1
|
Inhibition of Voltage-Gated Na + Currents Exerted by KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea), an Inhibitor of Na +-Ca 2+ Exchanging Process. Int J Mol Sci 2023; 24:ijms24021805. [PMID: 36675319 PMCID: PMC9864174 DOI: 10.3390/ijms24021805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
KB-R7943, an isothiourea derivative, has been recognized as an inhibitor in the reverse mode of the Na+-Ca2+ exchanging process. This compound was demonstrated to prevent intracellular Na+-dependent Ca2+ uptake in intact cells; however, it is much less effective at preventing extracellular Na+-dependent Ca2+ efflux. Therefore, whether or how this compound may produce any perturbations on other types of ionic currents, particularly on voltage-gated Na+ current (INa), needs to be further studied. In this study, the whole-cell current recordings demonstrated that upon abrupt depolarization in pituitary GH3 cells, the exposure to KB-R7943 concentration-dependently depressed the transient (INa(T)) or late component (INa(L)) of INa with an IC50 value of 11 or 0.9 μM, respectively. Likewise, the dissociation constant for the KB-R7943-mediated block of INa on the basis of a minimum reaction scheme was estimated to be 0.97 μM. The presence of benzamil or amiloride could suppress the INa(L) magnitude. The instantaneous window Na+ current (INa(W)) activated by abrupt ascending ramp voltage (Vramp) was suppressed by adding KB-R7943; however, subsequent addition of deltamethrin or tefluthrin (Tef) effectively reversed KB-R7943-inhibted INa(W). With prolonged duration of depolarizing pulses, the INa(L) amplitude became exponentially decreased; moreover, KB-R7943 diminished INa(L) magnitude. The resurgent Na+ current (INa(R)) evoked by a repolarizing Vramp was also suppressed by adding this compound; moreover, subsequent addition of ranolazine or Tef further diminished or reversed, respectively, its reduction in INa(R) magnitude. The persistent Na+ current (INa(P)) activated by sinusoidal voltage waveform became enhanced by Tef; however, subsequent application of KB-R7943 counteracted Tef-stimulated INa(P). The docking prediction reflected that there seem to be molecular interactions of this molecule with the hNaV1.2 or hNaV1.7 channels. Collectively, this study highlights evidence showing that KB-R7943 has the propensity to perturb the magnitude and gating kinetics of INa (e.g., INa(T), INa(L), INa(W), INa(R), and INa(P)) and that the NaV channels appear to be important targets for the in vivo actions of KB-R7943 or other relevant compounds.
Collapse
|
2
|
Davis H, Paterson DJ, Herring N. Post-Ganglionic Sympathetic Neurons can Directly Sense Raised Extracellular Na + via SCN7a/Na x. Front Physiol 2022; 13:931094. [PMID: 35784866 PMCID: PMC9247455 DOI: 10.3389/fphys.2022.931094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between dietary NaCl intake and high blood pressure is well-established, and occurs primarily through activation of the sympathetic nervous system. Nax, a Na+-sensitive Na+ channel, plays a pivotal role in driving sympathetic excitability, which is thought to originate from central regions controlling neural outflow. We investigated whether post-ganglionic sympathetic neurons from different ganglia innervating cardiac and vasculature tissue can also directly sense extracellular Na+. Using whole-cell patch clamp recordings we demonstrate that sympathetic neurons from three sympathetic ganglia (superior cervical, stellate and superior mesenteric/coeliac) respond to elevated extracellular NaCl concentration. In sympathetic stellate ganglia neurons, we established that the effect of NaCl was dose-dependent and independent of osmolarity, Cl- and membrane Ca2+ flux, and critically dependent on extracellular Na+ concentration. We show that Nax is expressed in sympathetic stellate ganglia neurons at a transcript and protein level using single-cell RNA-sequencing and immunohistochemistry respectively. Additionally, the response to NaCl was prevented by siRNA-mediated knockdown of Nax, but not by inhibition of other membrane Na+ pathways. Together, these results demonstrate that post-ganglionic sympathetic neurons are direct sensors of extracellular Na+ via Nax, which could contribute to sympathetic driven hypertension.
Collapse
Affiliation(s)
- Harvey Davis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Zhang J, Yuan HK, Chen S, Zhang ZR. Detrimental or beneficial: Role of endothelial ENaC in vascular function. J Cell Physiol 2021; 237:29-48. [PMID: 34279047 DOI: 10.1002/jcp.30505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
In the past, it was believed that the expression of the epithelial sodium channel (ENaC) was restricted to epithelial tissues, such as the distal nephron, airway, sweat glands, and colon, where it is critical for sodium homeostasis. Over the past two decades, this paradigm has shifted due to the finding that ENaC is also expressed in various nonepithelial tissues, notably in vascular endothelial cells. In this review, the recent findings of the expression, regulation, and function of the endothelial ENaC (EnNaC) are discussed. The expression of EnNaC subunits is reported in a variety of endothelial cell lines and vasculatures, but this is controversial across different species and vessels and is not a universal finding in all vascular beds. The expression density of EnNaC is very faint compared to ENaC in the epithelium. To date, little is known about the regulatory mechanism of EnNaC. Through it can be regulated by aldosterone, the detailed downstream signaling remains elusive. EnNaC responds to increased extracellular sodium with the feedforward activation mechanism, which is quite different from the Na+ self-inhibition mechanism of ENaC. Functionally, EnNaC was shown to be a determinant of cellular mechanics and vascular tone as it can sense shear stress, and its activation or insertion into plasma membrane causes endothelial stiffness and reduced nitric oxide production. However, in some blood vessels, EnNaC is essential for maintaining the integrity of endothelial barrier function. In this context, we discuss the possible reasons for the distinct role of EnNaC in vasculatures.
Collapse
Affiliation(s)
- Jun Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Kai Yuan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Chen
- Department of Biopharmaceutical Sciences, School of Pharmacy, Harbin Medical University (Daqing), Daqing, China
| | - Zhi-Ren Zhang
- Departments of Pharmacy and Cardiology, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, NHC Key Laboratory of Cell Transplantation, Harbin Medical University & Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
4
|
Interleukin-17 Reduces βENaC via MAPK Signaling in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21082953. [PMID: 32331392 PMCID: PMC7215799 DOI: 10.3390/ijms21082953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022] Open
Abstract
Degenerin proteins, such as the beta epithelial Na+ channel (βENaC), are essential in the intracellular signaling of pressure-induced constriction, an important vascular smooth muscle cell (VSMC) function. While certain cytokines reduce ENaC protein in epithelial tissue, it is unknown if interleukin-17 (IL-17), a potent pro-inflammatory cytokine, directly mediates changes in membrane-associated βENaC in VSMCs. Therefore, we tested the hypothesis that exposure to IL-17 reduces βENaC in VSMCs through canonical mitogen-activated protein kinase (MAPK) signaling pathways. We treated cultured rat VSMCs (A10 cell line) with IL-17 (1–100 ng/mL) for 15 min to 16 h and measured expression of βENaC, p38MAPK, c-jun kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). IL-17 reduced βENaC protein expression in a concentration-dependent fashion and increased phosphorylation of p38MAPK by 15 min and JNK by 8 h. NFκB was unaffected by IL-17 in VSMCs. IL-17 treatment reduced VSMC viability but had no effect on cell death. To determine the underlying signaling pathway involved in this response, VSMCs were treated before and during IL-17 exposure with p38MAPK or JNK inhibitors. We found that JNK blockade prevented IL-17-mediated βENaC protein suppression. These data demonstrate that the pro-inflammatory cytokine IL-17 regulates VSMC βENaC via canonical MAPK signaling pathways, raising the possibility that βENaC-mediated loss of VSMC function may occur in inflammatory disorders.
Collapse
|
5
|
Guan Z, Makled MN, Inscho EW. Purinoceptors, renal microvascular function and hypertension. Physiol Res 2020; 69:353-369. [PMID: 32301620 DOI: 10.33549/physiolres.934463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proper renal blood flow (RBF) and glomerular filtration rate (GFR) are critical for maintaining normal blood pressure, kidney function and water and electrolyte homeostasis. The renal microvasculature expresses a multitude of receptors mediating vasodilation and vasoconstriction, which can influence glomerular blood flow and capillary pressure. Despite this, RBF and GFR remain quite stable when arterial pressure fluctuates because of the autoregulatory mechanism. ATP and adenosine participate in autoregulatory control of RBF and GFR via activation of two different purinoceptor families (P1 and P2). Purinoceptors are widely expressed in renal microvasculature and tubules. Emerging data show altered purinoceptor signaling in hypertension-associated kidney injury, diabetic nephropathy, sepsis, ischemia-reperfusion induced acute kidney injury and polycystic kidney disease. In this brief review, we highlight recent studies and new insights on purinoceptors regulating renal microvascular function and renal hemodynamics. We also address the mechanisms underlying renal microvascular injury and impaired renal autoregulation, focusing on purinoceptor signaling and hypertension-induced renal microvascular dysfunction. Interested readers are directed to several excellent and comprehensive reviews that recently covered the topics of renal autoregulation, and nucleotides in kidney function under physiological and pathophysiological conditions (Inscho 2009, Navar et al. 2008, Carlstrom et al. 2015, Vallon et al. 2020).
Collapse
Affiliation(s)
- Z Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, South Birmingham, USA.
| | | | | |
Collapse
|
6
|
Duncan JW, Younes ST, Hildebrandt E, Ryan MJ, Granger JP, Drummond HA. Tumor necrosis factor-α impairs cerebral blood flow in pregnant rats: role of vascular β-epithelial Na + channel. Am J Physiol Heart Circ Physiol 2020; 318:H1018-H1027. [PMID: 32167780 DOI: 10.1152/ajpheart.00744.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension, vascular dysfunction and an increase in circulating inflammatory factors including the cytokine, tumor necrosis factor-α (TNF-α). Studies have shown that placental ischemia is associated with 1) increased circulating TNF-α, 2) attenuated pressure-induced cerebral vascular tone, and 3) suppression of β-epithelial Na+ channel (βENaC) protein in cerebral vessels. In addition to its role in epithelial Na+ and water transport, βENaC is an essential signaling element in transduction of pressure-induced (aka "myogenic") constriction, a critical mechanism of blood flow autoregulation. While cytokines inhibit expression of certain ENaC proteins in epithelial tissue, it is unknown if the increased circulating TNF-α associated with placental ischemia mediates the loss of cerebrovascular βENaC and cerebral blood flow regulation. Therefore, the purpose of this study was to test the hypothesis that increasing plasma TNF-α in normal pregnant rats reduces cerebrovascular βENaC expression and impairs cerebral blood flow (CBF) regulation. In vivo TNF-α infusion (200 ng/day, 5 days) inhibited cerebrovascular expression of βENaC and impaired CBF regulation in pregnant rats. To determine the direct effects of TNF-α and underlying pathways mediating vascular smooth muscle cell βENaC reduction, we exposed cultured VSMCs (A10 cell line) to TNF-α (1-100 ng/mL) for 16-24 h. TNF-α reduced βENaC protein expression in a concentration-dependent fashion from 0.1 to 100 ng/mL, without affecting cell death. To assess the role of canonical MAPK signaling in this response, VSMCs were treated with p38MAPK or c-Jun kinase (JNK) inhibitors in the presence of TNF-α. We found that both p38MAPK and JNK blockade prevented TNF-α-mediated βENaC protein suppression. These data provide evidence that disorders associated with increased circulating TNF-α could lead to impaired cerebrovascular regulation, possibly due to reduced βENaC-mediated vascular function.NEW & NOTEWORTHY This manuscript identifies TNF-α as a possible placental-derived cytokine that could be involved in declining cerebrovascular health observed in preeclampsia. We found that infusion of TNF-α during pregnancy impaired cerebral blood flow control in rats at high arterial pressures. We further discovered that cerebrovascular β-epithelial sodium channel (βENaC) protein, a degenerin protein involved in mechanotransduction, was reduced by TNF-α in pregnant rats, indicating a potential link between impaired blood flow and this myogenic player. We next examined this effect in vitro using a rat vascular smooth muscle cell line. TNF-α reduced βENaC through canonical MAPK-signaling pathways and was not dependent on cell death. This study demonstrates the pejorative effects of TNF-α on cerebrovascular function during pregnancy and warrants future investigations to study the role of cytokines on vascular function during pregnancy.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Subhi Talal Younes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Takeya K, Kathol I, Sutherland C, Wang X, Loutzenhiser R, Walsh MP. Expression of troponin subunits in the rat renal afferent arteriole. IUBMB Life 2019; 71:1475-1481. [PMID: 31046198 DOI: 10.1002/iub.2061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 11/10/2022]
Abstract
Vascular smooth muscle cells of the renal afferent arteriole are unusual in that they must be able to contract very rapidly in response to a sudden increase in systemic blood pressure in order to protect the downstream glomerular capillaries from catastrophic damage. We showed that this could be accounted for, in part, by exclusive expression, at the protein level, of the "fast" (B) isoforms of smooth muscle myosin II heavy chains in the afferent arteriole, in contrast to other vascular smooth muscle cells such as the rat aorta and efferent arteriole which express exclusively the "slow" (A) isoforms (Shiraishi et al. (2003) FASEB. J. 17, 2284-2286). As contraction of the more rapidly contracting striated (skeletal and cardiac) muscles is regulated by the thin filament-associated troponin (Tn) system, we hypothesized that Tn or a Tn-like system may exist in afferent arteriolar cells and contribute to the unusually rapid contraction of this tissue in response to increased intraluminal pressure. We examined the expression of TnC (Ca2+ -binding subunit), TnI (inhibitory subunit), and TnT (tropomyosin-binding subunit) in vascular smooth muscle cells of the rat renal afferent arteriole at the mRNA level. Fast-twitch skeletal muscle and slow-twitch skeletal muscle/cardiac TnC isoforms and slow-twitch skeletal muscle and cardiac TnI isoforms were detected by reverse transcription-polymerase chain reaction (RT-PCR) and confirmed by cDNA sequencing. Furthermore, cardiac and slow-twitch skeletal muscle TnI isoforms, but not fast-twitch skeletal muscle TnI, were detected in isolated afferent arterioles at the protein level by proximity ligation assay. Finally, striated muscle myosin II heavy chain expression was identified in isolated rat afferent arterioles by RT-PCR. We conclude that, in addition to Ca2+ -mediated phosphorylation of myosin II regulatory light chains, contraction of the afferent arteriole may be regulated by a mechanism normally associated with the much more rapidly contracting cardiac and skeletal muscles, which involves Ca2+ binding to TnC, leading to alleviation of inhibition of the actomyosin MgATPase by TnI and tropomyosin and rapid contraction of the vessel.
Collapse
Affiliation(s)
- Kosuke Takeya
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Iris Kathol
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cindy Sutherland
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xuemei Wang
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rodger Loutzenhiser
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael P Walsh
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Ydegaard R, Andersen H, Oxlund CS, Jacobsen IA, Hansen PBL, Jürgensen JF, Peluso AA, Vanhoutte PM, Staehr M, Svenningsen P, Jensen BL. The acute blood pressure-lowering effect of amiloride is independent of endothelial ENaC and eNOS in humans and mice. Acta Physiol (Oxf) 2019; 225:e13189. [PMID: 30240139 DOI: 10.1111/apha.13189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
AIMS The epithelial sodium channel (ENaC) is expressed in cultured endothelial cells and inhibitory coupling to eNOS activity has been proposed. The present study tested the hypothesis that ENaC blockers increase systemic NO-products and lower blood pressure in patients and mice, depending on eNOS. METHODS NO-products and cGMP were measured in diabetes patient urine and plasma samples before and after amiloride treatment (20-40 mg for two days, plasma n = 22, urine n = 12 and 5-10 mg for eight weeks, plasma n = 52, urine n = 55). Indwelling catheters were implanted in the femoral artery and vein in mice for continuous arterial blood pressure and heart rate recordings and infusion. RESULTS Treatment with amiloride for two days increased plasma and urine NO-products, while plasma cGMP decreased and urinary cGMP was unchanged in patient samples. Eight weeks of treatment with amiloride did not alter NO-products and cGMP. In mice, amiloride boli of 5, 50, and 500 µg/kg lowered heart rate and arterial blood pressure significantly and acutely. Benzamil had no effect on pressure and raised heart rate. In hypertensive eNOS-/- and L-NAME-treated mice, amiloride lowered blood pressure significantly. L-NAME infusion significantly decreased NO-products in plasma; amiloride and eNOS-deletion had no effect. An acetylcholine bolus resulted in acute blood pressure drop that was attenuated in eNOS-/- and L-NAME mice. ENaC subunit expressions were not detected consistently in human and mouse arteries and endothelial cells. CONCLUSION Amiloride has an acute hypotensive action not dependent on ENaC and eNOS and likely related to the heart.
Collapse
Affiliation(s)
- Rikke Ydegaard
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - Henrik Andersen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | | | - Ib A. Jacobsen
- Department of Endocrinology; Odense University Hospital; Odense Denmark
| | - Pernille B. L. Hansen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
- Cardiovascular and Metabolic Disease, IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Jonathan F. Jürgensen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - Antonio Augusto Peluso
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - Paul M. Vanhoutte
- Department of Pharmacology and Pharmacy; Hong Kong University; China
| | - Mette Staehr
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine; University of Southern Denmark; Odense C Denmark
| |
Collapse
|
9
|
Kang LS, Masilamani S, Boegehold MA. Juvenile growth reduces the influence of epithelial sodium channels on myogenic tone in skeletal muscle arterioles. Clin Exp Pharmacol Physiol 2017; 43:1199-1207. [PMID: 27560463 DOI: 10.1111/1440-1681.12664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023]
Abstract
Previous studies have documented that rapid juvenile growth is accompanied by functional changes in the arteriolar endothelium, but much less is known about functional changes in arteriolar smooth muscle over this period. In this study, we investigate the possible contribution of epithelial sodium channels (ENaC) to the myogenic behaviour of arterioles at two stages of juvenile growth. The effects of the ENaC inhibitor benzamil on different levels of myogenic tone were studied in isolated gracilis muscle arterioles from rats aged 21-28 days ("weanlings") and 42-49 days ("juveniles"). ENaC subunit expression in the arteriolar wall was also determined, and the interaction between ENaC and nitric oxide (NO) in regulating vascular tone was explored by combined use of benzamil and NG -monomethyl-l-arginine (l-NMMA). At physiological pressures, both steady-state myogenic tone and the dynamic adjustments in this tone triggered by acute pressure changes were less in juvenile arterioles than in weanling arterioles. α, β and γ ENaC protein was present in arterioles at both ages, but benzamil only had an effect on myogenic tone in weanling arterioles. In these vessels, benzamil increased, rather than decreased, myogenic tone, and this effect was prevented by l-NMMA or endothelial removal. These findings suggest that although ENaC is present in gracilis muscle arterioles of both weanling and juvenile rats, it is not obligatory for the genesis of myogenic activity in these vessels at either age. However, ENaC activity can significantly modulate the level of myogenic tone through stimulation of endothelial NO release at an early stage of growth.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Shyama Masilamani
- Department of Internal Medicine/Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Matthew A Boegehold
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
10
|
Involvement of Epithelial Na + Channel in the Elevated Myogenic Response in Posterior Cerebral Arteries from Spontaneously Hypertensive Rats. Sci Rep 2017; 7:45996. [PMID: 28383056 PMCID: PMC5382693 DOI: 10.1038/srep45996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/07/2017] [Indexed: 12/29/2022] Open
Abstract
Hypertension is characterized by increased peripheral vascular resistance which is related with elevated myogenic response. Recent findings have indicated that epithelial sodium channel (ENaC) is involved in mechanotransduction of the myogenic response. The purpose of this study was to investigate the involvement of ENaC in the elevated myogenic response of posterior cerebral arteries (PCAs) from spontaneously hypertensive rats (SHRs). Sixteen to eighteen weeks old male wistar kyoto rats (WKYs) and SHRs were used in this study. We found that wall to lumen (W/L) ratio was increased in the PCAs from SHRs compared with WKYs at the resting state. Interestingly, amiloride significantly inhibited myogenic response in the PCAs from SHRs and WKYs, however, the magnitude of the blockade was greater in SHRs. The transfection of γENaC-siRNA significantly reduced the expression of γENaC protein and inhibited myogenic response in the PCAs from SHRs. Furthermore, these data were supported by the findings that serum/glucocorticoid-induced kinase (Sgk1) and neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) were increased in SHRs compared with WKYs. Our results suggest that γENaC may play an important role in the elevated myogenic response in PCAs from SHRs.
Collapse
|
11
|
Leng TD, Si HF, Li J, Yang T, Zhu M, Wang B, Simon RP, Xiong ZG. Amiloride Analogs as ASIC1a Inhibitors. CNS Neurosci Ther 2016; 22:468-76. [PMID: 26890278 DOI: 10.1111/cns.12524] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 12/30/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND ASIC1a, the predominant acid-sensing ion channels (ASICs), is implicated in neurological disorders including stroke, traumatic spinal cord injury, and ALS. Potent ASIC1a inhibitors should have promising therapeutic potential for ASIC1a-related diseases. AIMS We examined the inhibitory effects of a number of amiloride analogs on ASIC1a currents, aimed at understanding the structure-activity relationship and identifying potent ASIC1a inhibitors for stroke intervention. METHODS Whole-cell patch-clamp techniques and a mouse model of middle cerebral artery occlusion (MCAO)-induced focal ischemia were used. Surflex-Dock was used to dock the analogs into the pocket with default parameters. RESULTS Amiloride and its analogs inhibit ASIC1a currents expressed in Chinese hamster ovary cells with a potency rank order of benzamil > phenamil > 5-(N,N-dimethyl)amiloride (DMA) > amiloride > 5-(N,N-hexamethylene)amiloride (HMA) ≥ 5-(N-methyl-N-isopropyl)amiloride (MIA) > 5-(N-ethyl-N-isopropyl)amiloride (EIPA). In addition, amiloride and its analogs inhibit ASIC currents in cortical neurons with the same potency rank order. In mice, benzamil and EIPA decreased MCAO-induced infarct volume. Similar to its effect on the ASIC current, benzamil showed a much higher potency than EIPA. CONCLUSION Addition of a benzyl group to the terminal guanidinyl group resulted in enhanced inhibitory activity on ASIC1a. On the other hand, the bulky groups added to the 5-amino residues slightly decreased the activity. Among the tested amiloride analogs, benzamil is the most potent ASIC1a inhibitor.
Collapse
Affiliation(s)
- Tian-Dong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hong-Fang Si
- Anhui Medical University, School of Pharmacy, Hefei, Anhui, China
| | - Jun Li
- Anhui Medical University, School of Pharmacy, Hefei, Anhui, China
| | - Tao Yang
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Mengyuan Zhu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Roger P Simon
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Guan Z, Fellner RC, Van Beusecum J, Inscho EW. P2 receptors in renal autoregulation. Curr Vasc Pharmacol 2015; 12:818-28. [PMID: 24066935 DOI: 10.2174/15701611113116660152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/06/2013] [Accepted: 05/01/2014] [Indexed: 11/22/2022]
Abstract
Autoregulation of renal blood flow and glomerular filtration rate is an essential function of the renal microcirculation. While the existence of this phenomenon has been known for many years, the exact mechanisms that underlie this regulatory system remain poorly understood. The work of many investigators has provided insights into many aspects of the autoregulatory mechanism, but many critical components remain elusive. This review is intended to update the reader on the role of P2 purinoceptors as a postulated mechanism responsible for renal autoregulatory resistance adjustments. It will summarize recent advances in normal function and it will touch on more recent ideas regarding autoregulatory insufficiency in hypertension and inflammation. Current thoughts on the nature of the mechanosensor responsible for myogenic behavior will be also be discussed as well as current thoughts on the mechanisms involved in ATP release to the extracellular fluid space.
Collapse
Affiliation(s)
| | | | | | - Edward W Inscho
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912-3000.
| |
Collapse
|
13
|
Drummond HA, Stec DE. βENaC acts as a mechanosensor in renal vascular smooth muscle cells that contributes to renal myogenic blood flow regulation, protection from renal injury and hypertension. ACTA ACUST UNITED AC 2015; 1:1-9. [PMID: 27928552 DOI: 10.17554/j.issn.2410-0579.2015.01.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pressure-induced constriction (also known as the "myogenic response") is an important mechanodependent response in small renal arteries and arterioles. The response is initiated by vascular smooth muscle cell (VSMC) stretch due to an increase in intraluminal pressure and leads to vasoconstriction. The myogenic response has two important roles as a mechanism of local blood flow autoregulation and protection against systemic blood pressure-induced microvascular damage. However, the molecular mechanisms underlying initiation of myogenic response are unresolved. Although several molecules have been considered initiators of the response, our laboratory has focused on the role of degenerin proteins because of their strong evolutionary link to mechanosensing in the nematode. Our laboratory has addressed the hypothesis that certain degenerin proteins act as mechanosensors in VSMCs. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC), in pressure-induced vasoconstriction, renal blood flow and susceptibility to renal injury. We propose that loss of the renal myogenic constrictor response delays the correction of renal blood flow that occurs with fluctuations in systemic pressure, which allows pressure swings to be transmitted to the microvasculature, thus increasing the susceptibility to renal injury and hypertension. The role of βENaC in myogenic regulation is independent of tubular βENaC and thus represents a non-tubular role for βENaC in renal-cardiovascular homeostasis.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| | - David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS, 39216-4505
| |
Collapse
|
14
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Büsst CJ. Blood pressure regulation via the epithelial sodium channel: from gene to kidney and beyond. Clin Exp Pharmacol Physiol 2014; 40:495-503. [PMID: 23710770 DOI: 10.1111/1440-1681.12124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 01/11/2023]
Abstract
The epithelial sodium channel (ENaC) has long been recognized as playing a vital role in blood pressure (BP) regulation due to its involvement in fluid balance. The genes encoding the three ENaC subunits are likewise important contributors to hypertension, both in rare monogenic diseases and in the general population. The unusually high numbers of genetic variants associated with complex traits, including BP, that are located in non-coding areas suggest an involvement of these variants in regulatory functions. This may involve differential regulation of expression in different tissues. Emerging evidence indicates that the ENaC plays an important role in BP determination not only via its actions in the kidney, but also in other tissues commonly involved in BP regulation. The ENaC in the central nervous system is proposed to regulate BP via sympathetic nervous system activity. Recent evidence suggests that the ENaC contributes to vascular function and the myogenic response. Additional roles potentially include initiation of the baroreceptor reflex via ENaC in the baroreceptors and driving high salt intake with a 'taste for salt' via ENaC in the tongue. The present review describes the involvement of the ENaC in the determination of BP at a genetic and physiological level, detailing recent evidence for its role in the kidney and in other pertinent tissues.
Collapse
Affiliation(s)
- Cara J Büsst
- Departments of Physiology, The University of Melbourne and Monash University, Melbourne, Vic., Australia.
| |
Collapse
|
16
|
Edwards A, Layton AT. Calcium dynamics underlying the myogenic response of the renal afferent arteriole. Am J Physiol Renal Physiol 2013; 306:F34-48. [PMID: 24173354 DOI: 10.1152/ajprenal.00317.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The renal afferent arteriole reacts to an elevation in blood pressure with an increase in muscle tone and a decrease in luminal diameter. This effect, known as the myogenic response, is believed to stabilize glomerular filtration and to protect the glomerulus from systolic blood pressure increases, especially in hypertension. To study the mechanisms underlying the myogenic response, we developed a mathematical model of intracellular Ca(2+) signaling in an afferent arteriole smooth muscle cell. The model represents detailed transmembrane ionic transport, intracellular Ca(2+) dynamics, the kinetics of myosin light chain phosphorylation, and the mechanical behavior of the cell. It assumes that the myogenic response is initiated by pressure-induced changes in the activity of nonselective cation channels. Our model predicts spontaneous vasomotion at physiological luminal pressures and KCl- and diltiazem-induced diameter changes comparable to experimental findings. The time-periodic oscillations stem from the dynamic exchange of Ca(2+) between the cytosol and the sarcoplasmic reticulum, coupled to the stimulation of Ca(2+)-activated potassium (KCa) and chloride (ClCa) channels, and the modulation of voltage-activated L-type channels; blocking sarco/endoplasmic reticulum Ca(2+) pumps, ryanodine receptors (RyR), KCa, ClCa, or L-type channels abolishes these oscillations. Our results indicate that the profile of the myogenic response is also strongly dependent on the conductance of ClCa and L-type channels, as well as the activity of plasmalemmal Ca(2+) pumps. Furthermore, inhibition of KCa is not necessary to induce myogenic contraction. Lastly, our model suggests that the kinetic behavior of L-type channels results in myogenic kinetics that are substantially faster during constriction than during dilation, consistent with in vitro observations (Loutzenhiser R, Bidani A, Chilton L. Circ. Res. 90: 1316-1324, 2002).
Collapse
Affiliation(s)
- Aurélie Edwards
- Dept. of Mathematics, Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|
17
|
Nagasawa T, Imig JD. Afferent Arteriolar Responses to β,γ-methylene ATP and 20-HETE are not Blocked by ENaC Inhibition. Physiol Rep 2013; 1:e00082. [PMID: 24159379 PMCID: PMC3804346 DOI: 10.1002/phy2.82] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent arteriolar myogenic and tubuloglomerular feedback responses are critical for the proper maintenance of renal hemodynamics and water and electrolyte homeostasis. Adenosine triphosphate (ATP) P2X receptor activation and 20-hydroxyeicosatetraenoic acids (20-HETE) have been implicated in afferent arteriolar autoregulatory responses. Besides these two participants, members of the degenerin/epithelial Na+ channel (DEG/ENaC) family have been demonstrated to play a pivotal role in the afferent arteriolar myogenic response. The aim of this study was to determine if ENaC contributes to P2X receptor- or 20-HETE-mediated afferent arteriolar vasoconstriction. As previously demonstrated, afferent arteriolar diameter responses to increasing perfusion pressure from 100 to 160 mmHg were abolished by ENaC inhibitors amiloride or benzamil. Afferent arteriolar diameter decreased by 29% under control conditions and by 1% and 5% in the presence of amiloride or benzamil, respectively. The P2X receptor agonist β,γ-methylene ATP decreased afferent arteriolar diameter by 3 ± 1%, 7 ± 1%, 12 ± 2%, and 17 ± 3% in response to 0.1, 1, 10, and 100 μmol/L, respectively. ENaC inhibition did not alter the afferent arteriolar vasoconstrictor response to the P2X receptor agonist β,γ-methylene ATP. Like P2X receptor activation, 20-HETE dose-dependently decreased afferent arteriolar diameter and this vasoconstrictor response was not altered by the presence of ENaC inhibitors amiloride or benzamil. These results suggest that DEG/ENaC channels are required for afferent arteriolar autoregulatory responses; however, DEG/ENaC channels do not contribute to P2X receptor- or 20-HETE-mediated afferent arteriolar vasoconstriction.
Collapse
Affiliation(s)
- Tasuku Nagasawa
- Department of Pharmacology & Toxicology and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
18
|
Zhang Z, Payne K, Cao C, Pallone TL. Mural propagation of descending vasa recta responses to mechanical stimulation. Am J Physiol Renal Physiol 2013; 305:F286-94. [PMID: 23698119 DOI: 10.1152/ajprenal.00220.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To investigate the responses of descending vasa recta (DVR) to deformation of the abluminal surface, we devised an automated method that controls duration and frequency of stimulation by utilizing a stream of buffer from a micropipette. During stimulation at one end of the vessel, fluorescent responses from fluo4 or bis[1,3-dibutylbarbituric acid-(5)] trimethineoxonol [DiBAC₄(3)], indicating cytoplasmic calcium ([Ca²⁺]CYT) or membrane potential, respectively, were recorded from distant cells. Alternately, membrane potential was recorded from DVR pericytes by nystatin whole cell patch-clamp. Mechanical stimulation elicited reversible [Ca²⁺)]CYT responses that increased with frequency. Individual pericyte responses along the vessel were initiated within a fraction of a second of one another. Those responses were inhibited by gap junction blockade with 18 β-glycyrrhetinic acid (100 μM) or phosphoinositide 3 kinase inhibition with 2-morpholin-4-yl-8-phenylchromen-4-one (50 μM). [Ca²⁺]CYT responses were blocked by removal of extracellular Ca²⁺ or L-type voltage-gated channel blockade with nifedipine (10 μM). At concentrations selective for the T-type channel blockade, mibefradil (100 nM) was ineffective. During mechanostimulation, pericytes rapidly depolarized, as documented with either DiBAC4(3) fluorescence or patch-clamp recording. Single stimuli yielded depolarizations of 22.5 ± 2.2 mV while repetitive stimuli at 0.1 Hz depolarized pericytes by 44.2 ± 4.0 mV. We conclude that DVR are mechanosensitive and that rapid transmission of signals along the vessel axis requires participation of gap junctions, L-type Ca²⁺ channels, and pericyte depolarization.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
19
|
Taggart M. The knack of resisting increases in intravascular pressure: the potential role for epithelial Na(+) channel protein subunits in arterial myogenic reactivity. Exp Physiol 2013; 97:474-5. [PMID: 22525663 DOI: 10.1113/expphysiol.2011.063347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Matthesen SK, Larsen T, Vase H, Lauridsen TG, Jensen JM, Pedersen EB. Effect of amiloride and spironolactone on renal tubular function and central blood pressure in patients with arterial hypertension during baseline conditions and after furosemide: a double-blinded, randomized, placebo-controlled crossover trial. Clin Exp Hypertens 2012; 35:313-24. [PMID: 22966789 DOI: 10.3109/10641963.2012.721843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study demonstrates that the increased potassium content in the body seems to change both the blood pressure and renal tubular function. We wanted to test the hypotheses that amiloride and spironolactone induced potassium retention reduces ambulatory blood pressure (ABP) and central blood pressure (CBP) during baseline conditions and after furosemide and that the tubular transport via the epithelial sodium channels (ENaCs) and aquaporin-2 (AQP2) water channels was increased by furosemide in arterial hypertension. Each of three 28-day treatment periods (placebo, amiloride, and spironolactone) was completed by a 4-day period with standardized diet regarding calories and sodium and water intake. At the end of each period, we measured pulse wave velocity (PWV), central systolic blood pressure (CSBP), central diastolic blood pressure (CDBP), glomerular filtration rate (GFR), free water clearance (CH2O), fractional excretion of sodium (FENa) and potassium (FEK), urinary excretion of AQP2 (u-AQP2), urinary excretion of γ-fraction of the ENaC (u-ENaCγ), and plasma concentrations of renin (PRC), angiotensin II (p-Ang II), and aldosterone (p-Aldo) at baseline conditions and after furosemide bolus. Ambulatory blood pressure and CBP were significantly lowered by amiloride and spironolactone. During 24-hour urine collection and at baseline, GFR, CH2O, FENa, FEK, u-AQP2 and u-ENaCγ were the same. After furosemide, CH2O, FENa, FEK, u-AQP2, u-ENaCγ, PRC, p-Ang II, p-Aldo, PWV and CDBP increased after all treatments. However, during amiloride treatment, FEK increased to a larger extent than after spironolactone and during placebo after furosemide, and CSBP was not significantly reduced. The increases in water and sodium absorption via AQP2 and ENaC after furosemide most likely are compensatory phenomena to antagonize water and sodium depletion. Amiloride is less effective than spironolactone to reduce renal potassium excretion.
Collapse
Affiliation(s)
- Solveig K Matthesen
- Departments of Medical Research and Medicine, Holstebro Hospital and University of Aarhus, Laegaardvej 12,Holstebro, Denmark.
| | | | | | | | | | | |
Collapse
|
21
|
Drummond HA. βENaC is a molecular component of a VSMC mechanotransducer that contributes to renal blood flow regulation, protection from renal injury, and hypertension. Front Physiol 2012; 3:341. [PMID: 22973231 PMCID: PMC3428779 DOI: 10.3389/fphys.2012.00341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
Pressure-induced constriction (also known as the “myogenic response”) is an important mechano-dependent response in certain blood vessels. The response is mediated by vascular smooth muscle cells (VSMCs) and characterized by a pressure-induced vasoconstriction in small arteries and arterioles in the cerebral, mesenteric, cardiac, and renal beds. The myogenic response has two important roles; it is a mechanism of blood flow autoregulation and provides protection against systemic blood pressure-induced damage to delicate microvessels. However, the molecular mechanism(s) underlying initiation of myogenic response is unclear. Degenerin proteins have a strong evolutionary link to mechanotransduction in the nematode. Our laboratory has addressed the hypothesis that these proteins may also act as mechanosensors in certain mammalian tissues such as VSMCs and arterial baroreceptor neurons. This article discusses the importance of a specific degenerin protein, β Epithelial Na+ Channel (βENaC) in pressure-induced vasoconstriction in renal vessels and arterial baroreflex function as determined in a mouse model of reduced βENaC (βENaC m/m). We propose that loss of baroreflex sensitivity (due to loss of baroreceptor βENaC) increases blood pressure variability, increasing the likelihood and magnitude of upward swings in systemic pressure. Furthermore, loss of the myogenic constrictor response (due to loss of VSMC βENaC) will permit those pressure swings to be transmitted to the microvasculature in βENaC m/m mice, thus increasing the susceptibility to renal injury and hypertension.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
22
|
Matthesen SK, Larsen T, Lauridsen TG, Vase H, Gjørup PH, Nykjær KM, Nielsen S, Pedersen EB. Effect of Amiloride and Spironolactone on Renal Tubular Function, Ambulatory Blood Pressure, and Pulse Wave Velocity in Healthy Participants in a Double-Blinded, Randomized, Placebo-Controlled, Crossover Trial. Clin Exp Hypertens 2012; 34:588-600. [DOI: 10.3109/10641963.2012.681730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Ge Y, Gannon K, Gousset M, Liu R, Murphey B, Drummond HA. Impaired myogenic constriction of the renal afferent arteriole in a mouse model of reduced βENaC expression. Am J Physiol Renal Physiol 2012; 302:F1486-93. [PMID: 22419697 DOI: 10.1152/ajprenal.00638.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies demonstrate a role for β epithelial Na(+) channel (βENaC) protein as a mediator of myogenic constriction in renal interlobar arteries. However, the importance of βENaC as a mediator of myogenic constriction in renal afferent arterioles, the primary site of development of renal vascular resistance, has not been determined. We colocalized βENaC with smooth muscle α-actin in vascular smooth muscle cells in renal arterioles using immunofluorescence. To determine the importance of βENaC in myogenic constriction in renal afferent arterioles, we used a mouse model of reduced βENaC (βENaC m/m) and examined pressure-induced constrictor responses in the isolated afferent arteriole-attached glomerulus preparation. We found that, in response to a step increase in perfusion pressure from 60 to 120 mmHg, the myogenic tone increased from 4.5 ± 3.7 to 27.3 ± 5.2% in +/+ mice. In contrast, myogenic tone failed to increase with the pressure step in m/m mice (3.9 ± 0.8 to 6.9 ± 1.4%). To determine the importance of βENaC in myogenic renal blood flow (RBF) regulation, we examined the rate of change in renal vascular resistance following a step increase in perfusion pressure in volume-expanded animals. We found that, following a step increase in pressure, the rate of myogenic correction of RBF is inhibited by 75% in βENaC m/m mice. These findings demonstrate that myogenic constriction in afferent arterioles is dependent on normal expression of βENaC.
Collapse
Affiliation(s)
- Ying Ge
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
24
|
Blaustein MP, Leenen FHH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huysse JW, Zhang J, Wier WG. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 2011; 302:H1031-49. [PMID: 22058154 DOI: 10.1152/ajpheart.00899.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na(+) and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na(+)]. This leads, via the Na(+)-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na(+) pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na(+)]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na(+) channels, EO, ouabain-sensitive α(2) Na(+) pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na(+) channel-EO-α(2) Na(+) pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α(2) Na(+) pump-Na(+)/Ca(2+) exchanger-Ca(2+) signaling pathway. Circulating EO also activates an EO-α(2) Na(+) pump-Src kinase signaling cascade. This increases the expression of the Na(+)/Ca(2+) exchanger-transient receptor potential cation channel Ca(2+) signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Dept. of Physiology, Univ. of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chilton L, Smirnov SV, Loutzenhiser K, Wang X, Loutzenhiser R. Segment-specific differences in the inward rectifier K+ current along the renal interlobular artery. Cardiovasc Res 2011; 92:169-77. [DOI: 10.1093/cvr/cvr179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Lisa Chilton
- School of Veterinary and Biomedical Sciences, James Cook University, Douglas, QLD 4811, Australia
| | - Sergey V. Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kathy Loutzenhiser
- Smooth Muscle Research Group, University of Calgary Faculty of Medicine, 3330 Hospital Drive, N.W. Calgary, Alberta, CanadaT2N 4N1
| | - Xuemei Wang
- Smooth Muscle Research Group, University of Calgary Faculty of Medicine, 3330 Hospital Drive, N.W. Calgary, Alberta, CanadaT2N 4N1
| | - Rodger Loutzenhiser
- Smooth Muscle Research Group, University of Calgary Faculty of Medicine, 3330 Hospital Drive, N.W. Calgary, Alberta, CanadaT2N 4N1
| |
Collapse
|
26
|
Chen J, Sgouralis I, Moore LC, Layton HE, Layton AT. A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. Am J Physiol Renal Physiol 2010; 300:F669-81. [PMID: 21190949 DOI: 10.1152/ajprenal.00382.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Elevations in systolic blood pressure are believed to be closely linked to the pathogenesis and progression of renal diseases. It has been hypothesized that the afferent arteriole (AA) protects the glomerulus from the damaging effects of hypertension by sensing increases in systolic blood pressure and responding with a compensatory vasoconstriction (Loutzenhiser R, Bidani A, Chilton L. Circ Res 90: 1316-1324, 2002). To investigate this hypothesis, we developed a mathematical model of the myogenic response of an AA wall, based on an arteriole model (Gonzalez-Fernandez JM, Ermentrout B. Math Biosci 119: 127-167, 1994). The model incorporates ionic transport, cell membrane potential, contraction of the AA smooth muscle cell, and the mechanics of a thick-walled cylinder. The model represents a myogenic response based on a pressure-induced shift in the voltage dependence of calcium channel openings: with increasing transmural pressure, model vessel diameter decreases; and with decreasing pressure, vessel diameter increases. Furthermore, the model myogenic mechanism includes a rate-sensitive component that yields constriction and dilation kinetics similar to behaviors observed in vitro. A parameter set is identified based on physical dimensions of an AA in a rat kidney. Model results suggest that the interaction of Ca(2+) and K(+) fluxes mediated by voltage-gated and voltage-calcium-gated channels, respectively, gives rise to periodicity in the transport of the two ions. This results in a time-periodic cytoplasmic calcium concentration, myosin light chain phosphorylation, and cross-bridge formation with the attending muscle stress. Furthermore, the model predicts myogenic responses that agree with experimental observations, most notably those which demonstrate that the renal AA constricts in response to increases in both steady and systolic blood pressures. The myogenic model captures these essential functions of the renal AA, and it may prove useful as a fundamental component in a multiscale model of the renal microvasculature suitable for investigations of the pathogenesis of hypertensive renal diseases.
Collapse
Affiliation(s)
- Jing Chen
- Department of Mathematics, Duke University, Durham, North Carolina; and State University of New York, Stony Brook, New York, USA
| | | | | | | | | |
Collapse
|
27
|
Salomonsson M, Braunstein TH, Holstein-Rathlou NH, Jensen LJ. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline: possible role of TRPC channels. Acta Physiol (Oxf) 2010; 200:265-78. [PMID: 20426773 DOI: 10.1111/j.1748-1716.2010.02141.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. METHODS R (340/380) Fura-2 fluorescence was used as an index for intracellular free Ca(2+) concentration ([Ca(2+)](i)). Immunofluorescence detected the expression of TRPC channels. RESULTS TRPC 1, 3 and 6 were expressed in afferent arteriolar vascular smooth muscle cells. Under extracellular Na(+)-free (0 Na) conditions, the plateau response to NA was 115% of the baseline R(340/380) (control response 123%). However, as the R(340/380) baseline increased (7%) after 0 Na the plateau reached the same level as during control conditions. Similar responses were obtained after blockade of the Na(+)/Ca(2+) exchanger. The L-type blocker nifedipine reduced the plateau response to NA both under control (from 134% to 116% of baseline) and 0 Na conditions (from 112% to 103% of baseline). In the presence of nifedipine, the putative TRPC channel blockers SKF 96365 (30 μm) and Gd(3+) (100 μm) further reduced the plateau Ca(2+) responses to NA (from 117% to 102% and from 117% to 110% respectively). CONCLUSION We found that Na(+) is not crucial for the NA-induced depolarization that mediates Ca(2+) entry via L-type channels. In addition, the results are consistent with the idea that TRPC1/3/6 Ca(2+) -permeable cation channels expressed in afferent arteriolar smooth muscle cells mediate Ca(2+) entry during NA stimulation.
Collapse
Affiliation(s)
- M Salomonsson
- Division of Renal and Vascular Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
28
|
Amiloride lowers arterial pressure in cyp1a1ren-2 transgenic rats without affecting renal vascular function. J Hypertens 2010; 28:2267-77. [DOI: 10.1097/hjh.0b013e32833d77b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Grifoni SC, Chiposi R, McKey SE, Ryan MJ, Drummond HA. Altered whole kidney blood flow autoregulation in a mouse model of reduced beta-ENaC. Am J Physiol Renal Physiol 2010; 298:F285-92. [PMID: 19889952 PMCID: PMC2822522 DOI: 10.1152/ajprenal.00496.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 11/03/2009] [Indexed: 12/26/2022] Open
Abstract
Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether beta-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced beta-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0-5, 6-25, and 110-120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by approximately 50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between beta-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in beta-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest beta-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo.
Collapse
Affiliation(s)
- Samira C Grifoni
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | | | |
Collapse
|
30
|
Fellner SK, Arendshorst WJ. Complex interactions of NO/cGMP/PKG systems on Ca2+ signaling in afferent arteriolar vascular smooth muscle. Am J Physiol Heart Circ Physiol 2009; 298:H144-51. [PMID: 19880669 DOI: 10.1152/ajpheart.00485.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the effects of nitric oxide (NO) and the cyclic GMP (cGMP)/protein kinase G (PKG) system on Ca(2+) signaling in vascular smooth muscle cells (VSMC) of resistance vessels in general and afferent arterioles in particular. We tested the hypotheses that cGMP-, Ca(2+)-dependent big potassium channels (BK(Ca(2+))) buffer the Ca(2+) response to depolarization by high extracellular KCl and that NO inhibits adenosine diphosphoribose (ADPR) cyclase, thereby reducing the Ca(2+)-induced Ca(2+) release. We isolated rat afferent arterioles, utilizing the magnetized microsphere method, and measured cytosolic Ca(2+) concentration ([Ca(2+)](i)) with fura-2, a preparation in which endothelial cells do not participate in [Ca(2+)](i) responses. KCl (50 mM)-induced depolarization causes an immediate increase in [Ca(2+)](i) of 151 nM. The blockers N(omega)-nitro-L-arginine methyl ester (of nitric oxide synthase), 1,2,4-oxodiazolo-[4,3-a]quinoxalin-1-one (ODQ, of guanylyl cyclase), KT-5823 (of PKG activation), and iberiotoxin (IBX, of BK(Ca(2+)) activity) do not alter the [Ca(2+)](i) response to KCl, suggesting no discernible endogenous NO production under basal conditions. The NO donor sodium nitroprusside (SNP) reduces the [Ca(2+)](i) response to 77 nM; IBX restores the response to control values. These data show that activation of BK(Ca(2+)) in the presence of NO/cGMP provides a brake on KCl-induced [Ca(2+)](i) responses. Experiments with the inhibitor of cyclic ADPR 8-bromo-cyclic ADPR (8-Br-cADPR) and SNP + downstream inhibitors of PKG and BK(Ca(2+)) suggest that NO inhibits ADPR cyclase in intact arterioles. When we pretreat afferent arterioles with 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP; 10 muM), the response to KCl is 143 nM. However, in the presence of both IBX and 8-Br-cGMP, we observe a surprising doubling of the [Ca(2+)](i) response to KCl. In summary, we present evidence for effects of the NO/cGMP/PKG system to reduce [Ca(2+)](i), via activation of BK(Ca(2+)) and possibly by inhibition of ADPR cyclase, and to increase [Ca(2+)](i), by a mechanism(s) yet to be defined.
Collapse
Affiliation(s)
- Susan K Fellner
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
31
|
Guan Z, Pollock JS, Cook AK, Hobbs JL, Inscho EW. Effect of epithelial sodium channel blockade on the myogenic response of rat juxtamedullary afferent arterioles. Hypertension 2009; 54:1062-9. [PMID: 19720952 DOI: 10.1161/hypertensionaha.109.137992] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanotransduction mechanism underlying the myogenic response is poorly understood, but evidence implicates participation of epithelial sodium channel (ENaC)-like proteins. Therefore, the role of ENaC on the afferent arteriolar myogenic response was investigated in vitro using the blood-perfused juxtamedullary nephron technique. Papillectomy was used to isolate myogenic influences by eliminating tubuloglomerular feedback signals. Autoregulatory responses were assessed by manipulating perfusion pressure in 30-mm Hg steps. Under control conditions, arteriolar diameter increased by 15% from 13.0+/-1.3 to 14.7+/-1.2 microm (P<0.05) after reducing perfusion pressure from 100 to 70 mm Hg. Diameter decreased to 11.3+/-1.1 and 10.6+/-1.0 microm after increasing pressure to 130 and 160 mm Hg (88+/-1 and 81+/-2% of control diameter, P<0.05), respectively. Pressure-mediated autoregulatory responses were significantly inhibited by superfusion of 10 micromol/L amiloride (102+/-2, 97+/-4, and 94+/-3% of control diameter), or 10 micromol/L benzamil (106+/-5, 100+/-3, and 103+/-3% of control diameter), and when perfusing with blood containing 5 micromol/L amiloride (106+/-2, 97+/-4, and 97+/-4% of control diameter). Vasoconstrictor responses to 55 mmol/L KCl were preserved as diameters decreased by 67+/-4, 55+/-8, and 60+/-4% in afferent arterioles superfused with amiloride or benzamil, and perfused with amiloride, respectively. These responses were similar to responses obtained from control afferent arterioles (64+/-6%, P>0.05). Immunofluorescence revealed expression of the alpha, beta, and gamma subunits of ENaC in freshly isolated preglomerular microvascular smooth muscle cells. These results demonstrate that selective ENaC inhibitors attenuate afferent arteriolar myogenic responses and suggest that ENaC may function as mechanosensitive ion channels initiating pressure-dependent myogenic responses in rat juxtamedullary afferent arterioles.
Collapse
Affiliation(s)
- Zhengrong Guan
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Affiliation(s)
- Edward W Inscho
- Department of Physiology, Medical College of Georgia, 1120 15th St, Augusta, GA 30912-3000, USA.
| |
Collapse
|
34
|
Eichstaedt S, Gäbler K, Below S, Müller C, Kohler C, Engelmann S, Hildebrandt P, Völker U, Hecker M, Hildebrandt JP. Effects of Staphylococcus aureus-hemolysin A on calcium signalling in immortalized human airway epithelial cells. Cell Calcium 2008; 45:165-76. [PMID: 18922576 DOI: 10.1016/j.ceca.2008.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 08/27/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
Part of the innate defence of bronchial epithelia against bacterial colonization is secretion of salt and water which generally depends on coordinated actions of receptor-mediated cAMP- and calcium signalling. The hypothesis that Staphylococcus aureus-virulence factors interfere with endogenous signals in host cells was tested by measuring agonist-mediated changes in [Ca(2+)](i) in S9 cells upon pre-incubation with bacterial secretory products. S9 cells responded to mAChR-activation with calcium release from intracellular stores and capacitative calcium influx. Treatment of cells with culture supernatants of S. aureus (COL) or with recombinant alpha-hemolysin (Hla) resulted in time- and concentration-dependent changes in [Ca(2+)](i). High concentrations of Hla (2000 ng/ml) resulted in elevations in [Ca(2+)](i) elicited by accelerated calcium influx. A general Hla-mediated permeabilization of S9 cell membranes to small molecules, however, did not occur. Lower concentrations of Hla (200 ng/ml) induced a reduction in [Ca(2+)](i)-levels during the sustained plateau phase of receptor-mediated calcium signalling which was abolished by pre-incubation of cells with carboxyeosin, an inhibitor of the plasma membrane calcium-ATPase. This indicates that low concentrations of Hla change calcium signalling by accelerating pump-driven extrusion of Ca(2+) ions. In vivo, such a mechanism may result in attenuation of calcium-mediated cellular defence functions and facilitation of bacterial adherence to the bronchial epithelium.
Collapse
Affiliation(s)
- Stefanie Eichstaedt
- Animal Physiology and Biochemistry, Zoological Institute, Johann Sebastian Bach-Strasse 11/12, Ernst Moritz Arndt-University, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|