1
|
Abstract
The H(+) concentration in human blood is kept within very narrow limits, ~40 nmol/L, despite the fact that dietary metabolism generates acid and base loads that are added to the systemic circulation throughout the life of mammals. One of the primary functions of the kidney is to maintain the constancy of systemic acid-base chemistry. The kidney has evolved the capacity to regulate blood acidity by performing three key functions: (i) reabsorb HCO3(-) that is filtered through the glomeruli to prevent its excretion in the urine; (ii) generate a sufficient quantity of new HCO3(-) to compensate for the loss of HCO3(-) resulting from dietary metabolic H(+) loads and loss of HCO3(-) in the urea cycle; and (iii) excrete HCO3(-) (or metabolizable organic anions) following a systemic base load. The ability of the kidney to perform these functions requires that various cell types throughout the nephron respond to changes in acid-base chemistry by modulating specific ion transport and/or metabolic processes in a coordinated fashion such that the urine and renal vein chemistry is altered appropriately. The purpose of the article is to provide the interested reader with a broad review of a field that began historically ~60 years ago with whole animal studies, and has evolved to where we are currently addressing questions related to kidney acid-base regulation at the single protein structure/function level.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, Los Angeles, CA; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
2
|
Soleimani M. The multiple roles of pendrin in the kidney. Nephrol Dial Transplant 2014; 30:1257-66. [PMID: 25281699 DOI: 10.1093/ndt/gfu307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/25/2014] [Indexed: 12/30/2022] Open
Abstract
The [Formula: see text] exchanger pendrin (SLC26A4, PDS) is located on the apical membrane of B-intercalated cells in the kidney cortical collecting duct and the connecting tubules and mediates the secretion of bicarbonate and the reabsorption of chloride. Given its dual function of bicarbonate secretion and chloride reabsorption in the distal tubules, it was thought that pendrin plays important roles in systemic acid-base balance and electrolyte and vascular volume homeostasis under basal conditions. Mice with the genetic deletion of pendrin or humans with inactivating mutations in PDS gene, however, do not display excessive salt and fluid wasting or altered blood pressure under baseline conditions. Very recent reports have unmasked the basis of incongruity between the mild phenotype in mutant mice and the role of pendrin as an important player in salt reabsorption in the distal tubule. These studies demonstrate that pendrin and the Na-Cl cotransporter (NCC; SLC12A3) cross compensate for the loss of each other, therefore masking the role that each transporter plays in salt reabsorption under baseline conditions. In addition, pendrin regulates calcium reabsorption in the distal tubules. Furthermore, combined deletion of pendrin and NCC not only causes severe volume depletion but also results in profound calcium wasting and luminal calcification in medullary collecting ducts. Based on studies in pathophysiological states and the examination of genetically engineered mouse models, the evolving picture points to important roles for pendrin (SLC26A4) in kidney physiology and in disease states. This review summarizes recent advances in the characterization of pendrin and the multiple roles it plays in the kidney, with emphasis on its essential roles in several diverse physiological processes, including chloride homeostasis, vascular volume and blood pressure regulation, calcium excretion and kidney stone formation.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Center on Genetics of Transport and Epithelial Biology, University of Cincinnati, Cincinnati, OH, USA Research Services, Veterans Affairs Medical Center, Cincinnati, OH, USA Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Nagami GT, Plumer AK, Beyda RM, Schachter O. Effects of acid challenges on type 2 angiotensin II receptor-sensitive ammonia production by the proximal tubule. Am J Physiol Renal Physiol 2014; 307:F53-7. [PMID: 24829505 DOI: 10.1152/ajprenal.00466.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Angiotensin II (ANG II) acting through its type 1 (AT1) receptor stimulates total ammonia (tNH3) production by the proximal tubule. The present studies explored the role of ANG II type 2 (AT2) receptors in modulating the stimulatory effects of ANG II on tNH3 production. Mouse S2 proximal tubule segments derived from 18-h and 7-day acid-loaded mice, and non-acid-loaded controls were dissected and microperfused in vitro. Adding ANG II to the luminal perfusion solution resulted in different increments in tNH3 production rates in tubules derived from 18-h vs. 7-day acid-loaded mice such that the increase in tNH3 production with ANG II was higher in tubules derived from 18-h acid-loaded mice compared with those derived from control and 7-day acid-loaded mice. Adding the AT2 receptor blocker PD123319 with ANG II increased ANG II-stimulated tNH3 production in S2 segments from control and 7-day acid-loaded mice but not in those from 18-h acid-loaded mice, and this increased effect of PD123319 was associated with higher AT2 receptor protein levels in brush-border membranes. Studies in cultured proximal tubule cells demonstrated that 2-h exposure to pH 7.0 reduced the modulating effect of PD123319 on ANG II-simulated tNH3 production and reduced cell surface AT2 receptor levels. We concluded that AT2 receptors reduce the stimulatory effect of ANG II on proximal tubule tNH3 production and that the time-dependent impact of AT2 receptor blockade on the ANG II-stimulated tNH3 production corresponded to time-dependent changes in AT2 receptor cell surface expression in the proximal tubule.
Collapse
Affiliation(s)
- Glenn T Nagami
- Nephrology Section 111L, Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Alexandria K Plumer
- Nephrology Section 111L, Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Raymond M Beyda
- Nephrology Section 111L, Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Oran Schachter
- Nephrology Section 111L, Veterans Affairs Greater Los Angeles Healthcare System, and Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California
| |
Collapse
|
4
|
Nagami GT, Chang JA, Plato ME, Santamaria R. Acid loading in vivo and low pH in culture increase angiotensin receptor expression: enhanced ammoniagenic response to angiotensin II. Am J Physiol Renal Physiol 2008; 295:F1864-70. [DOI: 10.1152/ajprenal.90410.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proximal tubule defends the body against acid challenges by enhancing its production and secretion of ammonia. Our previous studies demonstrated an enhanced ammoniagenic response of the proximal tubule to ANG II added to the lumen in vitro after an in vivo acid challenge. The present study examined the effect of NH4Cl acid loading in vivo on renal cortical type 1 ANG II (AT1) receptor expression, the effect of low pH on AT1receptor expression in a proximal tubule cells in culture, and their response to ANG II. A short-term (18 h) NH4Cl load in vivo resulted in increased renal cortical AT1receptor mRNA expression and increased brush-border membrane AT1receptor protein expression levels. Changing the cell culture pH from 7.4 to 7.0 for at least 2 h increased cell surface expression of AT1receptors and enhanced the stimulatory effect of ANG II on ammonia production rates. This increased ammoniagenic response to ANG II and the early enhancement of cell surface expression induced by exposure of the cultured proximal tubule cells to pH 7.0 were prevented by treatment with colchicine. These results suggest that, after acid challenges, the enhanced ammoniagenic response of the proximal tubule to ANG II is, in part, mediated by increased AT1receptor cell surface expression and that the enhancement of receptor expression plays an important role in the early response of the proximal tubule to acid challenges.
Collapse
|
5
|
Nagami GT. Role of angiotensin II in the enhancement of ammonia production and secretion by the proximal tubule in metabolic acidosis. Am J Physiol Renal Physiol 2008; 294:F874-80. [DOI: 10.1152/ajprenal.00286.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acidosis and angiotensin II stimulate ammonia production and transport by the proximal tubule. We examined the modulatory effect of the type 1 angiotensin II receptor blocker losartan on the ability of metabolic acidosis to stimulate ammonia production and secretion by mouse S2 proximal tubule segments. Mice given NH4Cl for 7 days developed metabolic acidosis (low serum bicarbonate concentration) and increased urinary excretion of ammonia. S2 tubule segments from acidotic mice displayed higher rates of ammonia production and secretion compared with those from control mice. However, when losartan was coadministered in vivo with NH4Cl, both the acidosis-induced increase in urinary ammonia excretion and the adaptive increase in ammonia production and secretion of microperfused S2 segments were largely blocked. In renal cortical tissue, losartan blocked the acid-induced increase in brush-border membrane NHE3 expression but had no effect on the acid-induced upregulation of phosphate-dependent glutaminase or phosphoenolpyruvate carboxykinase 1 in cortical homogenates. Addition of angiotensin II to the microperfusion solution enhanced ammonia secretion and production rates in tubules from NH4Cl-treated and control mice in a losartan-inhibitable manner. These results demonstrate that a 7-day acid challenge induces an adaptive increase in ammonia production and secretion by the proximal tubule and suggest that during metabolic acidosis, angiotensin II signaling is necessary for adaptive enhancements of ammonia excretion by the kidney and ammonia production and secretion by S2 proximal tubule segments, as mediated, in part, by angiotensin receptor-dependent enhancement of NHE3 expression.
Collapse
|
6
|
Aronson PS. Essential roles of CFEX-mediated Cl(-)-oxalate exchange in proximal tubule NaCl transport and prevention of urolithiasis. Kidney Int 2006; 70:1207-13. [PMID: 16883319 DOI: 10.1038/sj.ki.5001741] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The majority of the Na(+) and Cl(-) filtered by the kidney is reabsorbed in the proximal tubule. In this nephron segment, a significant fraction of Cl(-) is transported via apical membrane Cl(-)-base exchange: Cl(-)-formate exchange, Cl(-)-oxalate exchange, Cl(-)-OH(-) exchange, and Cl(-)-HCO(3)(-) exchange. A search for the transporter responsible for apical membrane Cl(-)-formate exchange in the proximal tubule led to the identification of CFEX (SLC26A6). Functional expression studies in Xenopus oocytes demonstrated that CFEX is capable of mediating not only Cl(-)-formate exchange but also Cl(-)-oxalate exchange, Cl(-)-OH(-) exchange, and Cl(-)-HCO(3)(-) exchange. Studies in CFEX-null mice have begun to elucidate which of the anion exchange activities mediated by CFEX is important for renal physiology and pathophysiology in vivo. Measurements of transport in renal brush border vesicles isolated from CFEX-null mice demonstrated that CFEX primarily mediates Cl(-)-oxalate exchange rather than Cl(-)-formate exchange. Microperfusion studies in CFEX-null mice revealed that CFEX plays an essential role in mediating oxalate-dependent NaCl absorption in the proximal tubule. CFEX-null mice were found to have hyperoxaluria and a high incidence of calcium oxalate urolithiasis. The etiology of hyperoxaluria in CFEX-null mice was observed to be a defect in oxalate secretion in the intestine, leading to enhanced net absorption of ingested oxalate and elevation of plasma oxalate. Thus, by virtue of its function as a Cl(-)-oxalate exchanger, CFEX plays essential roles both in proximal tubule NaCl transport and in the prevention of hyperoxaluria and calcium oxalate nephrolithiasis.
Collapse
Affiliation(s)
- P S Aronson
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8029, USA.
| |
Collapse
|
7
|
Jiang Z, Asplin JR, Evan AP, Rajendran VM, Velazquez H, Nottoli TP, Binder HJ, Aronson PS. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat Genet 2006; 38:474-8. [PMID: 16532010 DOI: 10.1038/ng1762] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 02/10/2006] [Indexed: 01/09/2023]
Abstract
Urolithiasis is one of the most common urologic diseases in industrialized societies. Calcium oxalate is the predominant component in 70-80% of kidney stones, and small changes in urinary oxalate concentration affect the risk of stone formation. SLC26A6 is an anion exchanger expressed on the apical membrane in many epithelial tissues, including kidney and intestine. Among its transport activities, SLC26A6 mediates Cl(-)-oxalate exchange. Here we show that mutant mice lacking Slc26a6 develop a high incidence of calcium oxalate urolithiasis. Slc26a6-null mice have significant hyperoxaluria and elevation in plasma oxalate concentration that is greatly attenuated by dietary oxalate restriction. In vitro flux studies indicated that mice lacking Slc26a6 have a defect in intestinal oxalate secretion resulting in enhanced net absorption of oxalate. We conclude that the anion exchanger SLC26A6 has a major constitutive role in limiting net intestinal absorption of oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis.
Collapse
Affiliation(s)
- Zhirong Jiang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dudas PL, Mentone S, Greineder CF, Biemesderfer D, Aronson PS. Immunolocalization of anion transporter Slc26a7 in mouse kidney. Am J Physiol Renal Physiol 2006; 290:F937-45. [PMID: 16263805 DOI: 10.1152/ajprenal.00197.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have indicated that a major fraction of the filtered Cl−is reabsorbed via apical membrane Cl−/base exchange in the proximal tubule. Recent studies in Slc26a6 null mice have suggested that this transporter mediates only a portion of proximal tubule Cl−/base exchange, raising the possibility that one or more unidentified apical membrane transporters may additionally contribute. Recent studies have identified Slc26a7 as another Cl−/base exchanger expressed in the kidney. We therefore generated Slc26a7-specific polyclonal and monoclonal antibodies to examine cellular and subcellular sites of expression in mouse kidney. The specificity of each antibody was verified by immunoblotting and immunofluorescence of COS-7 cells transiently transfected with mouse Slc26a7. Immunofluorescence microscopy of mouse kidney detected the expression of Slc26a7 subapically in proximal tubule cells, and on the basolateral surface of thick ascending limb cells. Similar staining patterns were demonstrated with two antibodies shown to react with different epitopes on Slc26a7. Immunolocalization of Slc26a7 to proximal tubule and thick ascending limb was also observed in rat kidney. We conclude that Slc26a7 is expressed in the proximal tubule and thick ascending limb of the loop of Henle, and it may therefore contribute to anion transport in these nephron segments.
Collapse
Affiliation(s)
- Paul L Dudas
- Department of Internal Medicine, Yale University School of Medicine, 1 Gilbert St., TAC S-255, P.O. Box 208029, New Haven, CT 06520-8029, USA
| | | | | | | | | |
Collapse
|
9
|
Thomson RB, Wang T, Thomson BR, Tarrats L, Girardi A, Mentone S, Soleimani M, Kocher O, Aronson PS. Role of PDZK1 in membrane expression of renal brush border ion exchangers. Proc Natl Acad Sci U S A 2005; 102:13331-6. [PMID: 16141316 PMCID: PMC1201624 DOI: 10.1073/pnas.0506578102] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Indexed: 11/18/2022] Open
Abstract
Na-H exchanger NHE3 and Cl-anion exchanger CFEX (SLC26A6, PAT1) play principal roles in the reabsorption of Na and Cl in the proximal tubule of the mammalian kidney. The mechanisms by which NHE3 and CFEX are localized to and maintained in the brush border of the proximal tubule are largely unknown. To investigate the possible interaction of NHE3 and CFEX with the PDZ-domain-containing scaffolding protein PDZK1, we performed a series of in vitro interaction assays with GST-fusion proteins and native brush border membrane proteins. These studies demonstrated that, not only were NHE3 and CFEX capable of directly interacting with PDZK1, but that this interaction was mediated through their C-terminal PDZ-interaction sites. To determine whether PDZK1 interaction is essential for brush border localization of NHE3 and CFEX in vivo, we examined the expression of NHE3 and CFEX in kidneys of wild-type and PDZK1-null mutant mice by both Western analysis and immunocytochemistry. These studies indicated that, although brush border expression of NHE3 was unaffected by the loss of PDZK1, the expression of CFEX was markedly reduced. Finally, we assayed CFEX functional activity as Cl-oxalate exchange in brush border membrane vesicles and oxalate-stimulated volume absorption in microperfused proximal tubules. Consistent with the observed decrease in CFEX protein expression, both measures of CFEX functional activity were dramatically reduced in PDZK1-null animals. In conclusion, the scaffolding protein PDZK1 is essential for the normal expression and function of Cl-anion exchanger CFEX in the proximal tubule of the mammalian kidney.
Collapse
Affiliation(s)
- R Brent Thomson
- Department of Internal Medicine and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Planelles G. Chloride transport in the renal proximal tubule. Pflugers Arch 2004; 448:561-70. [PMID: 15258765 DOI: 10.1007/s00424-004-1309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 05/05/2004] [Accepted: 05/18/2004] [Indexed: 01/20/2023]
Abstract
The renal proximal tubule is responsible for most of the renal sodium, chloride, and bicarbonate reabsorption. Micropuncture studies and electrophysiological techniques have furnished the bulk of our knowledge about the physiology of this tubular segment. As a consequence of the leakiness of this epithelium, paracellular ionic transport--in particular that of Cl(-)--is of considerable importance in this first part of the nephron. It was long accepted that proximal Cl(-) reabsorption proceeds solely paracellularly, but it is now known that transcellular Cl(-) transport also exists. Cl(-) channels and Cl(-)-coupled transporters are involved in transcellular Cl(-) transport. In the apical membrane, Cl(-)/anion (formate, oxalate and bicarbonate) exchangers represent the first step in transcellular Cl(-) reabsorption. A basolateral Cl(-)/HCO(3)(-) exchanger, involved in HCO(3)(-) reclamation, participates in the rise of intracellular Cl(-) activity above its equilibrium value, and thus also contributes to the creation of an outwardly directed electrochemical Cl(-) gradient across the cell membranes. This driving force favours Cl(-) diffusion from the cell to the lumen and to the interstitium. In the basolateral membrane, the main mechanism for transcellular Cl(-) reabsorption is a Cl(-) conductance, but a Na(+)-driven Cl(-)/HCO(3)(-) exchanger may also participate in Cl(-) reabsorption.
Collapse
Affiliation(s)
- Gabrielle Planelles
- Inserm U 467, Faculté de Médecine Necker-Enfants-Malades, Université Paris V, 156 rue de Vaugirard, 75730 Paris Cedex 15, France.
| |
Collapse
|
11
|
Mount DB, Romero MF. The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 2004; 447:710-21. [PMID: 12759755 DOI: 10.1007/s00424-003-1090-3] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 04/03/2003] [Indexed: 12/18/2022]
Abstract
The ten-member SLC26 gene family encodes anion exchangers capable of transporting a wide variety of monovalent and divalent anions. The physiological role(s) of individual paralogs is evidently due to variation in both anion specificity and expression pattern. Three members of the gene family are involved in genetic disease; SLC26A2 in chondrodysplasias, SLC26A3 in chloride-losing diarrhea, and SLC26A4 in Pendred syndrome and hereditary deafness (DFNB4). The analysis of Slc26a4-null mice has significantly enhanced the understanding of the roles of this gene in both health and disease. Targeted deletion of Slc26a5 has in turn revealed that this paralog is essential for electromotor activity of cochlear outer hair cells and thus for cochlear amplification. Anions transported by the SLC26 family, with variable specificity, include the chloride, sulfate, bicarbonate, formate, oxalate and hydroxyl ions. The functional versatility of SLC26A6 identifies it as the primary candidate for the apical Cl(-)-formate/oxalate and Cl(-)-base exchanger of brush border membranes in the renal proximal tubule, with a central role in the reabsorption of Na(+)-Cl(-) from the glomerular ultrafiltrate. At least three of the SLC26 exchangers mediate electrogenic Cl(-)-HCO(3)(-) and Cl(-)-OH(-) exchange; the stoichiometry of Cl(-)-HCO(3)(-) exchange appears to differ between SLC26 paralogs, such that SLC26A3 transports >/=2 Cl(-) ions per HCO(3)(-) ion, whereas SLC26A6 transports >/=2 HCO(3)(-) ions per Cl(-) ion. SLC26 Cl(-)-HCO(3)(-) and Cl(-)-OH(-) exchange is activated by the cystic fibrosis transmembrane regulator (CFTR), implicating defective regulation of these exchangers in the reduced HCO(3)(-) transport seen in cystic fibrosis and related disorders; CFTR-independent activation of these exchangers is thus an important and novel goal for the future therapy of cystic fibrosis.
Collapse
Affiliation(s)
- David B Mount
- Renal Divisions, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|