1
|
Çam SB, Çiftci E, Gürbüz N, Altun B, Korkusuz P. Allogeneic bone marrow mesenchymal stem cell-derived exosomes alleviate human hypoxic AKI-on-a-Chip within a tight treatment window. Stem Cell Res Ther 2024; 15:105. [PMID: 38600585 PMCID: PMC11005291 DOI: 10.1186/s13287-024-03674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Acute hypoxic proximal tubule (PT) injury and subsequent maladaptive repair present high mortality and increased risk of acute kidney injury (AKI) - chronic kidney disease (CKD) transition. Human bone marrow mesenchymal stem cell-derived exosomes (hBMMSC-Exos) as potential cell therapeutics can be translated into clinics if drawbacks on safety and efficacy are clarified. Here, we determined the real-time effective dose and treatment window of allogeneic hBMMSC-Exos, evaluated their performance on the structural and functional integrity of 3D microfluidic acute hypoxic PT injury platform. METHODS hBMMSC-Exos were isolated and characterized. Real-time impedance-based cell proliferation analysis (RTCA) determined the effective dose and treatment window for acute hypoxic PT injury. A 2-lane 3D gravity-driven microfluidic platform was set to mimic PT in vitro. ZO-1, acetylated α-tubulin immunolabelling, and permeability index assessed structural; cell proliferation by WST-1 measured functional integrity of PT. RESULTS hBMMSC-Exos induced PT proliferation with ED50 of 172,582 µg/ml at the 26th hour. Hypoxia significantly decreased ZO-1, increased permeability index, and decreased cell proliferation rate on 24-48 h in the microfluidic platform. hBMMSC-Exos reinforced polarity by a 1.72-fold increase in ZO-1, restored permeability by 20/45-fold against 20/155 kDa dextran and increased epithelial proliferation 3-fold compared to control. CONCLUSIONS The real-time potency assay and 3D gravity-driven microfluidic acute hypoxic PT injury platform precisely demonstrated the therapeutic performance window of allogeneic hBMMSC-Exos on ischemic AKI based on structural and functional cellular data. The novel standardized, non-invasive two-step system validates the cell-based personalized theragnostic tool in a real-time physiological microenvironment prior to safe and efficient clinical usage in nephrology.
Collapse
Affiliation(s)
- Sefa Burak Çam
- Faculty of Medicine, Dept. of Histology and Embryology, Hacettepe University, Ankara, Ankara, 06230, Turkey
| | - Eda Çiftci
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, 06230, Turkey
| | - Nazlıhan Gürbüz
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, 06230, Turkey
| | - Bülent Altun
- Faculty of Medicine, Dept. of Nephrology, Hacettepe University, Ankara, 06230, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Dept. of Histology and Embryology, Hacettepe University, Ankara, Ankara, 06230, Turkey.
| |
Collapse
|
2
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Zununi Vahed S, Ardalan M. Ischemic tubular injury: Oxygen-sensitive signals and metabolic reprogramming. Inflammopharmacology 2023:10.1007/s10787-023-01232-x. [PMID: 37131045 DOI: 10.1007/s10787-023-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
The kidneys are the most vulnerable organs to severe ischemic insult that results in cellular hypoxia under pathophysiological conditions. Large amounts of oxygen are consumed by the kidneys, mainly to produce energy for tubular reabsorption. Beyond high oxygen demand and the low oxygen supply, different other factors make kidneys vulnerable to ischemia which is deemed to be a major cause of acute kidney injury (AKI). On the other hand, kidneys are capable of sensing and responding to oxygen alternations to evade harms resulting from inadequate oxygen. The hypoxia-inducible factor (HIF) is the main conserved oxygen-sensing mechanism that maintains homeostasis under hypoxia through direct/indirect regulation of several genes that contribute to metabolic adaptation, angiogenesis, energy conservation, erythropoiesis, and so on. In response to oxygen availability, prolyl-hydroxylases (PHDs) control the HIF stability. This review focuses on the oxygen-sensing mechanisms in kidneys, particularly in proximal tubular cells (PTCs) and discusses the molecules involved in ischemic response and metabolic reprogramming. Moreover, the possible roles of non-coding RNAs (microRNAs and long non-coding RNAs) in the development of ischemic AKI are put forward.
Collapse
Affiliation(s)
| | | | - Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
3
|
Huang X, Guo X, Yan G, Zhang Y, Yao Y, Qiao Y, Wang D, Chen G, Zhang W, Tang C, Cao F. Dapagliflozin Attenuates Contrast-induced Acute Kidney Injury by Regulating the HIF-1α/HE4/NF-κB Pathway. J Cardiovasc Pharmacol 2022; 79:904-913. [PMID: 35383661 PMCID: PMC9162274 DOI: 10.1097/fjc.0000000000001268] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/13/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Contrast-induced acute kidney injury (CI-AKI) causes clinically acquired nephropathy in patients who undergo coronary interventions. Hypoxic injury to proximal tubular epithelial cells is a pathological mechanism of CI-AKI. Previous studies have shown that hypoxia activates HIF-1α/HE4/NF-κB to enhance renal fibrosis, and the SGLT-2 inhibitor luseogliflozin inhibits hypoxia-inducible factor (HIF)-1α expression to reduce the progression of diabetic nephropathy. However, the therapeutic effects and mechanisms of SGLT-2 inhibitors on CI-AKI are unclear. We explored the role of the HIF-1α/HE4/NF-κB pathway in CI-AKI and how dapagliflozin effectively treats CI-AKI by inhibiting this pathway. In vitro, cells were divided into the control, hypoxia, hypoxia + dapagliflozin, and hypoxia + pSilencer-HIF-1α groups. Cellular hypoxia, apoptosis, and related protein expression were evaluated by immunofluorescence, western blotting, and flow cytometry, respectively. Dapagliflozin significantly decreased oxygen consumption, HIF-1α, human epididymis protein 4 (HE4), NF-κB expression, and apoptotic cells compared with the control (P < 0.01). In vivo, rats were divided into the control (C), diabetes (D), diabetes + contrast media, and diabetes + contrast media + dapagliflozin groups. Rats in the latter 2 groups were treated with dapagliflozin for 2 days. CI-AKI was induced by intravenously injecting indomethacin, N-nitro-l-arginine methyl ester, and iohexol. The effects of dapagliflozin on CI-AKI rats were elucidated by assessing renal function, H&E staining, and immunohistochemistry. Serum creatinine, urea nitrogen, TUNEL-positive tubular cells, HIF-1α, HE4, NF-κB expression, and histopathological scores were increased in diabetes + contrast media rats compared with C, D, and diabetes + dapagliflozin + contrast media rats (P < 0.01). Thus, dapagliflozin may ameliorate CI-AKI through suppression of HIF-1α/HE4/NF-κB signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Xu Huang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaoxu Guo
- Department of Digestive Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China;
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Zhang
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China; and
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Gecai Chen
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, People's Republic of China
| | - Weiwei Zhang
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China; and
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Feng Cao
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General Hospital, Beijing, China; and
| |
Collapse
|
4
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
5
|
Schaub JA, Venkatachalam MA, Weinberg JM. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD. KIDNEY360 2020; 2:355-364. [PMID: 35373028 PMCID: PMC8740982 DOI: 10.34067/kid.0004772020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/22/2020] [Indexed: 02/04/2023]
Abstract
The proximal tubule relies on oxidative mitochondrial metabolism to meet its energy needs and has limited capacity for glycolysis, which makes it uniquely susceptible to damage during AKI, especially after ischemia and anoxia. Under these conditions, mitochondrial ATP production is initially decreased by several mechanisms, including fatty acid-induced uncoupling and inhibition of respiration related to changes in the shape and volume of mitochondria. Glycolysis is initially insufficient as a source of ATP to protect the cells and mitochondrial function, but supplementation of tricarboxylic acid cycle intermediates augments anaerobic ATP production, and improves recovery of mitochondrial oxidative metabolism. Incomplete recovery is characterized by defects of respiratory enzymes and lipid metabolism. During the transition to CKD, tubular cells atrophy but maintain high expression of glycolytic enzymes, and there is decreased fatty acid oxidation. These metabolic changes may be amenable to a number of therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer A. Schaub
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Joel M. Weinberg
- Nephrology Division, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
6
|
Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, Ota T. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 2019; 9:14754. [PMID: 31611596 PMCID: PMC6791873 DOI: 10.1038/s41598-019-51343-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023] Open
Abstract
Previous studies have demonstrated intrarenal hypoxia in patients with diabetes. Hypoxia-inducible factor (HIF)-1 plays an important role in hypoxia-induced tubulointerstitial fibrosis. Recent clinical trials have confirmed the renoprotective action of SGLT2 inhibitors in diabetic nephropathy. We explored the effects of an SGLT2 inhibitor, luseogliflozin on HIF-1α expression in human renal proximal tubular epithelial cells (HRPTECs). Luseogliflozin significantly inhibited hypoxia-induced HIF-1α protein expression in HRPTECs. In addition, luseogliflozin inhibited hypoxia-induced the expression of the HIF-1α target genes PAI-1, VEGF, GLUT1, HK2 and PKM. Although luseogliflozin increased phosphorylated-AMP-activated protein kinase α (p-AMPKα) levels, the AMPK activator AICAR did not changed hypoxia-induced HIF-1α expression. Luseogliflozin suppressed the oxygen consumption rate in HRPTECs, and subsequently decreased hypoxia-sensitive dye, pimonidazole staining under hypoxia, suggesting that luseogliflozin promoted the degradation of HIF-1α protein by redistribution of intracellular oxygen. To confirm the inhibitory effect of luseogliflozin on hypoxia-induced HIF-1α protein in vivo, we treated male diabetic db/db mice with luseogliflozin for 8 to 16 weeks. Luseogliflozin attenuated cortical tubular HIF-1α expression, tubular injury and interstitial fibronectin in db/db mice. Together, luseogliflozin inhibits hypoxia-induced HIF-1α accumulation by suppressing mitochondrial oxygen consumption. The SGLT2 inhibitors may protect diabetic kidneys by therapeutically targeting HIF-1α protein.
Collapse
Affiliation(s)
- Ryoichi Bessho
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan.
| | - Takao Takiyama
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Yasutaka Takeda
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan
| | - Tsuguhito Ota
- Division of Metabolism and Biosystemic Science, Department of Internal Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, 078-8510, Japan.
| |
Collapse
|
7
|
Jiao Y, Jiang H, Lu H, Yang Y, Zhang Y, Zhang K, Liu H. Deficiency of hypoxia inducible factor-1α promoted progression of diabetic nephropathy with hypertension. Exp Ther Med 2018; 16:3658-3662. [PMID: 30233722 DOI: 10.3892/etm.2018.6621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/13/2018] [Indexed: 12/19/2022] Open
Abstract
The present study was designed to investigate the effect of hypoxia inducible factor-1α (HIF-1α) on diabetic nephropathy (DN) with hypertension. HIF-1α deficient mice (Mx/HIF-1α-/-) were constructed and treated with streptozotocin (STZ) injection for hypertensive DN induction. Normal C57BL/6 mice received STZ or no treatment (normal) were considered as controls. Three days post STZ administration; body weight, fasting blood glucose (FBG), 24 h urinary albumin and systolic blood pressure (SBP) were measured weekly. Periodic acid-Schiff's staining was performed for histologic analysis of glomeruli damage. In comparison with the normal control, significant upregulation and downregulation of HIF-1α was, respectively, detected in diabetic and HIF-1α-/- mice (P<0.01). In comparison with STZ-induced diabetic mice, HIF-1α-/- + STZ mice displayed reduced body weight, and increased FBG, urinary albumin and SBP. PAS showed HIF-1α-/- + STZ mice had damaged kidney tissues, with more renal fibrosis and apparent glomerular hypertrophy. These results demonstrated that HIF-1α deficiency accelerated DN progression with increasing hypertension in mice.
Collapse
Affiliation(s)
- Yuejiang Jiao
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology, The 1st Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471033, P.R. China
| | - Haibo Lu
- Department of Endocrinology, The 1st Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471033, P.R. China
| | - Yiping Yang
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Yanfang Zhang
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Kun Zhang
- Department of Endocrinology, The 1st Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471033, P.R. China
| | - Hui Liu
- Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| |
Collapse
|
8
|
Zepeda-Orozco D, Wen HM, Hamilton BA, Raikwar NS, Thomas CP. EGF regulation of proximal tubule cell proliferation and VEGF-A secretion. Physiol Rep 2017; 5:5/18/e13453. [PMID: 28963126 PMCID: PMC5617933 DOI: 10.14814/phy2.13453] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Proximal tubule cell (PTC) proliferation is critical for tubular regeneration and recovery from acute kidney injury. Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF‐A) are important for the maintenance of tubulointerstitial integrity and can stimulate PTC proliferation. We utilized HK‐2 cells, an immortalized human PTC line, to characterize the EGF‐dependent regulation of VEGF‐A secretion and proliferation in PTCs. We demonstrate that EGF stimulates VEGF‐A secretion via the EGF receptor (EGFR) and stimulates cell proliferation via activation of the VEGF receptor, VEGFR‐2. EGFR activation promotes MAPK (ERK1/2) activation and HIF‐1α expression, which are required for basal and EGF‐stimulated VEGF‐A secretion. EGF also stimulates the phosphorylation of P70S6 kinase (P70S6K), the downstream target of mTORC1. Rapamycin decreased basal and EGF stimulated HIF‐1α and enhanced MAPK (ERK1/2) activation, while MAPK (ERK/12) inhibition downregulated HIF‐1α expression and the phosphorylation of p70S6K. EGF stimulation of p70S6K was also independent of p‐AKT. Inhibition of the mTORC1 pathway with rapamycin abolished phosphorylation of p70S6K but had no effect on VEGF‐A secretion, indicating that EGF‐stimulated VEGF‐A secretion did not require mTORC1 pathway activation. We demonstrate evidence of a complex crosstalk between the MAPK/ERK and mTORC1 pathways, wherein MAPK (ERK1/2) activation stimulates p‐P70S6K, while p‐P70S6K activation seems to inhibit MAPK (ERK1/2) in EGF‐treated HK‐2 cells. Our results suggest that EGF stimulates MAPK (ERK1/2) in HK‐2 cells, which in turn increases HIF‐1α expression and VEGF‐A secretion, indicating that VEGF‐A mediates EGF‐stimulated cell proliferation as an autocrine proximal tubular epithelial cell growth factor.
Collapse
Affiliation(s)
- Diana Zepeda-Orozco
- Division of Pediatric Nephrology, Stead Family Department of Pediatrics, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Hsiang M Wen
- Division of Pediatric Nephrology, Stead Family Department of Pediatrics, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Bradley A Hamilton
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Nandita S Raikwar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christie P Thomas
- Division of Pediatric Nephrology, Stead Family Department of Pediatrics, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,VA Medical Center, Iowa City, Iowa
| |
Collapse
|
9
|
Chen Y, Jiang S, Zou J, Zhong Y, Ding X. Silencing HIF-1α aggravates growth inhibition and necrosis of proximal renal tubular epithelial cell under hypoxia. Ren Fail 2016; 38:1726-1734. [PMID: 27756181 DOI: 10.1080/0886022x.2016.1229994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The kidney is particularly susceptible to ischemia/hypoxia insult while dysfunction of proximal tubular epithelial cells (PTEC) is a primary pathologic hallmark in acute kidney injury. Hypoxia-inducible factor-1 (HIF-1) is a key regulator responsible for cellular hypoxic responses. Therefore, we investigated the effects of HIF-1 suppression, using small interference RNA (siRNA), upon the cell fate of PTEC under hypoxia, and explored the underlying possible molecular mechanism. Hypoxia was induced with hypoxia mimetic cobalt chloride. Our data showed that, in HIF-1α siRNA group, the HK-2 cells growth inhibition and necrosis became worse than those in hypoxia group. However, for apoptosis, no significant difference was observed between them. Consistent with the downregulation of HIF-1α in HIF-1α siRNA group, both mRNA and protein expression of glucose transporter-1 (Glut-1) and vascular endothelial growth factor (VEGF) also reduced more significantly than those in hypoxia group. In conclusion, silencing HIF-1α gene could aggravate growth inhibition and necrosis of PTEC under hypoxia. We provide evidence, from the opposite direction, that HIF-1 activation under hypoxia may facilitate adaptation and survival of proximal renal tubular cells, and the beneficial effects may be related to its downstream genes, such as Glut-1 and VEGF.
Collapse
Affiliation(s)
- Yue Chen
- a Department of Nephrology , Tongji Hospital, Tongji University , Shanghai , China.,b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Suhua Jiang
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Jianzhou Zou
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Yihong Zhong
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Xiaoqiang Ding
- b Department of Nephrology , Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
10
|
Markó L, Vigolo E, Hinze C, Park JK, Roël G, Balogh A, Choi M, Wübken A, Cording J, Blasig IE, Luft FC, Scheidereit C, Schmidt-Ott KM, Schmidt-Ullrich R, Müller DN. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI. J Am Soc Nephrol 2016; 27:2658-69. [PMID: 26823548 DOI: 10.1681/asn.2015070748] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type-specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2-3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB-dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response.
Collapse
Affiliation(s)
- Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany;
| | - Emilia Vigolo
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Giulietta Roël
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - András Balogh
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mira Choi
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anne Wübken
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Jimmi Cording
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; and
| | - Ingolf E Blasig
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany; and
| | - Friedrich C Luft
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany; Department of Nephrology, Charité Medical Faculty, Berlin, Germany
| | | | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
11
|
Suh HN, Lee YJ, Kim MO, Ryu JM, Han HJ. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells. J Cell Physiol 2014; 229:1557-68. [PMID: 24591095 DOI: 10.1002/jcp.24599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Liu XJ, Tan Y, Geng YQ, Wang Z, Ye JH, Yin XY, Fu B. Proximal tubule toll-like receptor 4 expression linked to inflammation and apoptosis following hypoxia/reoxygenation injury. Am J Nephrol 2014; 39:337-47. [PMID: 24751828 DOI: 10.1159/000360549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) plays a key role in mediating kidney damage during ischemia/reperfusion (I/R) injury, and its expression is enhanced following renal I/R injury. Our study focused on TLR4 silencing-mediated downstream antiapoptotic pathways during hypoxia/reoxygenation (H/R) and investigated whether TLR4 overexpression exacerbates the renal damage induced by I/R injury. METHODS Proximal tubule epithelial cells (PTECs) were isolated and H/R injury mediated by ATP depletion, and replenishment was performed to mimic in vivo I/R injury. PTECs were transfected with either TLR4 siRNA or TLR4-overexpressing vectors to determine the contribution of TLR4 to H/R injury-induced apoptosis and inflammatory response. RESULTS H/R injury significantly enhanced PTEC apoptosis (p < 0.01) and the production of tumor necrosis factor (TNF)-α and interleukin (IL)-8; however, TLR4 silencing significantly reversed these effects (p < 0.05). Moreover, compared to PTECs or PTECs-siCon exposed to H/R injury, overexpression of TLR4 further upregulated TNF-α and IL-8 (p < 0.05), but did not enhance apoptosis. The expression of cytochrome C and caspases 3, 8, and 9 was decreased in the siTLR4 group compared to controls after H/R injury, whereas TLR4 silencing did not alter CHOP expression. TLR4 overexpression failed to promote the expression of cytochrome C and caspases 3, 8, and 9, and reduced the expression of CHOP and GPR78. CONCLUSIONS Knockdown of TLR4 could protect PTECs from H/R injury via inhibiting mitochondrial and death receptor pathways. TLR4 overexpression did not increase PTEC apoptosis induced by H/R injury due in part to the downregulation of CHOP.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- Department of Nephrology, Chinese PLA General Hospital (301 Hospital), Kidney Institute of Chinese PLA, State Key Laboratory of Kidney Diseases (2011DAV00088), National Clinical Research Center for Kidney Diseases (2013BAI09B05), Nanchang, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death. Toxicol Lett 2013; 221:176-84. [DOI: 10.1016/j.toxlet.2013.06.231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/20/2022]
|
14
|
Kapitsinou PP, Jaffe J, Michael M, Swan CE, Duffy KJ, Erickson-Miller CL, Haase VH. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am J Physiol Renal Physiol 2012; 302:F1172-9. [PMID: 22262480 PMCID: PMC3362175 DOI: 10.1152/ajprenal.00667.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/17/2012] [Indexed: 01/23/2023] Open
Abstract
Acute kidney injury (AKI) due to ischemia is an important contributor to the progression of chronic kidney disease (CKD). Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia-inducible factors (HIF), which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. While activation of HIF protects from ischemic cell death, HIF has been shown to promote fibrosis in experimental models of CKD. The impact of HIF activation on AKI-induced fibrosis has not been defined. Here, we investigated the role of pharmacologic HIF activation in AKI-associated fibrosis and inflammation. We found that pharmacologic inhibition of HIF prolyl hydroxylation before AKI ameliorated fibrosis and prevented anemia, while inhibition of HIF prolyl hydroxylation in the early recovery phase of AKI did not affect short- or long-term clinical outcome. Therefore, preischemic targeting of the PHD/HIF pathway represents an effective therapeutic strategy for the prevention of CKD resulting from AKI, and it warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Pinelopi P Kapitsinou
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
16
|
Schley G, Klanke B, Schödel J, Forstreuter F, Shukla D, Kurtz A, Amann K, Wiesener MS, Rosen S, Eckardt KU, Maxwell PH, Willam C. Hypoxia-inducible transcription factors stabilization in the thick ascending limb protects against ischemic acute kidney injury. J Am Soc Nephrol 2011; 22:2004-15. [PMID: 21921145 DOI: 10.1681/asn.2010121249] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-inducible transcription factors (HIF) protect cells against oxygen deprivation, and HIF stabilization before ischemia mitigates tissue injury. Because ischemic acute kidney injury (AKI) often involves the thick ascending limb (TAL), modulation of HIF in this segment may be protective. Here, we generated mice with targeted TAL deletion of the von Hippel-Lindau protein (Vhl), which mediates HIF degradation under normoxia, using Tamm-Horsfall protein (Thp)-driven Cre expression. These mice showed strong expression of HIF-1α in TALs but no changes in kidney morphology or function under control conditions. Deficiency of Vhl in the TAL markedly attenuated proximal tubular injury and preserved TAL function following ischemia-reperfusion, which may be partially a result of enhanced expression of glycolytic enzymes and lactate metabolism. These results highlight the importance of the thick ascending limb in the pathogenesis of AKI and suggest that pharmacologically targeting the HIF system may have potential to prevent and mitigate AKI.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nuremberg, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, Makino Y, Haneda M. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1α expression and oxygen metabolism. Diabetes 2011; 60:981-92. [PMID: 21282369 PMCID: PMC3046859 DOI: 10.2337/db10-0655] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Chronic hypoxia has been recognized as a key regulator in renal tubulointerstitial fibrosis, as seen in diabetic nephropathy, which is associated with the activation of hypoxia-inducible factor (HIF)-1α. We assess here the effects of the biguanide, metformin, on the expression of HIF-1α in diabetic nephropathy using renal proximal tubular cells and type 2 diabetic rats. RESEARCH DESIGN AND METHODS We explored the effects of metformin on the expression of HIF-1α using human renal proximal tubular epithelial cells (HRPTECs). Male Zucker diabetic fatty (ZDF; Gmi-fa/fa) rats were treated from 9 to 39 weeks with metformin (250 mg ⋅ kg(-1) ⋅ day(-1)) or insulin. RESULTS Metformin inhibited hypoxia-induced HIF-1α accumulation and the expression of HIF-1-targeted genes in HRPTECs. Although metformin activated the downstream pathways of AMP-activated protein kinase (AMPK), neither the AMPK activator, AICAR, nor the mTOR inhibitor, rapamycin, suppressed hypoxia-induced HIF-1α expression. In addition, knockdown of AMPK-α did not abolish the inhibitory effects of metformin on HIF-1α expression. The proteasome inhibitor, MG-132, completely eradicated the suppression of hypoxia-induced HIF-1α accumulation by metformin. The inhibitors of mitochondrial respiration similarly suppressed hypoxia-induced HIF-1α expression. Metformin significantly decreased ATP production and oxygen consumption rates, which subsequently led to increased cellular oxygen tension. Finally, metformin, but not insulin, attenuated tubular HIF-1α expression and pimonidazole staining and ameliorated tubular injury in ZDF rats. CONCLUSIONS Our data suggest that hypoxia-induced HIF-1α accumulation in diabetic nephropathy could be suppressed by the antidiabetes drug, metformin, through the repression of oxygen consumption.
Collapse
Affiliation(s)
- Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki S, Yokoyama U, Abe T, Kiyonari H, Yamashita N, Kato Y, Kurotani R, Sato M, Okumura S, Ishikawa Y. Differential roles of Epac in regulating cell death in neuronal and myocardial cells. J Biol Chem 2010; 285:24248-59. [PMID: 20516079 DOI: 10.1074/jbc.m109.094581] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell survival and death play critical roles in tissues composed of post-mitotic cells. Cyclic AMP (cAMP) has been known to exert a distinct effect on cell susceptibility to apoptosis, protecting neuronal cells and deteriorating myocardial cells. These effects are primarily studied using protein kinase A activation. In this study we show the differential roles of Epac, an exchange protein activated by cAMP and a new effector molecule of cAMP signaling, in regulating apoptosis in these cell types. Both stimulation of Epac by 8-p-methoxyphenylthon-2'-O-methyl-cAMP and overexpression of Epac significantly increased DNA fragmentation and TUNEL (terminal deoxynucleotidyltransferase-mediated biotin nick end-labeling)-positive cell counts in mouse cortical neurons but not in cardiac myocytes. In contrast, stimulation of protein kinase A increased apoptosis in cardiac myocytes but not in neuronal cells. In cortical neurons the expression of the Bcl-2 interacting member protein (Bim) was increased by stimulation of Epac at the transcriptional level and was decreased in mice with genetic disruption of Epac1. Epac-induced neuronal apoptosis was attenuated by the silencing of Bim. Furthermore, Epac1 disruption in vivo abolished the 3-nitropropionic acid-induced neuronal apoptosis that occurs in wild-type mice. These results suggest that Epac induces neuron-specific apoptosis through increasing Bim expression. Because the disruption of Epac exerted a protective effect on neuronal apoptosis in vivo, the inhibition of Epac may be a consideration in designing a therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sayaka Suzuki
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Khanna AK, Xu J, Baquet C, Mehra MR. Adverse effects of nicotine and immunosuppression on proximal tubular epithelial cell viability, tissue repair and oxidative stress gene expression. J Heart Lung Transplant 2009; 28:612-20. [PMID: 19481023 DOI: 10.1016/j.healun.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/20/2009] [Accepted: 03/05/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Renal dysfunction in non-renal transplantation is a major arbiter of poor late allograft outcomes. Tobacco recidivism is an important modifiable risk marker for cardiac allograft loss, but its effects on renal dysfunction remain poorly studied. METHODS In a 96-well plate, 10(-5) proximal tubular epithelial (PTE) cells (HK-2, American Type Culture Collection) were cultured overnight and treated with sirolimus (SRL; 100 nmol/liter), nicotine (N; 10(-7) mol/liter) and mycophenolate mofetil (MMF; 10 micromol/liter), alone or in combination for 24 hours. Cell viability was quantified by treatment with tetrazolium salt WST-1 and calculated as the difference in percent inhibition with respect to the optical densitometry (OD) of treated and untreated cells. Gene and protein expression was analyzed using real-time polymerase chain reaction and Western blot techniques. RESULTS OD decreased with SRL (-52.7 +/- 2.85%), N (-47.3 +/- 3.84%) and MMF (-53.3 +/- 2.4%) in isolation. Further reduction in OD occurred when N was combined with SRL (-63 +/- 2.3%, p < 0.04), MMF (-64.3 +/- 1.45%, p < 0.02) or the combination of SRL and MMF (-78.2%, p < 0.007). Compared with control, treatment of PTE cells with N increased mRNA expression of transforming growth factor-beta (TGF-beta; 10-fold), connective tissue growth factor (CTGF; 25-fold), osteopontin (OPN; 10-fold) and NADPH oxidase components (p22(phox), NOX-1 and Rac-1 at 18-, 16- and 12-fold, respectively). The pre-treatment of cells with inhibitor of superoxide generator diphenylene iodonium (DPI) reversed these effects. CONCLUSIONS Nicotine adversely amplified the effects of SRL and MMF on tissue repair and oxidative stress markers, subsequently modulating PTE viability. However, caution is advised in extrapolating these in vitro findings to the human model.
Collapse
Affiliation(s)
- Ashwani K Khanna
- Tobacco Research Laboratory, Division of Cardiology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
20
|
Losser MR, Damoisel C, Payen D. [Glucose metabolism in acute critical situation]. ACTA ACUST UNITED AC 2009; 28:e181-92. [PMID: 19394189 DOI: 10.1016/j.annfar.2009.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M-R Losser
- Service d'anesthésie-réanimation, hôpital Saint-Louis, AP-HP, université Paris-Diderot, 1, avenue Claude-Vellefaux, 75745 Paris cedex 10, France
| | | | | |
Collapse
|
21
|
Russ AL, Dadarlat IA, Haberstroh KM, Rundell AE. Investigating the role of ischemia vs. elevated hydrostatic pressure associated with acute obstructive uropathy. Ann Biomed Eng 2009; 37:1415-24. [PMID: 19381812 DOI: 10.1007/s10439-009-9695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 04/07/2009] [Indexed: 11/29/2022]
Abstract
Obstructive uropathy can cause irreversible renal damage. It has been hypothesized that elevated hydrostatic pressure within renal tubules and/or renal ischemia contributes to cellular injury following obstruction. However, these assaults are essentially impossible to isolate in vivo. Therefore, we developed a novel pressure system to evaluate the isolated and coordinated effects of elevated hydrostatic pressure and ischemic insults on renal cells in vitro. Cells were subjected to: (1) elevated hydrostatic pressure (80 cm H(2)O); (2) ischemic insults (hypoxia (0% O(2)), hypercapnia (20% CO(2)), and 0 mM glucose media); and (3) elevated pressure + ischemic insults. Cellular responses including cell density, lactate dehydrogenase (LDH) release, and intracellular LDH (LDH(i)), were recorded after 24 h of insult and following recovery. Data were analyzed to assess the primary effects of ischemic insults and elevated pressure. Unlike pressure, ischemic insults exerted a primary effect on nearly all response measurements. We also evaluated the data for insult interactions and identified significant interactions between ischemic insults and pressure. Altogether, findings indicate that pressure may sub-lethally effect cells and alter cellular metabolism (LDH(i)) and membrane properties. Results suggest that renal ischemia may be the primary, but not the sole, cause of cellular injury induced by obstructive uropathy.
Collapse
Affiliation(s)
- Alissa L Russ
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN 47907-1791, USA.
| | | | | | | |
Collapse
|
22
|
Legrand M, Mik EG, Johannes T, Payen D, Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2008. [PMID: 18488066 DOI: 10.2119/2008-00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium-leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways' alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Legrand M, Mik EG, Johannes T, Payen D, Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med 2008; 14:502-16. [PMID: 18488066 DOI: 10.2119/2008-00006.legrand] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 04/17/2008] [Indexed: 12/18/2022] Open
Abstract
Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium-leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways' alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed.
Collapse
Affiliation(s)
- Matthieu Legrand
- Department of Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 2008; 15:678-85. [PMID: 18259193 DOI: 10.1038/cdd.2008.21] [Citation(s) in RCA: 613] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential mediators of the cellular oxygen-signaling pathway. They are heterodimeric transcription factors consisting of an oxygen-sensitive alpha subunit (HIF-alpha) and a constitutive beta subunit (HIF-beta) that facilitate both oxygen delivery and adaptation to oxygen deprivation by regulating the expression of genes that control glucose uptake, metabolism, angiogenesis, erythropoiesis, cell proliferation, and apoptosis. In most experimental models, the HIF pathway is a positive regulator of tumor growth as its inhibition often results in tumor suppression. In clinical samples, HIF is found elevated and correlates with poor patient prognosis in a variety of cancers. In summary, HIF regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy, making it a critical regulator of the malignant phenotype.
Collapse
Affiliation(s)
- E B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
25
|
Sun B, Zhang S, Zhang D, Gu Y, Zhang W, Zhao X. The influence of different microenvironments on melanoma invasiveness and microcirculation patterns: an animal experiment study in the mouse model. J Cancer Res Clin Oncol 2007; 133:979-85. [PMID: 17574475 DOI: 10.1007/s00432-007-0245-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
OBJECT To investigate the influence of different microenvironments on tumor microcirculation patterns and invasiveness capability. METHODS Melanoma B16 cells were injected into the abdominal cavity and skeletal muscle of C57 mice synchronously. CK-18 expression in melanoma was assessed to distinguish the malignant phenotype of tumors in the abdominal cavity from that in the skeletal muscle. HIF-1alpha, MMP-2 and MMP-9 expression and mRNA levels of MMP-2 and MMP-9 was detected to compare the mRNA levels of MMP-2 and MMP-9 from the two microenvironments. Cells positive for each immunohistochemical stain and the vessels representative of each type of microcirculation pattern were counted in two microenvironments. RESULTS CK-18 and HIF-1alpha expression of melanoma were significantly higher in the skeletal muscle than in the abdominal cavity (P<0.05). Compared with the abdominal cavity, melanoma cells in the skeletal muscle overexpressed MMP-2 and MMP-9 (P<0.05). Real time-PCR results also showed that MMP-2 and MMP-9 mRNA levels of melanoma were higher in the skeletal muscle than in the abdominal cavity (P<0.05). VM channels and endothelium-dependent vessels were the major microcirculation pattern in the skeletal muscle and in the abdominal cavity, respectively. CONCLUSION Different microenvironments affect invasiveness and blood supply patterns of melanoma.
Collapse
Affiliation(s)
- Baocun Sun
- Department of Pathology, Tianjin Cancer Hospital and Institute, Tianjin Medical University, Tianjin 300060, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
In chronic renal failure (CRF), renal impairment correlates with tubulointerstitial fibrosis characterized by inflammation, interstitial expansion with accumulation of extracellular matrix (ECM), tubular atrophy and vascular obliteration. Tubulointerstitial injury subsequent to glomerular sclerosis may be induced by proteinuria, leakage of glomerular filtrate or injury to the post-glomerular peritubular capillaries (hypoxia). In vivo data in animal models suggest that CRF is associated with hypoxia, with the decline in renal Po2 preceding ECM accumulation. Chronic renal failure is characterized by loss of microvascular profiles but, in the absence of microvascular obliteration, hypoxia can occur by a variety of complementary mechanisms, including anaemia, decreased capillary flow, increased vasoconstriction, increased metabolic demand and increased diffusion distances due to ECM deposition. Hypoxia regulates a wide array of genes, including many fibrogenic factors. Hypoxia-inducible factors (HIF) are the major, but not the sole, transcriptional regulators in the hypoxic response. In CRF, hypoxia may play a role in the sustained inflammatory response. In vitro studies in tubulointerstitial cells suggest that hypoxia can induce profibrogenic changes in proximal tubular epithelial cells and interstitial fibroblasts consistent with changes observed in CRF in vivo. The effect of hypoxia on renal microvascular cells warrants investigation. Hypoxia may play a role in the recruitment, retention and differentiation of circulating progenitor cells to the kidney contributing to the disease process and may also affect intrinsic stem cell populations. Chronic hypoxia in CRF fails to induce a sustained angiogenic response. Therapeutic manipulation of the hypoxic response may be of benefit in slowing progression of CRF. Potential therapies include correction of anaemia, inhibition of the renin-angiotensin system, administration of exogenous pro-angiogenic factors to protect the microvasculature, activation of HIF and hypoxia-mediated targeting of engineered progenitor cells.
Collapse
Affiliation(s)
- Jill T Norman
- Centre for Nephrology, Division of Medicine, Royal Free and University College Medical School, University College London, London, UK.
| | | |
Collapse
|
27
|
Miao G, Ostrowski RP, Mace J, Hough J, Hopper A, Peverini R, Chinnock R, Zhang J, Hathout E. Dynamic production of hypoxia-inducible factor-1alpha in early transplanted islets. Am J Transplant 2006; 6:2636-43. [PMID: 17049056 DOI: 10.1111/j.1600-6143.2006.01541.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
More than half of transplanted beta-cells undergo apoptotic cell death triggered by nonimmunological factors within a few days after transplantation. To investigate the dynamic hypoxic responses in early transplanted islets, syngeneic islets were transplanted under the kidney capsule of balb/c mice. Hypoxia-inducible factor-1alpha (HIF-1alpha) was strongly expressed at post-transplant day (POD) 1, increased on POD 3, and gradually diminished on POD 14. Insulin secretion decreased on POD 3 in association with a significant increase of HIF-1alpha-related beta-cell death, which can be suppressed by short-term hyperbaric oxygen therapy. On POD 7, apoptosis was not further activated by continually produced HIF-1alpha. In contrast, improvement of nerve growth factor and duodenal homeobox factor-1 (PDx-1) production resulted in islet graft recovery and remodeling. In addition, significant activation of vascular endothelial growth factor in islet grafts on POD 7 correlated with development of massive newly formed microvessels, whose maturation is advanced on POD 14 with gradual diminution of HIF-1alpha. We conclude that (1) transplanted islets strongly express HIF-1alpha in association with beta-cell death and decreased insulin production until adequate revascularization is established and (2) early suppression of HIF-1alpha results in less beta-cell death thereby minimizing early graft failure.
Collapse
Affiliation(s)
- G Miao
- Islet Transplant Laboratory, Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xie J, Guo Q. Apoptosis antagonizing transcription factor protects renal tubule cells against oxidative damage and apoptosis induced by ischemia-reperfusion. J Am Soc Nephrol 2006; 17:3336-46. [PMID: 17065240 DOI: 10.1681/asn.2006040311] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apoptosis antagonizing transcription factor (AATF) is a leucine zipper domain-containing protein that has antiapoptotic properties. AATF is expressed in several organs and tissues, including the kidney. AATF may participate in inhibition of proapoptotic pathways and/or activation of antiapoptotic pathways. Ischemia/reperfusion-induced renal injury (IRI) is clinically important because it typically damages renal tubular epithelial cells and glomerular cells and is the most common cause of acute renal failure. It now is reported that AATF is expressed in human kidney proximal tubule (HK-2) cells and in mouse primary renal tubule epithelial cells. Levels of AATF expression were altered significantly in these cells in a well-established in vitro model of renal IRI. In transfected HK-2 cells, RNA interference-mediated silencing of AATF exacerbated whereas overexpression of the full-length AATF ameliorated mitochondrial dysfunction, accumulation of superoxide and peroxynitrite, lipid peroxidation, caspase-3 activation, and apoptotic death that were induced by IRI. In primary renal tubule epithelial cells, overexpression of AATF mediated by recombinant adeno-associated virus (AAV) vectors resulted in significant antiapoptotic activity, whereas knockdown of AATF by small interference RNA led to exacerbated cell death after IRI. These results identify AATF as a novel cytoprotective factor against oxidative and apoptotic damage in renal tubular cells. AATF may represent a potential candidate for therapeutic application in IRI.
Collapse
Affiliation(s)
- Jun Xie
- Department of Physiology, The University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
29
|
Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 2006; 249:188-97. [PMID: 16997457 DOI: 10.1016/j.canlet.2006.08.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hypoxia can enhance tumor cell invasion and metastasis. The cause and the molecular mechanism are still not clear. METHODS In our study, mouse melanoma B16 cells were inoculated into mouse ischemic limbs and non-ischemic controls and the engrafted melanomas were subsequently observed. Vasculogenic mimicry channels in melanoma tumors of the two groups were counted and the expression of HIF-1alpha, MMP-2, MMP-9 and VEGF was assessed by immunohistochemical staining. Formalin-fixed, paraffin-embedded tissues were used for immunohistochemical staining. RESULTS In the early stage of engrafted melanoma growth, the size of melanomas in ischemic limbs increased slower than in the controls. However, later there was no obvious difference in their size. Melanoma tumors in the ischemic group had more vasculogenic mimicry channels than those in the controls (P=0.039). Similarly, the expression of HIF-1alpha, MMP-2, MMP-9 and VEGF was higher in the ischemic group than in the non-ischemic controls (P=0.024, 0.047, 0.007 and 0.025, respectively). There was a positive association in melanoma cells of the ischemic group between expression of HIF-1alpha and VEGF, and also between MMP-9 and MMP-2. In the ischemic group, there was statistical significance for the correlation between HIF-1alpha and VEGF expression (r=0.456, P=0.038). Furthermore, MMP-2 expression was positively correlated with MMP-9 and VEGF expression (r=0.589 and 0.502, P=0.008 and 0.024, respectively). CONCLUSIONS Melanoma cells in a hypoxic microenvironment increased HIF-1alpha expression and induced the formation of vasculogenic mimicry channels to acquire an adequate blood supply. On the other hand, the expression of MMP-2 and MMP-9 in tumor tissue increased to enhance the invasiveness. HIF-1alpha, MMP-2 and MMP-9 may be associated with the failure of stop-flow perfusion in some patients with melanoma.
Collapse
Affiliation(s)
- Baocun Sun
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, PR China.
| | | | | | | | | | | |
Collapse
|
30
|
Brooks C, Wang J, Yang T, Dong Z. Characterization of cell clones isolated from hypoxia-selected renal proximal tubular cells. Am J Physiol Renal Physiol 2006; 292:F243-52. [PMID: 16885151 DOI: 10.1152/ajprenal.00236.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Under hypoxia, some cells survive and others are irreversibly injured and die. The factors that determine cell fate under stress remain largely unknown. We recently selected death-resistant cells via repeated episodes of hypoxia. In the present study, 80 clones were isolated from the selected cells and their response to apoptotic injury was characterized. Compared with the wild-type cells, the isolated clones showed a general resistance to apoptosis: 13 were extremely resistant to azide-induced apoptosis, 10 to staurosporine, and 9 to cisplatin. The cell clones that most consistently demonstrated resistance or sensitivity to injury were further studied for their response to azide treatment. Azide induced comparable ATP depletion in these clones and wild-type cells. Hypoxia inducible factor-1 (HIF-1) was upregulated in several clones, but the upregulation did not correlate with cell death resistance. The selected clones maintained an epithelial phenotype, showing typical epithelial morphology, forming "domes" at high density, and expressing E-cadherin. Azide-induced Bax translocation and cytochrome c release, two critical mitochondrial events of apoptosis, were abrogated in death-resistant clones. In addition, cell lysates isolated from these clones showed lower caspase activation on addition of exogenous cytochrome c. Bax, Bak, and Bid expression in these clones was similar to that in wild-type cells, whereas Bcl-2 expression was higher in all the selected clones and, interestingly, Bcl-xL was markedly upregulated in the most death-resistant clones. The results suggest that apoptotic resistance of the selected clones is not determined by a single factor or molecule but, rather, by various alterations at the core apoptotic pathway.
Collapse
Affiliation(s)
- Craig Brooks
- Department of Cellular Biology and Anatomy, Medical College of Georgia, and Veterans Affairs Medical Center, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Tissue hypoxia not only occurs under pathological conditions but is also an important microenvironmental factor that is critical for normal embryonic development. Hypoxia-inducible factors HIF-1 and HIF-2 are oxygen-sensitive basic helix-loop-helix transcription factors, which regulate biological processes that facilitate both oxygen delivery and cellular adaptation to oxygen deprivation. HIFs consist of an oxygen-sensitive alpha-subunit, HIF-alpha, and a constitutively expressed beta-subunit, HIF-beta, and regulate the expression of genes that are involved in energy metabolism, angiogenesis, erythropoiesis and iron metabolism, cell proliferation, apoptosis, and other biological processes. Under conditions of normal Po(2), HIF-alpha is hydroxylated and targeted for rapid proteasomal degradation by the von Hippel-Lindau (VHL) E3-ubiquitin ligase. When cells experience hypoxia, HIF-alpha is stabilized and either dimerizes with HIF-beta in the nucleus to form transcriptionally active HIF, executing the canonical hypoxia response, or it physically interacts with unrelated proteins, thereby enabling convergence of HIF oxygen sensing with other signaling pathways. In the normal, fully developed kidney, HIF-1alpha is expressed in most cell types, whereas HIF-2alpha is mainly found in renal interstitial fibroblast-like cells and endothelial cells. This review summarizes some of the most recent advances in the HIF field and discusses their relevance to renal development, normal kidney function and disease.
Collapse
Affiliation(s)
- Volker H Haase
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6144, USA.
| |
Collapse
|
32
|
Wang J, Biju MP, Wang MH, Haase VH, Dong Z. Cytoprotective effects of hypoxia against cisplatin-induced tubular cell apoptosis: involvement of mitochondrial inhibition and p53 suppression. J Am Soc Nephrol 2006; 17:1875-85. [PMID: 16762987 DOI: 10.1681/asn.2005121371] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypoxia that is caused by vascular defects or disruption is commonly associated with renal diseases. During cisplatin nephrotoxicity, hypoxic regions are identified in the outer medulla and the renal cortex. However, the regulation of cisplatin injury by hypoxia is unclear. Previous work has demonstrated the cytoprotective effects of hypoxia against apoptotic injury. This study further examines the cytoprotective mechanisms in models of cisplatin-induced tubular cell apoptosis. In cultured renal tubular cells, 20 microM cisplatin induced approximately 60% apoptosis within 16 h. The rate of apoptosis was suppressed to < 20%, when the incubation was conducted under hypoxia (2% O2). Mitochondrial events of apoptosis, namely Bax accumulation and cytochrome c release, also were ameliorated. During cisplatin treatment, cell ATP was maintained in both normoxic and hypoxic cells. Hypoxic incubation lowered extracellular pH, but prevention of the pH decrease did not restore cisplatin-induced apoptosis. The cytoprotective effects of hypoxia also were independent of hypoxia-inducible factor 1 (HIF-1). Cobalt, as hypoxia, activated HIF-1 yet did not suppress cisplatin-induced apoptosis. Moreover, hypoxia suppressed cisplatin-induced apoptosis in HIF-1-deficient mouse embryonic stem cells and renal proximal tubular cells. Conversely, mitochondrial inhibitors, particularly inhibitors of respiration complex III (antimycin A and myxothiazol), mimicked hypoxia in apoptosis suppression. The effects of hypoxia and mitochondrial inhibitors were not additive. It is interesting that both hypoxia and complex III inhibitors ameliorated cisplatin-induced p53 activation. Therefore, the cytoprotective effects of hypoxia are independent of changes in cell ATP, pH, or HIF but may involve mitochondrial inhibition and the suppression of p53.
Collapse
Affiliation(s)
- Jinzhao Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|