice and those with upper and lower motor neuron lesions were used to study neurogenic bladder overactivity. Methods included cystometry, tension measurements, afferent nerve recordings and optical mapping of action potentials and intracellular Ca(2+) transients. Recordings were made in a number of innovative preparations including in-line cultured cells, bladder-urethra sheets and cross-sections, spinal cord slices and the cerebral cortex. RESULTS The animal models and methods used allow for the study of peripheral and central mechanisms of neurogenic overactivity. While colonic irradiation results in solely neurogenic dysfunction, spinal cord lesions also induce non-neural changes resulting in increased spontaneous detrusor contractions that can directly stimulate afferent nerves. Imaging of cultured bladder interstitial cells reveals spontaneous firing that could contribute to detrusor overactivity, while optical imaging of the spinal cord and brain could identify changes in central pathways that underlie lower urinary tract dysfunction. CONCLUSIONS The animal models and methods described allow for the study of neurogenic overactivity at the peripheral, spinal and cortical levels. This may lead to greater understanding of sensory and motor mechanisms involved in incontinence, the contributions of interstitial cells and spontaneous detrusor contractions, and the involvement of the cortex.
Collapse
Affiliation(s)
- Anthony Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
ATP enhances spontaneous calcium activity in cultured suburothelial myofibroblasts of the human bladder. PLoS One 2011; 6:e25769. [PMID: 21998694 PMCID: PMC3187810 DOI: 10.1371/journal.pone.0025769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/11/2011] [Indexed: 11/19/2022] Open
Abstract
Background Suburothelial myofibroblasts (sMF) are located underneath the urothelium in close proximity to afferent nerves. They express purinergic receptors and show calcium transients in response to ATP. Therefore they are supposed to be involved in afferent signaling of the bladder fullness. Since ATP concentration is likely to be very low during the initial filling phase, we hypothesized that sMF Ca2+ activity is affected even at very low ATP concentrations. We investigated ATP induced modulation of spontaneous activity, intracellular calcium response and purinergic signaling in cultured sMF. Methodology/Principal Findings Myofibroblast cultures, established from cystectomies, were challenged by exogenous ATP in presence or absence of purinergic antagonist. Fura-2 calcium imaging was used to monitor ATP (10−16 to 10−4 mol/l) induced alterations of calcium activity. Purinergic receptors (P2X1, P2X2, P2X3) were analysed by confocal immunofluorescence. We found spontaneous calcium activity in 55.18%±1.65 of the sMF (N = 48 experiments). ATP significantly increased calcium activity even at 10−16 mol/l. The calcium transients were partially attenuated by subtype selective antagonist (TNP-ATP, 1 µM; A-317491, 1 µM), and were mimicked by the P2X1, P2X3 selective agonist α,β-methylene ATP. The expression of purinergic receptor subtypes in sMF was confirmed by immunofluorescence. Conclusions/Significance Our experiments demonstrate for the first time that ATP can modulate spontaneous activity and induce intracellular Ca2+ response in cultured sMF at very low concentrations, most likely involving P2X receptors. These findings support the notion that sMF are able to register bladder fullness very sensitively, which predestines them for the modulation of the afferent bladder signaling in normal and pathological conditions.
Collapse
|
45
|
Min Y, He P, Wang Q, Jin X, Song B, Li L. The effects of the c-kit blocker glivec on the contractile response of urinary bladder. J Surg Res 2011; 171:e193-9. [PMID: 21962730 DOI: 10.1016/j.jss.2011.07.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 07/19/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To investigate the effects of imatinib (Glivec) on the urinary bladder contraction and excitation induced by neurostimulation, therefore to clarify the relationships between the bladder interstitial cell of Cajal (ICC) and the neural signals. METHODS In in vivo experiments, pelvic nerves of rats were stimulated by square-wave pulses. The contractile response was recorded before and 40 min after the administration of medications (atropine, Glivec, and ketotifen). In in vitro experiments, the bladder contractile response induced by acetylcholine with or without Glivec was evaluated. The space relationship between ICC and neural fibers were observed with double-labeled fluorescence using primary antibodies (anti-c-kit and anti-vesicular acetylcholine transferase) and secondary fluorescent antibodies (Alexa 488 and Alexa 594; Molecular Probes, Eugene, OR). RESULTS Atropine and Glivec could significantly inhibit the bladder contractile response induced by the electrical stimulation in a dose-dependent manner, while ketotifen did not obviously affect bladder contractile response. In in vitro experiments, Glivec did not affect acetylcholine-induced bladder contractile response. The location of ICC in close proximity to cholinergic nerve fibers was confirmed by double-labeled fluorescence. CONCLUSIONS Bladder ICC play an important role as intermediaries in the transmission of cholinergic signals from nerve to smooth muscle cells.
Collapse
Affiliation(s)
- Yongzheng Min
- Centre of Urology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
46
|
Kubota Y, Kojima Y, Shibata Y, Imura M, Sasaki S, Kohri K. Role of KIT-Positive Interstitial Cells of Cajal in the Urinary Bladder and Possible Therapeutic Target for Overactive Bladder. Adv Urol 2011; 2011:816342. [PMID: 21785586 PMCID: PMC3139881 DOI: 10.1155/2011/816342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/04/2011] [Accepted: 06/05/2011] [Indexed: 11/18/2022] Open
Abstract
In the gastrointestinal tract, interstitial cells of Cajal (ICCs) act as pacemaker cells to generate slow wave activity. Interstitial cells that resemble ICCs in the gastrointestinal tract have been identified by their morphological characteristics in the bladder. KIT is used as an identification marker of ICCs. ICCs in the bladder may be involved in signal transmission between smooth muscle bundles, from efferent nerves to smooth muscles, and from the urothelium to afferent nerves. Recent research has suggested that not only the disturbance of spontaneous contractility caused by altered detrusor ICC signal transduction between nerves and smooth muscle cells but also the disturbance of signal transduction between urothelial cells and sensory nerves via suburothelial ICC may induce overactive bladder (OAB). Recent reports have suggested that KIT is not only a detection marker of these cells, but also may play a crucial role in the control of bladder function. Research into the effect of a c-kit receptor inhibitor, imatinib mesylate, on bladder function implies that KIT-positive ICCs may be therapeutic target cells to reduce bladder overactivity and that the blockage of c-kit receptor may offer a new therapeutic strategy for OAB treatment, although further study will be needed.
Collapse
Affiliation(s)
- Yasue Kubota
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
47
|
TRP channels in urinary bladder mechanosensation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:861-79. [PMID: 21290331 DOI: 10.1007/978-94-007-0265-3_45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Smith PP. Purinoceptors and Bladder Dysfunction. CURRENT BLADDER DYSFUNCTION REPORTS 2011. [DOI: 10.1007/s11884-011-0081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Woodman JR, Mansfield KJ, Lazzaro VA, Lynch W, Burcher E, Moore KH. Immunocytochemical characterisation of cultures of human bladder mucosal cells. BMC Urol 2011; 11:5. [PMID: 21496348 PMCID: PMC3104367 DOI: 10.1186/1471-2490-11-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/18/2011] [Indexed: 11/15/2022] Open
Abstract
Background The functional role of the bladder urothelium has been the focus of much recent research. The bladder mucosa contains two significant cell types: urothelial cells that line the bladder lumen and suburothelial interstitial cells or myofibroblasts. The aims of this study were to culture these cell populations from human bladder biopsies and to perform immunocytochemical characterisation. Methods Primary cell cultures were established from human bladder biopsies (n = 10). Individual populations of urothelial and myofibroblast-like cells were isolated using magnetic activated cell separation (MACS). Cells were slow growing, needing 3 to 5 weeks to attain confluence. Results Cytokeratin 20 positive cells (umbrella cells) were isolated at primary culture and also from patients' bladder washings but these did not proliferate. In primary culture, proliferating cells demonstrated positive immunocytochemical staining to cytokeratin markers (AE1/AE3 and A0575) as well fibroblasts (5B5) and smooth muscle (αSMA) markers. An unexpected finding was that populations of presumptive urothelial and myofibroblast-like cells, isolated using the MACS beads, stained for similar markers. In contrast, staining for cytokeratins and fibroblast or smooth muscle markers was not co-localised in full thickness bladder sections. Conclusions Our results suggest that, in culture, bladder mucosal cells may undergo differentiation into a myoepithelial cell phenotype indicating that urothelial cells have the capacity to respond to environmental changes. This may be important pathologically but also suggests that studies of the physiological function of these cells in culture may not give a reliable indicator of human physiology.
Collapse
Affiliation(s)
- Jacqueline R Woodman
- Detrusor Muscle Laboratory, The St George Hospital, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
50
|
McCloskey KD. Interstitial cells and bladder pathophysiology--passive bystanders or active participants? J Urol 2011; 185:1562-3. [PMID: 21419431 PMCID: PMC3255073 DOI: 10.1016/j.juro.2011.02.2587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|