1
|
Genetic resistance to DEHP-induced transgenerational endocrine disruption. PLoS One 2019; 14:e0208371. [PMID: 31181066 PMCID: PMC6557477 DOI: 10.1371/journal.pone.0208371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Di(2-ethylhexyl)phthalate (DEHP) interferes with sex hormones signaling pathways (SHP). C57BL/6J mice prenatally exposed to 300 mg/kg/day DEHP develop a testicular dysgenesis syndrome (TDS) at adulthood, but similarly-exposed FVB/N mice are not affected. Here we aim to understand the reasons behind this drastic difference that should depend on the genome of the strain. In both backgrounds, pregnant female mice received per os either DEHP or corn oil vehicle and the male filiations were examined. Computer-assisted sperm analysis showed a DEHP-induced decreased sperm count and velocities in C57BL/6J. Sperm RNA sequencing experiments resulted in the identification of the 62 most differentially expressed RNAs. These RNAs, mainly regulated by hormones, produced strain-specific transcriptional responses to prenatal exposure to DEHP; a pool of RNAs was increased in FVB, another pool of RNAs was decreased in C57BL/6J. In FVB/N, analysis of non-synonymous single nucleotide polymorphisms (SNP) impacting SHP identified rs387782768 and rs29315913 respectively associated with absence of the Forkhead Box A3 (Foxa3) RNA and increased expression of estrogen receptor 1 variant 4 (NM_001302533) RNA. Analysis of the role of SNPs modifying SHP binding sites in function of strain-specific responses to DEHP revealed a DEHP-resistance allele in FVB/N containing an additional FOXA1-3 binding site at rs30973633 and four DEHP-induced beta-defensins (Defb42, Defb30, Defb47 and Defb48). A DEHP-susceptibility allele in C57BL/6J contained five SNPs (rs28279710, rs32977910, rs46648903, rs46677594 and rs48287999) affecting SHP and six genes (Svs2, Svs3b, Svs4, Svs3a, Svs6 and Svs5) epigenetically silenced by DEHP. Finally, targeted experiments confirmed increased methylation in the Svs3ab promoter with decreased SEMG2 persisting across generations, providing a molecular explanation for the transgenerational sperm velocity decrease found in C57BL/6J after DEHP exposure. We conclude that the existence of SNP-dependent mechanisms in FVB/N inbred mice may confer resistance to transgenerational endocrine disruption.
Collapse
|
2
|
Rubio-Aliaga I, Wagner CA. Regulation and function of the SLC38A3/SNAT3 glutamine transporter. Channels (Austin) 2016; 10:440-52. [PMID: 27362266 DOI: 10.1080/19336950.2016.1207024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Isabel Rubio-Aliaga
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| | - Carsten A Wagner
- a Institute of Physiology, the National Center for Competence in Research NCCR Kidney, University of Zurich , Zurich , Switzerland
| |
Collapse
|
3
|
Esche J, Shi L, Sánchez-Guijo A, Hartmann MF, Wudy SA, Remer T. Higher diet-dependent renal acid load associates with higher glucocorticoid secretion and potentially bioactive free glucocorticoids in healthy children. Kidney Int 2016; 90:325-333. [PMID: 27165611 DOI: 10.1016/j.kint.2016.02.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022]
Abstract
Metabolic acidosis induces elevated glucocorticoid (GC) levels. However, the influence of less strong daily acid loads on GCs is largely unexplored. To investigate this, we studied whether higher acid loads in children, fully within the normal range of habitual diets, associate with endogenous GCs. In a specific quasi-experimental design, we examined 200 6- to 10-year-old healthy participants of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) Study equally divided to either high or low 24-hour renal net acid excretion. Major urinary GC metabolites were analyzed by gas chromatography-mass spectrometry to assess daily adrenal GC secretion and metabolites of tissue cortisol catabolism (6β-hydroxycortisol and 20α-dihydrocortisol). Liquid chromatography-mass spectrometry was used to quantify urinary free cortisol and cortisone. After confounder adjustment, significant positive associations were unmasked for urinary potential renal acid load and net acid excretion with adrenal GC secretion, free cortisone, free cortisone plus cortisol, 6β-hydroxycortisol, and 20α-dihydrocortisol. An inverse association emerged for an enzymatic marker (5β-reductase) of irreversible GC inactivation. Our data suggest that existing moderate elevations in diet-dependent acid loads suffice to raise GCs and affect cortisol metabolism. Thus, potential detrimental effects of high acid loading appear to be mediated, in part, by increased GC activity via increased GC secretion and/or reduced GC inactivation. Higher cortisone levels, directly available for intracrine activation to cortisol may play a special role.
Collapse
Affiliation(s)
- Jonas Esche
- Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, DONALD Study Center, Dortmund, Germany
| | - Lijie Shi
- Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, DONALD Study Center, Dortmund, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - Thomas Remer
- Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, DONALD Study Center, Dortmund, Germany.
| |
Collapse
|
4
|
The Glutamine Transporters and Their Role in the Glutamate/GABA-Glutamine Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:223-257. [PMID: 27885631 DOI: 10.1007/978-3-319-45096-4_8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glutamine is a key amino acid in the CNS, playing an important role in the glutamate/GABA-glutamine cycle (GGC). In the GGC, glutamine is transferred from astrocytes to neurons, where it will replenish the inhibitory and excitatory neurotransmitter pools. Different transporters participate in this neural communication, i.e., the transporters responsible for glutamine efflux from astrocytes and influx into the neurons, such as the members of the SNAT, LAT, y+LAT, and ASC families of transporters. The SNAT family consists of the transporter isoforms SNAT3 and SNAT5 that are related to efflux from the astrocytic compartment, and SNAT1 and SNAT2 that are associated with glutamine uptake into the neuronal compartment. The isoforms SNAT7 and SNAT8 do not have their role completely understood, but they likely also participate in the GGC. The isoforms LAT2 and y+LAT2 facilitate the exchange of neutral amino acids and cationic amino acids (y+LAT2 isoform) and have been associated with glutamine efflux from astrocytes. ASCT2 is a Na+-dependent antiporter, the participation of which in the GGC also remains to be better characterized. All these isoforms are tightly regulated by transcriptional and translational mechanisms, which are induced by several determinants such as amino acid deprivation, hormones, pH, and the activity of different signaling pathways. Dysfunctional glutamine transporter activity has been associated with the pathophysiological mechanisms of certain neurologic diseases, such as Hepatic Encephalopathy and Manganism. However, there might also be other neuropathological conditions associated with an altered GGC, in which glutamine transporters are dysfunctional. Hence, it appears to be of critical importance that the physiological and pathological aspects of glutamine transporters are thoroughly investigated.
Collapse
|
5
|
Weiner ID, Mitch WE, Sands JM. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion. Clin J Am Soc Nephrol 2015; 10:1444-58. [PMID: 25078422 PMCID: PMC4527031 DOI: 10.2215/cjn.10311013] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida; Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| | - William E Mitch
- Nephrology Division, Baylor College of Medicine, Houston, Texas; and
| | - Jeff M Sands
- Nephrology Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
6
|
Balkrishna S, Bröer A, Welford SM, Hatzoglou M, Bröer S. Expression of glutamine transporter Slc38a3 (SNAT3) during acidosis is mediated by a different mechanism than tissue-specific expression. Cell Physiol Biochem 2014; 33:1591-606. [PMID: 24854847 PMCID: PMC4424794 DOI: 10.1159/000358722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 02/04/2023] Open
Abstract
Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene.
Collapse
Affiliation(s)
- Sarojini Balkrishna
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
7
|
Altintas MM, Moriwaki K, Wei C, Möller CC, Flesche J, Li J, Yaddanapudi S, Faridi MH, Gödel M, Huber TB, Preston RA, Jiang JX, Kerjaschki D, Sever S, Reiser J. Reduction of proteinuria through podocyte alkalinization. J Biol Chem 2014; 289:17454-67. [PMID: 24817115 DOI: 10.1074/jbc.m114.568998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi.
Collapse
Affiliation(s)
- Mehmet M Altintas
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Kumiko Moriwaki
- the Department of Medicine, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Changli Wei
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Clemens C Möller
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jan Flesche
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jing Li
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Suma Yaddanapudi
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Mohd Hafeez Faridi
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035
| | - Markus Gödel
- the Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Tobias B Huber
- the Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany, the BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs University, 79106 Freiburg, Germany
| | - Richard A Preston
- the Department of Medicine, Division of Clinical Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Jean X Jiang
- the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229, and
| | - Dontscho Kerjaschki
- the Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sanja Sever
- the Division of Nephrology and Program in Glomerular Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129
| | - Jochen Reiser
- From the Department of Medicine, Rush University Medical Center, Chicago, Illinois 60035,
| |
Collapse
|
8
|
The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch 2013; 466:155-72. [PMID: 24193407 DOI: 10.1007/s00424-013-1393-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/16/2013] [Accepted: 10/20/2013] [Indexed: 12/13/2022]
Abstract
Transporters of the SLC38 family are found in all cell types of the body. They mediate Na(+)-dependent net uptake and efflux of small neutral amino acids. As a result they are particularly expressed in cells that grow actively, or in cells that carry out significant amino acid metabolism, such as liver, kidney and brain. SLC38 transporters occur in membranes that face intercellular space or blood vessels, but do not occur in the apical membrane of absorptive epithelia. In the placenta, they play a significant role in the transfer of amino acids to the foetus. Members of the SLC38 family are highly regulated in response to amino acid depletion, hypertonicity and hormonal stimuli. SLC38 transporters play an important role in amino acid signalling and have been proposed to act as transceptors independent of their transport function. The structure of SLC38 transporters is characterised by the 5 + 5 inverted repeat fold, which is observed in a wide variety of transport proteins.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW We consider recent advances in epithelial amino acid transport physiology and our understanding of the functioning of amino acid transporters as sensors, as well as carriers, of tissue nutrient supplies. RECENT FINDINGS Gut hormones (e.g. leptin) may regulate intestinal amino acid transporter activity by a variety of mechanisms, although the overall functional significance of such regulation is not yet fully understood. Important functional interactions between amino acid transporters and nutrient-signalling pathways which regulate metabolism [e.g. the mammalian target of rapamycin (mTOR)C1 pathway which promotes cell growth] have been revealed in recent studies. Amino acid transporters on endosomal (e.g. lysosomal) membranes may be of unexpected significance as intracellular nutrient sensors. It is also now evident that certain amino acid transporters may have dual receptor-transporter functions and act as 'transceptors' to sense amino acid availability upstream of signal pathways. SUMMARY Increased knowledge on the timescale of the amino acid sensor-signal-effector process(es) should help in the optimization of protein-feeding regimes to gain maximum anabolic effect. New opportunities for nutritional therapy include targeting of amino acid transceptors to promote protein-anabolic signals and mechanisms up-regulating amino acid transporter expression to improve absorptive capacity for nutrients.
Collapse
Affiliation(s)
- Nadège Poncet
- Division of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, UK
| | | |
Collapse
|
10
|
Effects of metabolic acidosis on expression levels of renal drug transporters. Pharm Res 2010; 28:1023-30. [PMID: 21161335 DOI: 10.1007/s11095-010-0348-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/08/2010] [Indexed: 01/11/2023]
Abstract
PURPOSE In the renal proximal tubular cells, various transporters play important roles in the secretion and reabsorption of drugs. When metabolic acidosis is induced, a number of adaptive changes occur in the kidney. The purpose of this study was to clarify the changes of drug transporters under the acidosis and the effects of these changes on urinary drug excretion. METHODS Wistar/ST rats were given 1.5% NH₄Cl in tap water for 48 h to induce the acidosis. Pharmacokinetics of PSP or metformin was evaluated. In addition, expression levels of drug transporters were examined by Western Blotting. RESULTS The renal clearance of PSP was markedly decreased, whereas the creatinine clearance and renal clearance of metformin were unchanged. Furthermore, Western blots indicated that the protein expression level of organic anion transporter (OAT) 3 was decreased. In contrast to OAT3 levels, OAT1 and organic cation transporter (OCT) 2 levels were unaffected. An immunohistochemical analysis showed that the OAT3 protein in the proximal tubules was localized in the basolateral membrane both of the normal and the acidosis rats. CONCLUSION The decrease of renal excretion of anionic drugs during metabolic acidosis might be partly due to a reduction in the level of OAT3 protein.
Collapse
|
11
|
Balkrishna S, Bröer A, Kingsland A, Bröer S. Rapid downregulation of the rat glutamine transporter SNAT3 by a caveolin-dependent trafficking mechanism in Xenopus laevis oocytes. Am J Physiol Cell Physiol 2010; 299:C1047-57. [PMID: 20739622 DOI: 10.1152/ajpcell.00209.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glutamine transporter SNAT3 is involved in the uptake and release of glutamine in the brain, liver, and kidney. Substrate transport is accompanied by Na(+) cotransport and H(+) antiport. In this study, treatment of Xenopus laevis oocytes expressing rat SNAT3 with the phorbol ester PMA resulted in a rapid downregulation of glutamine uptake in less than 20 min. PMA treatment of oocytes coexpressing SNAT3 and the monocarboxylate transporter MCT1 reduced SNAT3 activity only, demonstrating the specificity of the regulatory mechanism. Single or combined mutations of seven putative phosphorylation sites in the SNAT3 sequence did not affect the regulation of SNAT3 by PMA. Expression of an EGFP-SNAT3 fusion protein in oocytes established that the downregulation was caused by the retrieval of the transporter from the plasma membrane. Coexpression of SNAT3 with dominant-negative mutants of dynamin or caveolin revealed that SNAT3 trafficking occurs in a dynamin-independent manner and is influenced by caveolin. Although system N activity was not affected by PMA in cultured astrocytes, a downregulation was observed in HepG2 cells.
Collapse
Affiliation(s)
- Sarojini Balkrishna
- Research School of Biology, Australian National Univ., Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
12
|
Busque SM, Wagner CA. Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney. Am J Physiol Renal Physiol 2009; 297:F440-50. [PMID: 19458124 DOI: 10.1152/ajprenal.90318.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidneys produce ammonium to buffer and excrete acids through metabolism of glutamine. Expression of the glutamine transporter Slc38a3 (SNAT3) increases in kidney during metabolic acidosis (MA), suggesting a role during ammoniagenesis. Potassium depletion and high dietary protein intake are known to elevate renal ammonium excretion. In this study, we examined SNAT3, phosphate-dependent glutaminase (PDG), and phosphoenolpyruvate carboxykinase (PEPCK) regulation during a control (0.36%) or low-K(+) (0.02%) diet for 7 or 14 days or a control (20%) or high-protein (50%) diet for 7 days. MA was induced in control and low-K(+) groups by addition of NH(4)Cl. Urinary ammonium excretion increased during MA, after 14-day K(+) restriction alone, and during high protein intake. SNAT3, PDG, and PEPCK mRNA abundance were elevated during MA and after 14-day K(+) restriction but not during high protein intake. SNAT3 protein abundance was enhanced during MA (both control and low K(+)), after 14-day low-K(+) treatment alone, and during high protein intake. Seven-day dietary K(+) depletion alone had no effect. Immunohistochemistry showed SNAT3 staining in earlier parts of the proximal tubule during 14-day K(+) restriction with and without NH(4)Cl treatment and during high protein intake. In summary, SNAT3, PDG, and PEPCK mRNA expression were congruent with urinary ammonium excretion during MA. Chronic dietary K(+) restriction, high protein intake, and MA enhance ammoniagenesis, an effect that may involve enhanced SNAT3 mRNA and protein expression. Our data suggest that SNAT3 plays an important role as the glutamine uptake mechanism in ammoniagenesis under these conditions.
Collapse
Affiliation(s)
- Stephanie M Busque
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
13
|
Wagner CA, Devuyst O, Bourgeois S, Mohebbi N. Regulated acid–base transport in the collecting duct. Pflugers Arch 2009; 458:137-56. [DOI: 10.1007/s00424-009-0657-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 02/22/2009] [Accepted: 02/24/2009] [Indexed: 02/07/2023]
|
14
|
Ramadoss J, Wu G, Cudd TA. Chronic binge ethanol-mediated acidemia reduces availability of glutamine and related amino acids in maternal plasma of pregnant sheep. Alcohol 2008; 42:657-66. [PMID: 19038697 DOI: 10.1016/j.alcohol.2008.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 07/29/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Heavy drinking during pregnancy can result in fetal alcohol syndrome (FAS), of which, fetal and postnatal growth retardation and central nervous system deficits are cardinal features. Although a number of mechanisms have been proposed, none fully account for these deficiencies. We have previously reported that maternal ethanol exposure (1.75 g/kg) results in transient acidemia in the mother and fetus. Alterations in pH are known to regulate glutamine homeostasis. Therefore, we hypothesized that chronic binge ethanol-mediated acidosis reduces glutamine concentrations in maternal plasma that result in decreases in the circulating levels of amino acids related to glutamine metabolism. Pregnant ewes were divided into three groups: ethanol (1.75 g/kg), saline control, and acidemia (inspired fractional carbon dioxide [CO(2)] was manipulated to mimic the maternal arterial pH pattern created by ethanol). The experiment was conducted on three consecutive days followed by four days without treatment beginning on gestational day (GD) 109, continuing to GD 132. Plasma samples were analyzed for nutrients and metabolites using HPLC and spectrophotometric methods. Maternal plasma concentrations of glutamate increased (58%), whereas glutamine, citrulline, and arginine decreased (between 14 and 53%) in response to an acute challenge after the chronic exposure in ethanol-treated ewes. No differences in these amino acid concentrations were noted between the ethanol and acidemic group subjects. Maternal plasma lactate levels increased by approximately 100% in response to ethanol, whereas glucose and urea levels did not change in any group. We conclude that maternal chronic binge ethanol consumption results in acidosis-mediated reductions in circulating levels of glutamine and related amino acids that could be responsible for neuronal deficits, altered fetal growth, development, and programming. We also speculate that the consequent increase in fetal glutamate during critical periods of brain development may contribute to the pathogenesis of FAS.
Collapse
|
15
|
Ramadoss J, Lunde ER, Ouyang N, Chen WJA, Cudd TA. Acid-sensitive channel inhibition prevents fetal alcohol spectrum disorders cerebellar Purkinje cell loss. Am J Physiol Regul Integr Comp Physiol 2008; 295:R596-603. [PMID: 18509098 DOI: 10.1152/ajpregu.90321.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258+/-10 mg/dl peak blood ethanol concentration) or saline in a "3 days/wk binge" pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, Hwy 60, Bldg. VMA, Rm 332, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
16
|
Wendel C, Becker HM, Deitmer JW. The sodium-bicarbonate cotransporter NBCe1 supports glutamine efflux via SNAT3 (SLC38A3) co-expressed in Xenopus oocytes. Pflugers Arch 2007; 455:885-93. [PMID: 17909850 DOI: 10.1007/s00424-007-0351-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
The glutamine transporter SNAT3 contributes to the glutamine fluxes in liver, kidney, and brain. We heterologously co-expressed SNAT3 with the electrogenic sodium-bicarbonate cotransporter NBCe1 in Xenopus laevis oocytes and measured cytosolic pH and membrane current in voltage clamp. Because of the increased buffer capacity contributed by the NBCe1 (Becker and Deitmer in J Biol Chem 279:28057-28062, 2004), we hypothesized that this may enhance the proton-coupled glutamine transport via SNAT3 in the presence of CO2/HCO3-. Addition and removal of glutamine activated not only SNAT3 but also NBCe1, as indicated by the increased membrane current. The NBCe1 current during glutamine removal was more than 50% larger than during glutamine addition, suggesting that NBCe1 enhances glutamine efflux rather than glutamine uptake. This was confirmed by radio-labeled glutamine flux measurements; influx of glutamine was significantly decreased, whereas efflux of glutamine was increased when SNAT3 was co-expressed with NBCe1. A model is presented that attempts to explain the role of intracellular pH, bicarbonate transport, and buffering capacity mediated by NBCe1 for uptake and efflux of glutamine via SNAT3.
Collapse
Affiliation(s)
- Christina Wendel
- Abteilung für Allgemeine Zoologie, FB Biologie, TU Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | | | | |
Collapse
|