1
|
Luo M, Zhang W, Yang J, Du X, Wang X, Xu G, Tang H, Wang Z, Zhong X, Feng J, Ma N. CD83 mediates the inhibitory effect of the S1PR1 agonist CYM5442 on LPS-induced M1 polarization of macrophages through the ERK-STAT-1 signaling pathway. Int Immunopharmacol 2024; 143:113526. [PMID: 39486189 DOI: 10.1016/j.intimp.2024.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Macrophages possess M1/M2 polarization, which perform an essential role in immunology and inflammation studies. However, few studies have investigated the specific molecules involved in the polarization process beyond its induction and characterization. Here, we determined that the molecule S1PR1 regulates M1 polarization in macrophages and that the surface marker CD83 is involved in this process. The S1PR1 agonist CYM5442 specifically increases CD83 expression in macrophages. Although the agonist CYM5442 and LPS regulate CD83 differently in macrophages, they have a synergistic effect that enhances CD83 expression. Notably, CYM5442 does not act synergistically with IL-4 regarding CD83 expression and does not affect IL-4-induced macrophage M2 polarization. Furthermore, CYM5442 inhibits the expression of LPS-induced inflammatory cytokines and the phosphorylation of ERK1/2 and STAT-1 in macrophages. However, this inhibition was significantly diminished or absent when CD83 is deficient, highlighting the importance of CD83 in mediating S1PR1 signaling in LPS-induced M1 polarization of macrophages. Overall, our findings provide valuable insights into the molecular mechanisms underlying macrophage polarization, particularly the roles of S1PR1 and CD83 in modulating inflammatory responses.
Collapse
Affiliation(s)
- MeiHua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Wei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Juan Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xi Du
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
2
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
3
|
Xu H, Yi C, Chen M. The complement pathway as a therapeutic target for neovascular age-related macular degeneration-mediated subretinal fibrosis. Curr Opin Pharmacol 2024; 76:102448. [PMID: 38555699 DOI: 10.1016/j.coph.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in the elderly in developed countries. Intravitreal injection of VEGF inhibitors is the mainstream therapy for nAMD, although nearly 50% of the patients do not respond or respond poorly to the therapy. One of the main reasons for the poor outcome of the therapy is the development of subretinal macular fibrosis, a process of excessive deposition of extracellular matrix proteins around the diseased blood vessels. Currently, there is no medication to prevent or treat the condition. Here, we discussed recent advances in the pathogenesis of nAMD-mediated macular fibrosis, with a focus on the role of the complement system. We further proposed approaches to target the complement system for the management of macular fibrosis and highlighted the area of further research for future clinical applications of complement-based therapy.
Collapse
Affiliation(s)
- Heping Xu
- Changsha Aier Eye Hospital, Changsha, Hunan, China; Aier Eye Institute, Aier Academy of Ophthalmology, Central South University, Hunan, China; The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| | - Caijiao Yi
- Changsha Aier Eye Hospital, Changsha, Hunan, China; Aier Eye Institute, Aier Academy of Ophthalmology, Central South University, Hunan, China; Changsha Xiangjiang Aier Eye Hospital, Changsha, Hunan, China
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| |
Collapse
|
4
|
Wang J, Chen W, Chen S, Yue G, Hu Y, Xu J. Landscape of infiltrating immune cells and related genes in diabetic kidney disease. Clin Exp Nephrol 2024; 28:181-191. [PMID: 37882850 DOI: 10.1007/s10157-023-02422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is one of the prominent microvascular complications of diabetes and the leading cause of end-stage renal disease. Inflammation plays a crucial role in the development and progression of DKD. Currently, only a few studies depict the landscape of infiltrating immune cells and their potential regulatory network in DKD. To gain a better understanding of the role of immune cells in the renal microenvironment, we sought to reveal the profile of infiltrating immune cells and their potential regulatory network in DKD. METHODS We obtained the transcriptomes and the corresponding clinical data of 19 DKD and 25 control samples from the Gene Expression Omnibus and Nephroseq databases, respectively. Thereafter, we conducted an analysis on the infiltrating immune cells and identified immune-related differentially expressed genes through bioinformatics. Finally, correlation analyses among immune cells, immune genes, and clinical manifestations were performed, and differentially infiltrating immune cell subsets were verified through multiplex immunofluorescence staining. RESULTS We demonstrated the landscape of infiltrating immune cells in patients with DKD and identified the top five hub immune regulatory genes (C3, IL7R, TYROBP, BMP2, and CXCL6). Three of the core genes (C3, BMP2, and CXCL6) were significantly correlated with the estimated glomerular filtration rate. Through multiplex immunofluorescence staining, we verified that macrophage numbers were remarkably elevated, whereas Treg cells were remarkably reduced in diabetic kidney tissues. Th2 cells were scarce in the kidney tissue. CONCLUSION Collectively, our findings shed light on new, possible therapeutic strategies for DKD, from an immune microenvironment perspective.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Wen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guanru Yue
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ying Hu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
5
|
Hu J, Zhang X, Ma F, Huang C, Jiang Y. LncRNA CASC2 Alleviates Renal Interstitial Inflammation and Fibrosis through MEF2C Downregulation-Induced Hinderance of M1 Macrophage Polarization. Nephron Clin Pract 2023; 148:245-263. [PMID: 38142674 DOI: 10.1159/000531919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/25/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.
Collapse
Affiliation(s)
- Jinping Hu
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Ma
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yali Jiang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Bode M, Diemer JN, Luu TV, Ehnert N, Teigeler T, Wiech T, Lindenmeyer MT, Herrnstadt GR, Bülow J, Huber TB, Tomas NM, Wenzel UO. Complement component C3 as a new target to lower albuminuria in hypertensive kidney disease. Br J Pharmacol 2023; 180:2412-2435. [PMID: 37076314 DOI: 10.1111/bph.16097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Complement activation may drive hypertension through its effects on immunity and tissue integrity. EXPERIMENTAL APPROACH We examined expression of C3, the central protein of the complement cascade, in hypertension. KEY RESULTS Increased C3 expression was found in kidney biopsies and micro-dissected glomeruli of patients with hypertensive nephropathy. Renal single cell RNA sequence data from normotensive and hypertensive patients confirmed expression of C3 in different cellular compartments of the kidney. In angiotensin II (Ang II) induced hypertension renal C3 expression was up-regulated. C3-/- mice revealed a significant lower albuminuria in the early phase of hypertension. However, no difference was found for blood pressure, renal injury (histology, glomerular filtration rate, inflammation) and cardiac injury (fibrosis, weight, gene expression) between C3-/- and wildtype mice after Ang II infusion. Also, in deoxycorticosterone acetate (DOCA) salt hypertension, a significantly lower albuminuria was found in the first weeks of hypertension in C3 deficient mice but no significant difference in renal and cardiac injury. Down-regulation of C3 by C3 targeting GalNAc (n-acetylgalactosamine) small interfering RNA (siRNA) conjugate decreased C3 in the liver by 96% and lowered albuminuria in the early phase but showed no effect on blood pressure and end-organ damage. Inhibition of complement C5 by siRNA showed no effect on albuminuria. CONCLUSION AND IMPLICATIONS Increased C3 expression is found in the kidneys of hypertensive mice and men. Genetic and therapeutic knockdown of C3 improved albuminuria in the early phase of hypertension but did not ameliorate arterial blood pressure nor renal and cardiac injury.
Collapse
Affiliation(s)
- Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Niklas Diemer
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - The Vinh Luu
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolas Ehnert
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Teresa Teigeler
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Pathology, Section Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg R Herrnstadt
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Bülow
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Caillard P, Vigneau C, Halimi JM, Hazzan M, Thervet E, Heitz M, Juillard L, Audard V, Rabant M, Hertig A, Subra JF, Vuiblet V, Guerrot D, Tamain M, Essig M, Lobbedez T, Quemeneur T, Legendre M, Ganea A, Peraldi MN, Vrtovsnik F, Daroux M, Makdassi R, Choukroun G, Titeca-Beauport D. Prognostic value of complement serum C3 level and glomerular C3 deposits in anti-glomerular basement membrane disease. Front Immunol 2023; 14:1190394. [PMID: 37475859 PMCID: PMC10354545 DOI: 10.3389/fimmu.2023.1190394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objectives Activation of the complement system is involved in the pathogenesis of anti-glomerular basement membrane (anti-GBM) disease. Glomerular deposits of complement 3 (C3) are often detected on kidney biopsies. The primary objective of this study was to analyze the prognostic value of the serum C3 level and the presence of C3 glomerular deposits in patients with anti-GBM disease. Methods We conducted a retrospective cohort study of 150 single-positive patients with anti-GBM disease diagnosed between 1997 and 2017. Patients were categorized according to the serum C3 level (forming a low C3 (C3<1.23 g/L) and a high C3 (C3≥1.23 g/L) groups) and positivity for C3 glomerular staining (forming the C3+ and C3- groups). The main outcomes were kidney survival and patient survival. Results Of the 150 patients included, 89 (65%) were men. The median [interquartile range (IQR)] age was 45 [26-64]. At diagnosis, kidney involvement was characterized by a median [IQR] peak serum creatinine (SCr) level of 578 [298-977] µmol/L, and 106 (71%) patients required dialysis. Patients in the low C3 group (72 patients) had more severe kidney disease at presentation, as characterized by higher prevalences of oligoanuria, peak SCr ≥500 µmol/L (69%, vs. 53% in the high C3 group; p=0.03), nephrotic syndrome (42%, vs. 24%, respectively; p=0.02) and fibrous forms on the kidney biopsy (21%, vs. 8%, respectively; p=0.04). Similarly, we observed a negative association between the presence of C3 glomerular deposits (in 52 (41%) patients) and the prevalence of cellular forms (83%, vs. 58% in the C3- group; p=0.003) and acute tubulo-interstitial lesions (60%, vs. 36% in the C3- group; p=0.007). When considering patients not on dialysis at diagnosis, the kidney survival rate at 12 months was poorer in the C3+ group (50% [25-76], vs. 91% [78-100] in the C3- group; p=0.01), with a hazard ratio [95% confidence interval] of 5.71 [1.13-28.85] (p=0.04, after adjusting for SCr). Conclusion In patients with anti-GBM disease, a low serum C3 level and the presence of C3 glomerular deposits were associated with more severe disease and histological kidney involvement at diagnosis. In patients not on dialysis at diagnosis, the presence of C3 deposits was associated with worse kidney survival.
Collapse
Affiliation(s)
- Pauline Caillard
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| | - Cécile Vigneau
- Rennes University Hospital, Inserm, Ecole des hautes études en santé publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jean-Michel Halimi
- Department of Nephrology, Tours University Hospital and EA4245, University of Tours, Tours, France
| | - Marc Hazzan
- Nephrology Department, Lille University Hospital, University of Lille, UMR 995, Lille, France
| | - Eric Thervet
- Department of Nephrology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris and INSERM UMRS970, Boulogne-Billancourt, France
| | - Morgane Heitz
- Department of Nephrology and Dialysis, Annecy Genevois Hospital, Pringy, France
| | - Laurent Juillard
- Department of Nephrology, Edouard Herriot Hospital, Hospices Civils de Lyon, Carmen INSERM 1060 and Univ Lyon, Lyon, France
| | - Vincent Audard
- Department of Nephrology and Renal Transplantation, Reference Center-Idiopathic Nephrotic Syndrome, Henri-Mondor Hospital/Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP) Créteil, INSERMU955, Paris Est Créteil University, Créteil, France
| | - Marion Rabant
- Pathology Department, Necker University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP). Centre-Université de Paris, Paris, France
| | - Alexandre Hertig
- Department of Nephrology, Dialysis and Transplantation, Foch Hospital, Paris-Saclay University, Suresnes, France
| | - Jean-François Subra
- Department of Nephrology, Dialysis and Transplantation, University Hospital, Angers and Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), INSERM, Nantes University, Angers University, Angers, France
| | - Vincent Vuiblet
- Department of Nephrology and Renal Transplantation, Reims University Hospital, Reims, France
| | - Dominique Guerrot
- Department of Nephrology, Rouen University Hospital, Rouen and INSERM, U1096 Rouen, France
| | - Mathilde Tamain
- Department of Nephrology and Dialysis, Vichy Hospital, Vichy, France
| | - Marie Essig
- Department of Nephrology, Dialysis, and Renal Transplantation, Ambroise-Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Boulogne-Billancourt, France
| | - Thierry Lobbedez
- Department of Nephrology, Caen University Hospital, Caen, France and the French Registry of Peritoneal Dialysis, Langue Française, Pontoise, France
| | - Thomas Quemeneur
- Department of Nephrology and Internal Medicine, Valenciennes General Hospital, Valenciennes, France
| | - Mathieu Legendre
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital, Dijon, France
| | | | - Marie-Noëlle Peraldi
- Department of Nephrology, Dialysis and Renal Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre-Université de Paris, Paris, France
| | - François Vrtovsnik
- Nephrology Department, Bichat-Claude Bernard Hospital, APHP, Paris, France. Faculty of Medicine, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Maïté Daroux
- Department of Nephrology, Duchenne Hospital, Boulogne-Sur-Mer, France
| | - Raïfah Makdassi
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| | - Dimitri Titeca-Beauport
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| |
Collapse
|
8
|
Chen Y, Zee J, Janowczyk AR, Rubin J, Toro P, Lafata KJ, Mariani LH, Holzman LB, Hodgin JB, Madabhushi A, Barisoni L. Clinical Relevance of Computationally Derived Attributes of Peritubular Capillaries from Kidney Biopsies. KIDNEY360 2023; 4:648-658. [PMID: 37016482 PMCID: PMC10278770 DOI: 10.34067/kid.0000000000000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/13/2023] [Indexed: 04/06/2023]
Abstract
Key Points Computational image analysis allows for the extraction of new information from whole-slide images with potential clinical relevance. Peritubular capillary (PTC) density is decreased in areas of interstitial fibrosis and tubular atrophy when measured in interstitial fractional space. PTC shape (aspect ratio) is associated with clinical outcome in glomerular diseases. Background The association between peritubular capillary (PTC) density and disease progression has been studied in a variety of kidney diseases using immunohistochemistry. However, other PTC attributes, such as PTC shape, have not been explored yet. The recent development of computer vision techniques provides the opportunity for the quantification of PTC attributes using conventional stains and whole-slide images. Methods To explore the relationship between PTC characteristics and clinical outcome, n =280 periodic acid–Schiff-stained kidney biopsies (88 minimal change disease, 109 focal segmental glomerulosclerosis, 46 membranous nephropathy, and 37 IgA nephropathy) from the Nephrotic Syndrome Study Network digital pathology repository were computationally analyzed. A previously validated deep learning model was applied to segment cortical PTCs. Average PTC aspect ratio (PTC major to minor axis ratio), size (PTC pixels per PTC segmentation), and density (PTC pixels per unit cortical area) were computed for each biopsy. Cox proportional hazards models were used to assess associations between these PTC parameters and outcome (40% eGFR decline or kidney failure). Cortical PTC characteristics and interstitial fractional space PTC density were compared between areas of interstitial fibrosis and tubular atrophy (IFTA) and areas without IFTA. Results When normalized PTC aspect ratio was below 0.6, a 0.1, increase in normalized PTC aspect ratio was significantly associated with disease progression, with a hazard ratio (95% confidence interval) of 1.28 (1.04 to 1.59) (P = 0.019), while PTC density and size were not significantly associated with outcome. Interstitial fractional space PTC density was lower in areas of IFTA compared with non-IFTA areas. Conclusions Computational image analysis enables quantification of the status of the kidney microvasculature and the discovery of a previously unrecognized PTC biomarker (aspect ratio) of clinical outcome.
Collapse
Affiliation(s)
- Yijiang Chen
- Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, Ohio
| | - Jarcy Zee
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andrew R. Janowczyk
- Geneva University Hospitals, Pathology and Oncology Departments, Geneva, Switzerland
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Jeremy Rubin
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paula Toro
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Kyle J. Lafata
- Department of Radiology, Duke University, Durham, North Carolina
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Laura H. Mariani
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Lawrence B. Holzman
- Department of Medicine, Renal-Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Anant Madabhushi
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Laura Barisoni
- Department of Pathology, Division of AI and Computational Pathology, Duke University, Durham, North Carolina
- Department of Medicine, Division of Nephrology, Duke University, Durham, North Carolina
| |
Collapse
|
9
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
10
|
Xu Y, Sun Y, Yin R, Dong T, Song K, Fang Y, Liu G, Shen B, Li H. Differential expression of plasma exosomal microRNA in severe acute pancreatitis. Front Pharmacol 2022; 13:980930. [PMID: 36249739 PMCID: PMC9554001 DOI: 10.3389/fphar.2022.980930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022] Open
Abstract
The incidence rate of acute pancreatitis is increasing, and severe acute pancreatitis (SAP) is associated with a high mortality rate, which may be reduced by a deeper understanding of its pathogenesis. In addition, an early determination of the severity of acute pancreatitis remains challenging. The aim of this study was to match potential biomarkers for early identification and monitoring of acute pancreatitis and to shed light on the underlying pathogenic mechanisms of SAP. The expression levels of plasma exosomal microRNA (miRNA) in patients with pancreatitis have been associated with the disease. Thus, this study compared the expression levels of exosomal miRNA in plasma collected from four patients with SAP and from four healthy participants. Analyses of the miRNA expression profiles indicated that three previously unreported miRNAs were differentially expressed in the patient group: Novel1, which was downregulated, and Novel2 and Novel3, which were upregulated. The miRNA target genes for those novel miRNAs were predicted using Metascape. Of these miRNA target genes, those that were also differentially expressed at different time points after disease induction in a mouse model of acute pancreatitis were determined. The gene for complement component 3 (C3), a target gene of Novel3, was the only gene matched in both the patient group and the mouse model. C3 appeared at most of the time points assessed after induction of acute pancreatitis in mice. These findings are foundational evidence that C3 warrants further study as an early biomarker of SAP, for investigating underlying pathogenic mechanisms of SAP, and as a therapeutic target for ameliorating the occurrence or development of SAP.
Collapse
Affiliation(s)
- Yansong Xu
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuansong Sun
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ran Yin
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tao Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kai Song
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
- *Correspondence: Guodong Liu, ; Bing Shen, ; He Li,
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, Anhui, China
- *Correspondence: Guodong Liu, ; Bing Shen, ; He Li,
| | - He Li
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Guodong Liu, ; Bing Shen, ; He Li,
| |
Collapse
|
11
|
You D, Weng M, Wu X, Nie K, Cui J, Chen Y, Yang L, Wan J. C3aR contributes to unilateral ureteral obstruction-induced renal interstitial fibrosis via the activation of the NLRP3 inflammasome. Life Sci 2022; 308:120905. [PMID: 36041502 DOI: 10.1016/j.lfs.2022.120905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
AIMS Complement component 3a and its receptor (C3a/C3aR) and nucleotide-binding oligomerization domain-like receptor protein-3 (NLRP3) inflammasome are involved in the pathogenesis of renal interstitial fibrosis (RIF). However, the mechanisms have not been clearly illuminated. This study aimed to elucidate the roles of C3aR and the NLRP3 inflammasome involved in unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MAIN METHODS UUO models were established using male C57BL/6 wild-type (WT) mice and age-matched C3aR-deficient mice. MCC950, an inhibitor of the NLRP3 inflammasome, was intraperitoneally injected in UUO mice. Blood samples were collected to quantify serum creatinine and urea. Kidney samples were collected for hematoxylin-eosin (HE), Masson, and immunohistochemistry staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, and Western blotting. KEY FINDINGS Renal function, renal fibrosis, and renal inflammation in WT mice were aggravated with longer periods of UUO. C3aR deficiency improved renal function and attenuated renal fibrosis and the activation of the NLRP3 inflammasome in UUO mice. Renal function and renal fibrosis in UUO mice were attenuated after NLRP3 inflammasome inhibition; however, the expression of C3aR did not change. SIGNIFICANCE Our data revealed that C3aR may aggravate RIF by regulating the activation of the NLRP3 inflammasome (particularly regulating inflammasome assembly) in renal tubular epithelial cells in the UUO model.
Collapse
Affiliation(s)
- Danyu You
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiaoting Wu
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jiong Cui
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Liyan Yang
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
12
|
Quaglia M, Merlotti G, Colombatto A, Bruno S, Stasi A, Franzin R, Castellano G, Grossini E, Fanelli V, Cantaluppi V. Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Front Immunol 2022; 13:849891. [PMID: 35359949 PMCID: PMC8960117 DOI: 10.3389/fimmu.2022.849891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Andrea Colombatto
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Kidney Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vito Fanelli
- Department of Anesthesiology and Intensive Care, University of Torino, Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
13
|
Luo Y, Tao T, Tao R, Huang G, Wu S. Single-Cell Transcriptome Comparison of Bladder Cancer Reveals Its Ecosystem. Front Oncol 2022; 12:818147. [PMID: 35265520 PMCID: PMC8899594 DOI: 10.3389/fonc.2022.818147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder carcinoma (BLCA) is a highly heterogeneous disease, and the underlying biological behavior is still poorly understood. Here, single-cell RNA sequencing was performed on four clinical samples of different grades from three patients, and 26,792 cell transcriptomes were obtained revealing different tumor ecosystems. We found that N-glycan biosynthesis pathway was activated in high-grade tumor, but TNF-related pathway was activated in cystitis glandularis. The tumor microenvironment (TME) of different samples showed great heterogeneity. Notably, cystitis glandularis was dominated by T cells, low-grade and high-grade tumors by macrophages, while TME in patient with high-grade relapse by stromal cells. Our research provides single-cell transcriptome profiles of cystitis glandularis and BLCA in different clinical states, and the biological program revealed by single-cell data can be used as biomarkers related to clinical prognosis in independent cohorts.
Collapse
Affiliation(s)
- Yongxiang Luo
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Tao Tao
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Ran Tao
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Song Wu
- Institute of Urological Surgery, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Shenzhen Following Precision Medical Institute, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China.,Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2022; 43:505-519. [PMID: 33990764 PMCID: PMC8888625 DOI: 10.1038/s41401-021-00660-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Renal fibrosis contributes to progressive damage to renal structure and function. It is a common pathological process as chronic kidney disease develops into kidney failure, irrespective of diverse etiologies, and eventually leads to death. However, there are no effective drugs for renal fibrosis treatment at present. Lipid aggregation in the kidney and consequent lipotoxicity always accompany chronic kidney disease and fibrosis. Numerous studies have revealed that restoring the defective fatty acid oxidation in the kidney cells can mitigate renal fibrosis. Thus, it is an important strategy to reverse the dysfunctional lipid metabolism in the kidney, by targeting critical regulators of lipid metabolism. In this review, we highlight the potential "druggability" of lipid metabolism to ameliorate renal fibrosis and provide current pre-clinical evidence, exemplified by some representative druggable targets and several other metabolic regulators with anti-renal fibrosis roles. Then, we introduce the preliminary progress of noncoding RNAs as promising anti-renal fibrosis drug targets from the perspective of lipid metabolism. Finally, we discuss the prospects and deficiencies of drug targeting lipid reprogramming in the kidney.
Collapse
Affiliation(s)
- Yuan-yuan Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Xiao-guang Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|
15
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Macrophage Depletion Reduces Disease Pathology in Factor H-Dependent Immune Complex-Mediated Glomerulonephritis. J Immunol Res 2022; 2022:1737419. [PMID: 35097132 PMCID: PMC8794693 DOI: 10.1155/2022/1737419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 12/05/2022] Open
Abstract
Complement factor H (FH) is a key regulator of the alternative pathway of complement, in man and mouse. Earlier, our studies revealed that the absence of FH causes the C57BL6 mouse to become susceptible to chronic serum sickness (CSS) along with an increase in the renal infiltration of macrophages compared to controls. To understand if the increased recruitment of macrophages (Mϕs) to the kidney was driving inflammation and propagating injury, we examined the effect of Mϕ depletion with clodronate in FH knockout mice with CSS. Eight-week-old FHKO mice were treated with apoferritin (4 mg/mouse) for 5 wks and with either vehicle (PBS) or clodronate (50 mg/kg ip, 3 times/wk for the last 3 weeks). The administration of clodronate decreased monocytes and Mϕs in the kidneys by >80%. Kidney function assessed by BUN and albumin remained closer to normal on depletion of Mϕs. Clodronate treatment prevented the alteration in cytokines, TNFα and IL-6, and increase in gene expression of connective tissue growth factor (CTGF), TGFβ-1, matrix metalloproteinase-9 (MMP9), fibronectin, laminin, and collagen in FHKO mice with CSS (P < 0.05). Clodronate treatment led to relative protection from immune complex- (IC-) mediated disease pathology during CSS as assessed by the significantly reduced glomerular pathology (GN) and extracellular matrix. Our results suggest that complement activation is one of the mechanism that regulates the macrophage landscape and thereby fibrosis. The exact mechanism remains to be deciphered. In brief, our data shows that Mϕs play a critical role in FH-dependent ICGN and Mϕ depletion reduces disease progression.
Collapse
|
17
|
Gulleroglu K, Baskin E, Ozdemir H, Moray G, Haberal M. Clinical impact of complement deposition findings on biopsies in acute rejection episodes of pediatric renal transplant patients. Transpl Immunol 2021; 69:101466. [PMID: 34508854 DOI: 10.1016/j.trim.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Rejection is the most important problem for renal graft function and survival. Complement system plays a key role in immune responses from host to graft. It was demonstrated that complement system activation is related with renal fibrosis. We evaluate clinical impact of complement deposition findings on biopsies in acute rejection episodes of pediatric renal transplant patients. METHOD Demographics of the patients, graft functions, acute rejection episodes and graft loss were recorded from data files of 165 pediatric renal transplant patients. Findings of 98 renal biopsies were retrospectively evaluated. RESULTS Thirty three patients with kidney transplant had 44 acute rejection episodes (32 pure cellular acute rejection episodes / 1 pure humoral acute rejection episode / 11 combined acute cellular and acute humoral rejection episodes) proven by biopsy. C1q staining was positive in 7 biopsies, C3 staining in 15 biopsies and, C4d staining in 15 biopsies. 26 patients had graft fibrosis. All patients with a rejection history had a significant decrease in GFR value during follow-up. Patients who did not have fibrotic changes in first biopsy had same level of deterioration of GFR when compared with patients who had fibrotic changes in first biopsy. CONCLUSION We could not demonstrate a significant relation between complement deposition and renal fibrosis, and between complement deposition and GFR values. Our data demonstrated that graft outcomes and graft loss after acute rejection episodes cannot be predicted only with complement deposition on graft or only with graft fibrosis.
Collapse
Affiliation(s)
| | - Esra Baskin
- Baskent University Pediatric Nephrology, Ankara, Turkey
| | | | - Gokhan Moray
- Baskent University General Surgery, Ankara, Turkey
| | | |
Collapse
|
18
|
Yan H, Xu J, Xu Z, Yang B, Luo P, He Q. Defining therapeutic targets for renal fibrosis: Exploiting the biology of pathogenesis. Biomed Pharmacother 2021; 143:112115. [PMID: 34488081 DOI: 10.1016/j.biopha.2021.112115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023] Open
Abstract
Renal fibrosis is a failed wound-healing process of the kidney tissue after chronic, sustained injury, which is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), regardless of cause. However, there is a lack of effective treatment specifically targeting against renal fibrosis per se to date. The main pathological feature of renal fibrosis is the massive activation and proliferation of renal fibroblasts and the excessive synthesis and secretion of extracellular matrix (ECM) deposited in the renal interstitium, leading to structural damage, impairment of renal function, and eventually end-stage renal disease. In this review, we summarize recent advancements regarding the participation and interaction of many types of kidney residents and infiltrated cells during renal fibrosis, attempt to comprehensively discuss the mechanism of renal fibrosis from the cellular level and conclude by highlighting novel therapeutic targets and approaches for development of new treatments for patients with renal fibrosis.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Wang Y, Zhao M, Zhang Y. Identification of fibronectin 1 (FN1) and complement component 3 (C3) as immune infiltration-related biomarkers for diabetic nephropathy using integrated bioinformatic analysis. Bioengineered 2021; 12:5386-5401. [PMID: 34424825 PMCID: PMC8806822 DOI: 10.1080/21655979.2021.1960766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immune cell infiltration (ICI) plays a pivotal role in the development of diabetic nephropathy (DN). Evidence suggests that immune-related genes play an important role in the initiation of inflammation and the recruitment of immune cells. However, the underlying mechanisms and immune-related biomarkers in DN have not been elucidated. Therefore, this study aimed to explore immune-related biomarkers in DN and the underlying mechanisms using bioinformatic approaches. In this study, four DN glomerular datasets were downloaded, merged, and divided into training and test cohorts. First, we identified 55 differentially expressed immune-related genes; their biological functions were mainly enriched in leukocyte chemotaxis and neutrophil migration. The CIBERSORT algorithm was then used to evaluate the infiltrated immune cells; macrophages M1/M2, T cells CD8, and resting mast cells were strongly associated with DN. The ICI-related gene modules as well as 25 candidate hub genes were identified to construct a protein-protein interactive network and conduct molecular complex detection using the GOSemSim algorithm. Consequently, FN1, C3, and VEGFC were identified as immune-related biomarkers in DN, and a related transcription factor-miRNA-target network was constructed. Receiver operating characteristic curve analysis was estimated in the test cohort; FN1 and C3 had large area under the curve values (0.837 and 0.824, respectively). Clinical validation showed that FN1 and C3 were negatively related to the glomerular filtration rate in patients with DN. Six potential therapeutic small molecule compounds, such as calyculin, phenamil, and clofazimine, were discovered in the connectivity map. In conclusion, FN1 and C3 are immune-related biomarkers of DN.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Nephrology, Zhejiang Aged Care Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Xiong Z, Wang Q, Li W, Huang L, Zhang J, Zhu J, Xie B, Wang S, Kuang H, Lin X, Lee C, Kumar A, Li X. Platelet-Derived Growth Factor-D Activates Complement System to Propagate Macrophage Polarization and Neovascularization. Front Cell Dev Biol 2021; 9:686886. [PMID: 34150781 PMCID: PMC8207142 DOI: 10.3389/fcell.2021.686886] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) is highly expressed in immune cells. However, the potential role of PDGF-D in immune system remains thus far unclear. Here, we reveal a novel function of PDGF-D in activating both classical and alternative complement pathways that markedly increase chemokine and cytokine responses to promote macrophage polarization. Pharmacological targeting of the complement C3a receptor using SB290157 alleviated PDGF-D-induced neuroinflammation by blocking macrophage polarization and inhibited pathological choroidal neovascularization. Our study thus suggests that therapeutic strategies targeting both PDGF-D and the complement system may open up new possibilities for the treatment of neovascular diseases.
Collapse
Affiliation(s)
- Zhen Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wanhong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Juanhua Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Li S, Wang F, Sun D. The renal microcirculation in chronic kidney disease: novel diagnostic methods and therapeutic perspectives. Cell Biosci 2021; 11:90. [PMID: 34001267 PMCID: PMC8130426 DOI: 10.1186/s13578-021-00606-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide and is characterized by fibrotic processes. Understanding the cellular and molecular mechanisms underpinning renal fibrosis is critical to the development of new therapeutics. Microvascular injury is considered an important contributor to renal progressive diseases. Vascular endothelium plays a significant role in responding to physical and chemical signals by generating factors that help maintain normal vascular tone, inhibit leukocyte adhesion and platelet aggregation, and suppress smooth muscle cell proliferation. Loss of the rich capillary network results in endothelial dysfunction, hypoxia, and inflammatory and oxidative effects and further leads to the imbalance of pro- and antiangiogenic factors, endothelial cell apoptosis and endothelial-mesenchymal transition. New techniques, including both invasive and noninvasive techniques, offer multiple methods to observe and monitor renal microcirculation and guide targeted therapeutic strategies. A better understanding of the role of endothelium in CKD will help in the development of effective interventions for renal microcirculation improvement. This review focuses on the role of microvascular injury in CKD, the methods to detect microvessels and the novel treatments to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Fei Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, China. .,Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
22
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Chaumonnot K, Masson S, Sikner H, Bouchard A, Baverel V, Bellaye PS, Collin B, Garrido C, Kohli E. The HSP GRP94 interacts with macrophage intracellular complement C3 and impacts M2 profile during ER stress. Cell Death Dis 2021; 12:114. [PMID: 33483465 PMCID: PMC7822929 DOI: 10.1038/s41419-020-03288-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The role of GRP94, an endoplasmic reticulum (ER) stress protein with both pro- and anti-inflammatory functions, has not been investigated in macrophages during ER stress, whereas ER stress has been reported in many diseases involving macrophages. In this work, we studied GRP94 in M1/LPS + IFNγ and M2/IL-4 primary macrophages derived from human monocytes (isolated from buffy coats), in basal and ER stress conditions induced by thapsigargin (Tg), an inducer of ER calcium depletion and tunicamycin (Tm), an inhibitor of N-glycosylation. We found that GRP94 was expressed on the membrane of M2 but not M1 macrophages. In M2, Tg, but not Tm, while decreased GRP94 content in the membrane, it induced its secretion. This correlated with the induction of a pro-inflammatory profile, which was dependent on the UPR IRE1α arm activation and on a functional GRP94. As we previously reported that GRP94 associated with complement C3 at the extracellular level, we analyzed C3 and confirmed GRP94-C3 interaction in our experimental model. Further, Tg increased this interaction and, in these conditions, C3b and cathepsin L were detected in the extracellular medium where GRP94 co-immunoprecipitated with C3 and C3b. Finally, we showed that the C3b inactivated fragment, iC3b, only present on non-stressed M2, depended on functional GRP94, making both GRP94 and iC3b potential markers of M2 cells. In conclusion, our results show that GRP94 is co-secreted with C3 under ER stress conditions which may facilitate its cleavage by cathepsin L, thus contributing to the pro-inflammatory profile observed in stressed M2 macrophages.
Collapse
Affiliation(s)
- Killian Chaumonnot
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Sophie Masson
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Hugo Sikner
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Alexanne Bouchard
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Valentin Baverel
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France
| | - Pierre-Simon Bellaye
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Bertrand Collin
- UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France.,UMR uB/CNRS 6302, Institut de Chimie Moléculaire, Dijon, France
| | - Carmen Garrido
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France.,Centre anti-cancéreux Georges François Leclerc, Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Team 3 HSP-Pathies, labellisée Ligue Nationale contre le Cancer and Laboratoire d'Excellence LipSTIC, Dijon, France. .,UFR des Sciences de Santé, Université de Bourgogne, Dijon, France. .,CHU, Dijon, France.
| |
Collapse
|
24
|
Komeno M, Pang X, Shimizu A, Molla MR, Yasuda-Yamahara M, Kume S, Rahman NIA, Soh JEC, Nguyen LKC, Ahmat Amin MKB, Kokami N, Sato A, Asano Y, Maegawa H, Ogita H. Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. J Biol Chem 2021; 296:100761. [PMID: 33971198 PMCID: PMC8167299 DOI: 10.1016/j.jbc.2021.100761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.
Collapse
Affiliation(s)
- Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Xiaoling Pang
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan; Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Md Rasel Molla
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Nor Idayu A Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Nao Kokami
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
25
|
Boudhabhay I, Poillerat V, Grunenwald A, Torset C, Leon J, Daugan MV, Lucibello F, El Karoui K, Ydee A, Chauvet S, Girardie P, Sacks S, Farrar CA, Garred P, Berthaud R, Le Quintrec M, Rabant M, de Lonlay P, Rambaud C, Gnemmi V, Fremeaux-Bacchi V, Frimat M, Roumenina LT. Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis. Kidney Int 2020; 99:581-597. [PMID: 33137339 DOI: 10.1016/j.kint.2020.09.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Rhabdomyolysis is a life-threatening condition caused by skeletal muscle damage with acute kidney injury being the main complication dramatically worsening the prognosis. Specific treatment for rhabdomyolysis-induced acute kidney injury is lacking and the mechanisms of the injury are unclear. To clarify this, we studied intra-kidney complement activation (C3d and C5b-9 deposits) in tubules and vessels of patients and mice with rhabdomyolysis-induced acute kidney injury. The lectin complement pathway was found to be activated in the kidney, likely via an abnormal pattern of Fut2-dependent cell fucosylation, recognized by the pattern recognition molecule collectin-11 and this proceeded in a C4-independent, bypass manner. Concomitantly, myoglobin-derived heme activated the alternative pathway. Complement deposition and acute kidney injury were attenuated by pre-treatment with the heme scavenger hemopexin. This indicates that complement was activated in a unique double-trigger mechanism, via the alternative and lectin pathways. The direct pathological role of complement was demonstrated by the preservation of kidney function in C3 knockout mice after the induction of rhabdomyolysis. The transcriptomic signature for rhabdomyolysis-induced acute kidney injury included a strong inflammatory and apoptotic component, which were C3/complement-dependent, as they were normalized in C3 knockout mice. The intra-kidney macrophage population expressed a complement-sensitive phenotype, overexpressing CD11b and C5aR1. Thus, our results demonstrate a direct pathological role of heme and complement in rhabdomyolysis-induced acute kidney injury. Hence, heme scavenging and complement inhibition represent promising therapeutic strategies.
Collapse
Affiliation(s)
- Idris Boudhabhay
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Victoria Poillerat
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Carine Torset
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Juliette Leon
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Marie V Daugan
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Francesca Lucibello
- Institut National de la Santé et de la Recherche Médicale U932, Paris Sciences et Lettres University, Institut Curie, Paris, France
| | - Khalil El Karoui
- Service de Néphrologie et Transplantation Rénale, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, Paris, France
| | - Amandine Ydee
- Pathology Department, Lille University Hospital (Centre Hospitalier Universitaire), Pathology Institute, Institut National de la Santé et de la Recherche Médicale UMR-S1172 Lille, JPARC-Jean-Pierre Aubert Research Center, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Lille University, Centre Hospitalier Universitaire Lille, Lille, France
| | - Sophie Chauvet
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France; Department of Nephrology, Georges Pompidou European Hospital, Paris, France
| | - Patrick Girardie
- Intensive Care Department, Université de Lille, Centre Hospitalier Universitaire Lille, Lille, France
| | - Steven Sacks
- Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Conrad A Farrar
- Medical Research Council Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, University of Copenhagen, Copenhagen, Denmark
| | - Romain Berthaud
- Department of Pediatric Nephrology, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Moglie Le Quintrec
- Department of Nephrology and Kidney Transplantation, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Marion Rabant
- Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Pascale de Lonlay
- Reference Centre for Metabolic Diseases, Necker-Enfants Malades Hospital, Imagine Institute, Université Paris-Descartes, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Caroline Rambaud
- Service Médecine Légale, Hôpital Raymond Poincaré, Assistance Publique - Hôpitaux de Paris, Garches, France
| | - Viviane Gnemmi
- Pathology Department, Lille University Hospital (Centre Hospitalier Universitaire), Pathology Institute, Institut National de la Santé et de la Recherche Médicale UMR-S1172 Lille, JPARC-Jean-Pierre Aubert Research Center, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Lille University, Centre Hospitalier Universitaire Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France; Laboratory of Immunology, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Marie Frimat
- University of Lille, U995-LIRIC-Lille Inflammation Research International Center, Lille, France; Department of Nephrology, Lille University Hospital, Centre Hospitalier Universitaire, Lille, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
26
|
Laumonnier Y, Karsten CM, Köhl G, Köhl J. Characterization of Anaphylatoxin Receptor Expression and C3a/C5a Functions in Anaphylatoxin Receptor Reporter Mice. ACTA ACUST UNITED AC 2020; 130:e100. [PMID: 32710701 DOI: 10.1002/cpim.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anaphylatoxins (AT) C3a and C5a are effector molecules of C3 and C5 exerting multiple biologic functions through binding and activation of their cognate G protein-coupled receptors. C3a interacts with the C3a receptor (C3aR), whereas C5a and its primary degradation product C5a-desArg engage C5aR1 and C5aR2. In the past, analysis of AT expression has been hampered by cross reaction of antibodies designed to recognize the different AT receptors. Furthermore, assessment of effects mediated by cell-specific activation has been difficult. Here, floxed AT receptor reporter mice are described as tools to monitor AT receptor expression in cells and tissues and to study the functions of C3a and C5a by cell-specific deletion of their cognate AT receptors. © 2020 The Authors. Basic Protocol 1: Genotyping of floxed GFP-C5aR1 knockin mice Support Protocol 1: Genotyping of LysMcre-C5ar1-/- mice Basic Protocol 2: Genotyping of floxed tdTomato-C3aR and -tdTomato-C5aR2 knockin mice Support Protocol 2: Preparation of genomic DNA Basic Protocol 3: Determination of C5aR1, C5aR2, and C3aR expression using floxed AT receptor reporter mice Support Protocol 3: Determination of C3aR expression using a C3aR-specific antibody Support Protocol 4: Determination of C5aR1, C5aR2, and C3aR mRNA expression in floxed GFP-C5aR1, floxed tdTomato-C5aR2 or -tdTomato C3aR positive cells Basic Protocol 4: Analysis of C5aR1-driven ERK1/2 phosphorylation in GFP-C5aR1+ cells Basic Protocol 5: Assessment of C3aR functions in cells obtained from floxed tdTomato-C3aR knockin mice- Determination of C3aR internalization Alternate Protocol: C3a-induced increase in intracellular Ca2+ Basic Protocol 6: C5aR2-driven IFN-γ production from NK cells Support Protocol 5: Isolation of splenic NK cells by FACS.
Collapse
Affiliation(s)
- Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Gabriele Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
27
|
Huang S, Wang X, Sun Y, Lu X, Jiang W, Chen Z, Huang Y, Chi P. TMT-labelled quantitative proteomic analysis to identify the proteins underlying radiation-induced colorectal fibrosis in rats. J Proteomics 2020; 223:103801. [PMID: 32376500 DOI: 10.1016/j.jprot.2020.103801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
28
|
Post-Ischemic Renal Fibrosis Progression Is Halted by Delayed Contralateral Nephrectomy: The Involvement of Macrophage Activation. Int J Mol Sci 2020; 21:ijms21113825. [PMID: 32481551 PMCID: PMC7312122 DOI: 10.3390/ijms21113825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Successful treatment of acute kidney injury (AKI)-induced chronic kidney disease (CKD) is unresolved. We aimed to characterize the time-course of changes after contralateral nephrectomy (Nx) in a model of unilateral ischemic AKI-induced CKD with good translational utility. (2) Methods: Severe (30 min) left renal ischemia-reperfusion injury (IRI) or sham operation (S) was performed in male Naval Medical Research Institute (NMRI) mice followed by Nx or S one week later. Expression of proinflammatory, oxidative stress, injury and fibrotic markers was evaluated by RT-qPCR. (3) Results: Upon Nx, the injured kidney hardly functioned for three days, but it gradually regained function until day 14 to 21, as demonstrated by the plasma urea. Functional recovery led to a drastic reduction in inflammatory infiltration by macrophages and by decreases in macrophage chemoattractant protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) mRNA and most injury markers. However, without Nx, a marked upregulation of proinflammatory (TNF-α, IL-6, MCP-1 and complement-3 (C3)); oxidative stress (nuclear factor erythroid 2-related factor 2, NRF2) and fibrosis (collagen-1a1 (Col1a1) and fibronectin-1 (FN1)) genes perpetuated, and the injured kidney became completely fibrotic. Contralateral Nx delayed the development of renal failure up to 20 weeks. (4) Conclusion: Our results suggest that macrophage activation is involved in postischemic renal fibrosis, and it is drastically suppressed by contralateral nephrectomy ameliorating progression.
Collapse
|
29
|
Kanno Y, Shu E, Niwa H, Kanoh H, Seishima M. Alternatively activated macrophages are associated with the α2AP production that occurs with the development of dermal fibrosis : The role of alternatively activated macrophages on the development of fibrosis. Arthritis Res Ther 2020; 22:76. [PMID: 32272967 PMCID: PMC7146905 DOI: 10.1186/s13075-020-02159-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Fibrotic diseases are characterized by tissue overgrowth, hardening, and/or scarring because of the excessive production, deposition, and contraction of the extracellular matrix (ECM). However, the detailed mechanisms underlying these disorders remain unclear. It was recently reported that α2-antiplasmin (α2AP) is elevated in fibrotic tissue and that it is associated with the development of fibrosis. In the present study, we examined the mechanism underlying the production of α2AP on the development of fibrosis. Methods To clarify the mechanism underlying the production of α2AP on the development of fibrosis, we focused on high-mobility group box 1 (HMGB1), which is associated with the development of fibrosis. The mouse model of bleomycin-induced fibrosis was used to evaluate the production of α2AP on the development of fibrosis. Results We found that HMGB1 induced the production of α2AP through receptor for advanced glycation end products (RAGE) in fibroblasts. Next, we showed that macrophage reduction by a macrophage-depleting agent, clodronate, attenuated the progression of fibrosis and the production of α2AP and HMGB1 in the bleomycin-induced mice. We also showed that IL-4-stimulated alternatively activated macrophages induced the production of HMGB1, that IL-4-stimulated alternatively activated macrophage conditioned media (CM) induced pro-fibrotic changes and α2AP production, and that the inhibition of HMGB1 and RAGE attenuated these effects in fibroblasts. Furthermore, the blockade of IL-4 signaling by IL-4Rα neutralizing antibodies attenuated the progression of fibrosis and the production of α2AP and HMGB1 in the bleomycin-induced mice. Conclusion These findings suggest that alternatively activated macrophage-derived HMGB1 induced the production of α2AP through RAGE and that these effects are associated with the development of fibrosis. Our findings may provide a clinical strategy for managing fibrotic disorders.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto, 610-0395, Japan. .,Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - En Shu
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirofumi Niwa
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|