1
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
2
|
Quadri SS, Cooper C, Ghaffar D, Vaishnav H, Nahar L. The Pathological Role of Pro(Renin) Receptor in Renal Inflammation. J Exp Pharmacol 2021; 13:339-344. [PMID: 33776491 PMCID: PMC7989955 DOI: 10.2147/jep.s297682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
(Pro)renin receptor (PRR) is the recently discovered component of the renin-angiotensin-aldosterone system (RAS). Many organs contain their own RAS, wherein PRR can exert organ-specific localized effects. The Binding of prorenin/renin to PRR activates angiotensin-dependent and independent pathways which leads to the development of physiological and pathological effects. Continued progress in PRR research suggests that the upregulation of PRR contributes to the development of hypertension, glomerular injury, and progression of kidney disease and inflammation. In the current review, we highlight the function of the PRR in renal inflammation in pathophysiological conditions.
Collapse
Affiliation(s)
- Syed S Quadri
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Caleb Cooper
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Dawood Ghaffar
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Hitesh Vaishnav
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN, USA
| | - Ludmila Nahar
- Department of Medicine, School of Medicine/John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
3
|
Abstract
The (pro)renin receptor ((P)RR) was first identified as a single-transmembrane receptor in human kidneys and initially attracted attention owing to its potential role as a regulator of the tissue renin-angiotensin system (RAS). Subsequent studies found that the (P)RR is widely distributed in organs throughout the body, including the kidneys, heart, brain, eyes, placenta and the immune system, and has multifaceted functions in vivo. The (P)RR has roles in various physiological processes, such as the cell cycle, autophagy, acid-base balance, energy metabolism, embryonic development, T cell homeostasis, water balance, blood pressure regulation, cardiac remodelling and maintenance of podocyte structure. These roles of the (P)RR are mediated by its effects on important biological systems and pathways including the tissue RAS, vacuolar H+-ATPase, Wnt, partitioning defective homologue (Par) and tyrosine phosphorylation. In addition, the (P)RR has been reported to contribute to the pathogenesis of diseases such as fibrosis, hypertension, pre-eclampsia, diabetic microangiopathy, acute kidney injury, cardiovascular disease, cancer and obesity. Current evidence suggests that the (P)RR has key roles in the normal development and maintenance of vital organs and that dysfunction of the (P)RR is associated with diseases that are characterized by a disruption of the homeostasis of physiological functions.
Collapse
|
4
|
(Pro)renin receptor contributes to renal mitochondria dysfunction, apoptosis and fibrosis in diabetic mice. Sci Rep 2019; 9:11667. [PMID: 31406124 PMCID: PMC6690878 DOI: 10.1038/s41598-019-47055-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/04/2019] [Indexed: 01/14/2023] Open
Abstract
Recently we demonstrated that increased renal (Pro)renin receptor (PRR) expression in diabetes contributes to development of diabetic kidney disease. However, the exact mechanisms involving PRR activity and diabetic kidney dysfunction are unknown. We hypothesized that PRR is localized in renal mitochondria and contributes to renal fibrosis and apoptosis through oxidative stress-induced mitochondria dysfunction. Controls and streptozotocin-induced diabetic C57BL/6 mice were injected with scramble shRNA and PRR shRNA and followed for a period of eight weeks. At the end of study, diabetic mice showed increased expressions of PRR and NOX4 in both total kidney tissue and renal mitochondria fraction. In addition, renal mitochondria of diabetic mice showed reduced protein expression and activity of SOD2 and ATP production and increased UCP2 expression. In diabetic kidney, there was upregulation in the expressions of caspase3, phos-Foxo3a, phos-NF-κB, fibronectin, and collagen IV and reduced expressions of Sirt1 and total-FOXO3a. Renal immunostaining revealed increased deposition of PRR, collagen and fibronectin in diabetic kidney. In diabetic mice, PRR knockdown decreased urine albumin to creatinine ratio and the renal expressions of PRR, NOX4, UCP2, caspase3, phos-FOXO3a, phos-NF-κB, collagen, and fibronectin, while increased the renal mitochondria expression and activity of SOD2, ATP production, and the renal expressions of Sirt1 and total-FOXO3a. In conclusion, increased expression of PRR localized in renal mitochondria and diabetic kidney induced mitochondria dysfunction, and enhanced renal apoptosis and fibrosis in diabetes by upregulation of mitochondria NOX4/SOD2/UCP2 signaling pathway.
Collapse
|
5
|
Chen L, Cao J, Cao D, Wang M, Xiang H, Yang Y, Ying T, Cong H. Protective effect of dexmedetomidine against diabetic hyperglycemia-exacerbated cerebral ischemia/reperfusion injury: An in vivo and in vitro study. Life Sci 2019; 235:116553. [PMID: 31185237 DOI: 10.1016/j.lfs.2019.116553] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
AIMS Dexmedetomidine (Dex) has been noted to have neuroprotective effect against cerebral ischemia-reperfusion (I/R) injury. However, the effect of Dex in diabetic hyperglycemia-exacerbated cerebral I/R injury and its underlying mechanism remain unclear. MAIN METHODS The infarct volume and brain edema were evaluated by 2,3,5-triphenyltetrazolium chloride staining and standard wet-dry method. Modified neurological severity score was utilized to assess the neurological deficits. The oxidative stress and inflammation were evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and cell count kit-8 were applied to measure cell apoptosis and viability. KEY FINDINGS Dex treatment reduced infarct volume, decreased brain water content and improved neurological deficit in middle cerebral artery occlusion/reperfusion (MCAO/R) mice. Dex treatment reduced the levels of ROS, MDA, TNF-α and IL-1β in the entire middle cerebral artery territory of diabetic mice subjected to MCAO/R, as well as in primary culture of mouse hippocampal neurons stimulated with 50 mM glucose and oxygen glucose deprivation/reperfusion. Dex treatment inhibited neuronal apoptosis induced by diabetic hyperglycemia-exacerbated cerebral I/R injury. Dex upregulated nuclear factor of activated T-cells 5 (NFAT5) and Sirtuin 1 (SIRT1) expression, induced NF-E2-related factor 2 (Nrf2) translocation from cytoplasm to nucleus and inhibited the acetylation of Nrf2. However, these changes triggered by Dex treatment were abrogated by NFAT5 knockdown. SIGNIFICANCE Dex protects against diabetic hyperglycemia-exacerbated cerebral I/R injury through attenuation of oxidative stress, inflammation and apoptosis. The underlying mechanism is at least the NFAT5/SIRT1/Nrf2 signaling pathway dependent.
Collapse
Affiliation(s)
- Lingyang Chen
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China
| | - Jianbin Cao
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China
| | - Donghang Cao
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China.
| | - Mingcang Wang
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China.
| | - Haifei Xiang
- Department of Anesthesiology, Enze Hospital, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China
| | - Yanqing Yang
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China
| | - Tingting Ying
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China
| | - Haitao Cong
- Department of Anesthesiology, Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang, China; Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai 317000, Zhejiang, China
| |
Collapse
|
6
|
(Pro)Renin receptor mediates obesity-induced antinatriuresis and elevated blood pressure via upregulation of the renal epithelial sodium channel. PLoS One 2018; 13:e0202419. [PMID: 30118514 PMCID: PMC6097690 DOI: 10.1371/journal.pone.0202419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Recent studies have demonstrated that the renal (pro)renin receptor (PRR) regulates expression of the alpha subunit of the epithelial sodium channel (α-ENaC). In this study we hypothesized that the renal PRR mediates high fat diet (HFD)-induced sodium retention and elevated systolic blood pressure (SBP) by enhancing expression of the epithelial sodium channel (α-ENaC). In our study we used a recently developed inducible nephron specific PRR knockout mouse. Mice (n = 6 each group) were allocated to receive regular diet (RD, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 10 weeks. Body weight (BW), SBP, urine volume (UV) and urine sodium (UNaV), as well as renal interstitial Angiotensin II (Ang II), and renal medullary expression of PRR, p-SGK-1, α-ENaC were monitored in RD and HFD mice with or without PRR knockout. At baseline, there were no significant differences in BW, BP, UV or UNaV between different animal groups. At the end of the study, HFD mice had significant increases in SBP, BW, and significant reductions in UV and UNaV. Compared to RD, HFD significantly increased mRNA and protein expression of PRR, α-ENaC, p-SGK-1, and Ang II. Compared to HFD alone, PRR knockout mice on HFD had reduced mRNA and protein expression of PRR, p-SGK-1, and α-ENaC, as well as increased UV, UNaV and significantly reduced SBP. RIF Ang II was significantly increased by HFD and did not change in response to PRR knockout. We conclude that obesity induced sodium retention and elevated SBP are mediated by the PRR-SGK-1- α-ENaC pathway independent of Ang II.
Collapse
|
7
|
Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145. [PMID: 29101170 PMCID: PMC5867650 DOI: 10.1152/ajpheart.00373.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023]
Abstract
Since the prorenin receptor (PRR) was first reported, its physiological role in many cellular processes has been under intense scrutiny. The PRR is currently recognized as a multifunctional receptor with major roles as an accessory protein of the vacuolar-type H+-ATPase and as an intermediary in the Wnt signaling pathway. As a member of the renin-angiotensin system (RAS), the PRR has demonstrated to be of relevance in cardiovascular diseases (CVD) because it can activate prorenin and enhance the enzymatic activity of renin, thus promoting angiotensin II formation. Indeed, there is an association between PRR gene polymorphisms and CVD. Independent of angiotensin II, the activation of the PRR further stimulates intracellular signals linked to fibrosis. Studies using tissues and cells from a variety of organs and systems have supported its roles in multiple functions, although some remain controversial. In the brain, the PRR appears to be involved in the central regulation of blood pressure via activation of RAS- and non-RAS-dependent mechanisms. In the heart, the PRR promotes atrial structural and electrical remodeling. Nonetheless, animals overexpressing the PRR do not exhibit cardiac injury. In the kidney, the PRR is involved in the development of ureteric bud branching, urine concentration, and regulation of blood pressure. There is great interest in the PRR contributions to T cell homeostasis and to the development of visceral and brown fat. In this mini-review, we discuss the evidence for the pathophysiological roles of the PRR with emphasis in CVD.
Collapse
Affiliation(s)
- Matthew Hennrikus
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
- Tulane University Renal and Hypertension Center of Excellence , New Orleans, Louisiana
| |
Collapse
|
8
|
Sites of Action of Subtoxic Doses of the Iodine-Containing X-Ray Contrast Medium Iopromide on the Kidney and the Search for Means of Preventing the Development of Nephropathy. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Quadri SS, Culver S, Siragy HM. Prorenin receptor mediates inflammation in renal ischemia. Clin Exp Pharmacol Physiol 2017; 45:133-139. [PMID: 28980339 DOI: 10.1111/1440-1681.12868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022]
Abstract
We hypothesized that PRR contributes to renal inflammation in the 2-kidney, 1-clip (2K1C) renal ischaemia model. Male Sprague-Dawley rats were fed normal sodium diet. Blood pressure (BP) was obtained on days 0 and 28 after left renal artery clipping that reduced renal blood flow by 40%. Renal expression of TNF-α, COX-2, NF-κB, IL-1β, MCP-1 and collagen type I were assessed in sham and 2K1C rats with or without left renal administration of scramble or PRR shRNA. At baseline, there were no differences in BP. Compared to sham, MAP significantly increased in clipped animals (sham 102 ± 1.9 vs 2K1C 131.8 ± 3.09 mmHg, P < .05) and was not influenced by scramble or PRR shRNA treatment. Compared to sham and contra lateral (non-clipped) kidney, there was upregulation in mRNA and protein expression of PRR (99% and 45%, P < .01), TNF-α (72% and 50%, P < .05), COX-2 (72% and 39%, P < .05), p-NF-κB (92%, P < .05), MCP-1 (87%, P < .05) and immunostaining of collagen type I in the clipped kidney. These increases were not influenced by scramble shRNA. Compared to 2K1C and scramble shRNA, PRR shRNA treatment in the clipped kidney significantly reduced the expression of PRR (62% and 57%, P < .01), TNF-α (51% and 50%, P < .05), COX-2 (50% and 56%, P < .05), p-NF-κB by 68% (P < .05), MCP-1 by 73% (P < .05) and collagen type I respectively. Ang II was increased in both kidneys and did not change in response to scramble or PRR shRNA treatments. We conclude that PRR mediates renal inflammation in renal ischaemia independent of blood pressure and Ang II.
Collapse
Affiliation(s)
- Syed S Quadri
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Silas Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA, USA
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
10
|
Su J, Liu X, Xu C, Lu X, Wang F, Fang H, Lu A, Qiu Q, Li C, Yang T. NF-κB-dependent upregulation of (pro)renin receptor mediates high-NaCl-induced apoptosis in mouse inner medullary collecting duct cells. Am J Physiol Cell Physiol 2017; 313:C612-C620. [PMID: 29021196 DOI: 10.1152/ajpcell.00068.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
(Pro)renin receptor (PRR), a component of the renin-angiotensin system, has emerged as a new regulator of collecting duct function. The present study was designed to investigate the role of PRR in high salt-induced apoptosis in cultured mouse inner medullary collecting duct cells, mIMCD-K2 cells. Exposure to high NaCl at 550 mosM/kgH2O increased PRR protein abundance, as did exposure to mannitol, sodium gluconate, or choline chloride. This was accompanied by upregulation of the abundance of phosphorylated NF-κB p65 protein. NF-κB inhibition with QNZ, caffeic acid phenethyl ester, or small interfering RNA (siRNA)-mediated silencing of NF-κB p65 attenuated high-NaCl-induced PRR upregulation. Exposure to high salt for 24 h induced apoptosis, as assessed by immunoblotting and immunocytochemistry analysis of cleaved caspase-3 and flow cytometry analysis of the number of apoptotic cells. High-NaCl-induced apoptosis was attenuated by a PRR decoy inhibitor, PRO20, or siRNA-mediated silencing of NF-κB p65. These results show that induction of PRR expression by exposure to high NaCl occurs through activation of NF-κB, thus contributing to cell apoptosis.
Collapse
Affiliation(s)
- Jiahui Su
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiyang Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Chuanming Xu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Xiaohan Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China.,Department of Internal Medicine, University of Utah, and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Fei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China.,Department of Internal Medicine, University of Utah, and Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Hui Fang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Aihua Lu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Qixiang Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University , Guangzhou , China.,Department of Internal Medicine, University of Utah, and Veterans Affairs Medical Center , Salt Lake City, Utah
| |
Collapse
|
11
|
Affiliation(s)
- Pablo Nakagawa
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Curt D Sigmund
- From the Department of Pharmacology, UIHC Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City.
| |
Collapse
|
12
|
Xia X, Qu B, Li YM, Yang LB, Fan KX, Zheng H, Huang HD, Gu JW, Kuang YQ, Ma Y. NFAT5 protects astrocytes against oxygen-glucose-serum deprivation/restoration damage via the SIRT1/Nrf2 pathway. J Mol Neurosci 2016; 61:96-104. [PMID: 27838821 DOI: 10.1007/s12031-016-0849-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023]
Abstract
Nuclear factor of activated T cells (NFAT) is a multifunctional cytokine family. NFAT5 was recently reported to be involved in many neuronal functions, but its specific function remains unclear. In this study, our aim is to investigate whether NFAT5 overexpression can protect astrocytes against oxygen-glucose-serum deprivation/restoration (OGSD/R) damage. In vivo, rats were subjected to ischemia-reperfusion injury, resulting in increased water content, infarct volume, and expression of NFAT5 protein in rat spinal cord. After primary culture for spinal cord astrocytes, the in vitro OGSD/R model was established. The results of the CCK8 assay and flow cytometry showed that, in the OGSD/R group, astrocyte cell viability was downregulated, but astrocyte apoptosis increased. Caspase 3 activity increased as well. Levels of NFAT5, as detected by real-time quantitative PCR and western blot, decreased under OGSD/R, as did SIRT1. Commercial kits for activity assays were used to show that OGSD/R inhibited SIRT1 activation but accelerated SOD activation after OGSD/R. Next, pcDNA-NFAT5 or NFAT5 siRNA was transfected into astrocytes. Overexpression of NFAT5 not only promoted the survival of the astrocytes and SIRT1 activation under OGSD/R but also inhibited cell apoptosis and SOD activation. Moreover, overexpression of NFAT5 apparently diminished histone acetylation and promoted the nuclear transport of Nrf2. Our results show that NFAT5 protects spinal astrocytes in a manner that depends on activation of the SIRT1/Nrf2 pathway. These findings present a novel potential molecular mechanism for NFAT5 therapy in the context of spinal cord injury.
Collapse
Affiliation(s)
- Xun Xia
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Bo Qu
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Yun-Ming Li
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Li-Bin Yang
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Ke-Xia Fan
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Hui Zheng
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Hai-Dong Huang
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China
| | - Jian-Wen Gu
- Department of Neurological Surgery, The 306th Hospital of PLA, No. 9 Anxiangbeili, Chaoyang District, Beijing, 100101, China.
| | - Yong-Qin Kuang
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China.
| | - Yuan Ma
- Department of Neurological Surgery, Chengdu Military General Hospital, Chengdu, 610083, China.
| |
Collapse
|
13
|
(Pro)renin receptor contributes to regulation of renal epithelial sodium channel. J Hypertens 2016; 34:486-94; discussion 494. [PMID: 26771338 DOI: 10.1097/hjh.0000000000000825] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies reported increased (Pro)renin receptor (PRR) expression during low-salt intake. We hypothesized that PRR plays a role in regulation of renal epithelial sodium channel (ENaC) through serum and glucocorticoid-inducible kinase isoform 1 (SGK-1)-neural precursor cell expressed, developmentally downregulated 4-2 (Nedd4-2) signaling pathway. METHOD Male Sprague-Dawley rats on normal-sodium diet and mouse renal inner medullary collecting duct cells treated with NaCl at 130 mmol/l (normal salt), or 63 mmol/l (low salt) were studied. PRR and α-ENaC expressions were evaluated 1 week after right uninephrectomy and left renal interstitial administration of 5% dextrose, scramble shRNA, or PRR shRNA (n = 6 each treatment). RESULTS In-vivo PRR shRNA significantly reduced expressions of PRR throughout the kidney and α-ENaC subunits in the renal medulla. In inner medullary collecting duct cells, low salt or angiotensin II (Ang II) augmented the mRNA and protein expressions of PRR (P < 0.05), SGK-1 (P < 0.05), and α-ENaC (P < 0.05). Low salt or Ang II increased the phosphorylation of Nedd4-2. In cells treated with low salt or Ang II, PRR siRNA significantly downregulated the mRNA and protein expressions of PRR (P < 0.05), SGK-1 (P < 0.05), and α-ENaC expression (P < 0.05). CONCLUSION We conclude that PRR contributes to the regulation of α-ENaC via SGK-1-Nedd4-2 signaling pathway.
Collapse
|
14
|
Ramkumar N, Kohan DE. Role of the Collecting Duct Renin Angiotensin System in Regulation of Blood Pressure and Renal Function. Curr Hypertens Rep 2016; 18:29. [PMID: 26951246 DOI: 10.1007/s11906-016-0638-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent evidence suggests that the renal tubular renin angiotensin system regulates urinary Na(+) and water excretion and blood pressure. Three key components of the tubular renin angiotensin system, namely renin, prorenin receptor, and angiotensin-II type 1 receptor, are localized to the collecting duct. This system may modulate collecting duct Na(+) and water reabsorption via angiotensin-II-dependent and angiotensin-II-independent pathways. Further, the system may be of greatest relevance in hypertensive states and particularly those characterized by high circulating angiotensin-II. In this review, we summarize the current knowledge on the synthesis, regulation, and function of collecting duct-derived renin angiotensin system components and examine recent developments with regard to regulation of blood pressure and renal fluid and Na(+) excretion.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology, University of Utah Health Sciences Center, 30 N 1900 E SOM 4R312, Salt Lake City, UT, 84132, USA
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, 30 N 1900 E SOM 4R312, Salt Lake City, UT, 84132, USA. .,Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Hu MZ, Zhou B, Mao HY, Sheng Q, Du B, Chen JL, Pang QF, Ji Y. Exogenous Hydrogen Sulfide Postconditioning Protects Isolated Rat Hearts From Ischemia/Reperfusion Injury Through Sirt1/PGC-1α Signaling Pathway. Int Heart J 2016; 57:477-82. [PMID: 27357440 DOI: 10.1536/ihj.15-506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sirt1 is a highly conserved nicotinamide adenine dinucleotide (NAD(+)) dependent histone deacetylase which plays an important role in heart diseases. Studies performed with Sirt1 activators indicated that it protects cells from ischemia/ reperfusion (I/R) injury. The protective effects of H2S against I/R injury also have been recognized. Hence, the present study was designed to explore whether Sirt1/PGC-1α participates in the protection of exogenous H2S postconditioning against I/R injury in isolated rat hearts. Isolated rat hearts were subjected to 30 minutes of global ischemia followed by 60 minutes of reperfusion after 20 minutes of equilibrium. During this procedure, the hearts were exposed to NaHS (10 μmol/L) treatment in the absence or presence of the selective Sirt1 inhibitor EX-527 (10 μmol/L). NaHS exerted a protective effect on isolated rat hearts subjected to I/R, as shown by the improved expression of Sirt1/PGC-1α associated with restoration of Sirt1 nuclear localization, cardiac function, decreased myocardial infarct size, decreased myocardial enzyme release, and several biochemical parameters, including up-regulation of the ATP and SOD levels, and down-regulation of the MDA level. However, treatment with EX-527 could partially prevent the above effects of NaHS postconditioning. These results indicate that H2S confers protective effects against I/R injury through the activation of Sirt1/PGC1α.
Collapse
|
16
|
Quadri SS, Culver SA, Li C, Siragy HM. Interaction of the renin angiotensin and cox systems in the kidney. Front Biosci (Schol Ed) 2016; 8:215-26. [PMID: 27100703 DOI: 10.2741/s459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays an important role in mediating actions of the renin-angiotensin system (RAS). This review sheds light on the recent developments regarding the complex interactions between components of RAS and COX-2; and their implications on renal function and disease. COX-2 is believed to counter regulate the effects of RAS activation and therefore counter balance the vasoconstriction effect of Ang II. In kidney, under normal conditions, these systems are essential for maintaining a balance between vasodilation and vasoconstriction. However, recent studies suggested a pivotal role for this interplay in pathology. COX-2 increases the renin release and Ang II formation leading to increase in blood pressure. COX-2 is also associated with diabetic nephropathy, where its upregulation in the kidney contributes to glomerular injury and albuminuria. Selective inhibition of COX-2 retards the progression of renal injury. COX-2 also mediates the pathologic effects of the (Pro)renin receptor (PRR) in the kidney. In summary, this review discusses the interaction between the RAS and COX-2 in health and disease.
Collapse
Affiliation(s)
- Syed S Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Silas A Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, VA,
| |
Collapse
|
17
|
Ramkumar N, Stuart D, Mironova E, Bugay V, Wang S, Abraham N, Ichihara A, Stockand JD, Kohan DE. Renal tubular epithelial cell prorenin receptor regulates blood pressure and sodium transport. Am J Physiol Renal Physiol 2016; 311:F186-94. [PMID: 27053687 DOI: 10.1152/ajprenal.00088.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological significance of the renal tubular prorenin receptor (PRR) has been difficult to elucidate due to developmental abnormalities associated with global or renal-specific PRR knockout (KO). We recently developed an inducible renal tubule-wide PRR KO using the Pax8/LC1 transgenes and demonstrated that disruption of renal tubular PRR at 1 mo of age caused no renal histological abnormalities. Here, we examined the role of renal tubular PRR in blood pressure (BP) regulation and Na(+) excretion and investigated the signaling mechanisms by which PRR regulates Na(+) balance. No detectable differences in BP were observed between control and PRR KO mice fed normal- or low-Na(+) diets. However, compared with controls, PRR KO mice had elevated plasma renin concentration and lower cumulative Na(+) balance with normal- and low-Na(+) intake. PRR KO mice had an attenuated hypertensive response and reduced Na(+) retention following angiotensin II (ANG II) infusion. Furthermore, PRR KO mice had significantly lower epithelial Na(+) channel (ENaC-α) expression. Treatment with mouse prorenin increased, while PRR antagonism decreased, ENaC activity in isolated split-open collecting ducts (CD). The prorenin effect was prevented by protein kinase A and Akt inhibition, but unaffected by blockade of AT1, ERK1/2, or p38 MAPK pathways. Taken together, these data indicate that renal tubular PRR, likely via direct prorenin/renin stimulation of PKA/Akt-dependent pathways, stimulates CD ENaC activity. Absence of renal tubular PRR promotes Na(+) wasting and reduces the hypertensive response to ANG II.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Elena Mironova
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Vladislav Bugay
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Atsuhiro Ichihara
- Department of Medicine II, Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - James D Stockand
- Department of Physiology, University of Texas Health Science Center, San Antonio, Texas; and
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah; Veterans Affairs Medical Center, Salt Lake City, Utah
| |
Collapse
|
18
|
Zhou X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J Nephrol 2016; 5:20-32. [PMID: 26788461 PMCID: PMC4707165 DOI: 10.5527/wjn.v5.i1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to maintain robustness against hypertonic or hypotonic stress.
Collapse
|
19
|
Küper C, Beck FX, Neuhofer W. Dual effect of lithium on NFAT5 activity in kidney cells. Front Physiol 2015; 6:264. [PMID: 26441681 PMCID: PMC4585311 DOI: 10.3389/fphys.2015.00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/07/2015] [Indexed: 01/20/2023] Open
Abstract
Lithium salts are used widely for treatment of bipolar and other mental disorders. Lithium therapy is accompanied frequently by renal side effects, such as nephrogenic diabetes insipidus or chronic kidney disease (CKD), but the molecular mechanisms underlying these effects are still poorly understood. In the present study we examined the effect of lithium on the activity of the osmosensitive transcriptional activator nuclear factor of activated T cells 5 (NFAT5, also known as TonEBP), which plays a key role in renal cellular osmoprotection and urinary concentrating ability. Interestingly, we found different effects of lithium on NFAT5 activity, depending on medium osmolality and incubation time. When cells were exposed to lithium for a relative short period (24 h), NFAT5 activity was significantly increased, especially under isosmotic conditions, resulting in an enhanced expression of the NFAT5 target gene heat shock protein 70 (HSP70). Further analysis revealed that the increase of NFAT5 activity depended primarily on an enhanced activity of the c-terminal transactivation domain (TAD), while NFAT5 protein abundance was largely unaffected. Enhanced activity of the TAD is probably mediated by lithium-induced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK-3β), which is in accordance with previous studies. When cells were exposed to lithium for a longer period (96 h), cellular NFAT5 activity and subsequently expression of HSP70 significantly decreased under hyperosmotic conditions, due to diminished NFAT5 protein abundance, also resulting from GSK-3β inhibition. Taken together, our results provide evidence that lithium has opposing effects on NFAT5 activity, depending on environmental osmolality and exposure duration. The potential impacts of these observations on the diverse effects of lithium on kidney function are discussed.
Collapse
Affiliation(s)
- Christoph Küper
- Department of Physiology, University of Munich Munich, Germany
| | | | - Wolfgang Neuhofer
- Medical Clinic V, University Hospital Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
20
|
Timucin AC, Bodur C, Basaga H. SIRT1 contributes to aldose reductase expression through modulating NFAT5 under osmotic stress: In vitro and in silico insights. Cell Signal 2015; 27:2160-72. [PMID: 26297866 DOI: 10.1016/j.cellsig.2015.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022]
Abstract
So far, a myriad of molecules were characterized to modulate NFAT5 and its downstream targets. Among these NFAT5 modifiers, SIRT1 was proposed to have a promising role in NFAT5 dependent events, yet the exact underlying mechanism still remains obscure. Hence, the link between SIRT1 and NFAT5-aldose reductase (AR) axis under osmotic stress, was aimed to be delineated in this study. A unique osmotic stress model was generated and its mechanistic components were deciphered in U937 monocytes. In this model, AR expression and nuclear NFAT5 stabilization were revealed to be positively regulated by SIRT1 through utilization of pharmacological modulators. Overexpression and co-transfection studies of NFAT5 and SIRT1 further validated the contribution of SIRT1 to AR and NFAT5. The involvement of SIRT1 activity in these events was mediated via modification of DNA binding of NFAT5 to AR ORE region. Besides, NFAT5 and SIRT1 were also shown to co-immunoprecipitate under isosmotic conditions and this interaction was disrupted by osmotic stress. Further in silico experiments were conducted to investigate if SIRT1 directly targets NFAT5. In this regard, certain lysine residues of NFAT5, when kept deacetylated, were found to contribute to its DNA binding and SIRT1 was shown to directly bind K282 of NFAT5. Based on these in vitro and in silico findings, SIRT1 was identified, for the first time, as a novel positive regulator of NFAT5 dependent AR expression under osmotic stress in U937 monocytes.
Collapse
Affiliation(s)
- Ahmet Can Timucin
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Orhanli, Tuzla, Istanbul, Turkey.
| | - Cagri Bodur
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Orhanli, Tuzla, Istanbul, Turkey.
| | - Huveyda Basaga
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Orhanli, Tuzla, Istanbul, Turkey.
| |
Collapse
|
21
|
Ramkumar N, Stuart D, Calquin M, Quadri S, Wang S, Van Hoek AN, Siragy HM, Ichihara A, Kohan DE. Nephron-specific deletion of the prorenin receptor causes a urine concentration defect. Am J Physiol Renal Physiol 2015; 309:F48-56. [PMID: 25995108 DOI: 10.1152/ajprenal.00126.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/11/2015] [Indexed: 01/27/2023] Open
Abstract
The prorenin receptor (PRR), a recently discovered component of the renin-angiotensin system, is expressed in the nephron in general and the collecting duct in particular. However, the physiological significance of nephron PRR remains unclear, partly due to developmental abnormalities associated with global or renal-specific PRR gene knockout (KO). Therefore, we developed mice with inducible nephron-wide PRR deletion using Pax8-reverse tetracycline transactivator and LC-1 transgenes and loxP flanked PRR alleles such that ablation of PRR occurs in adulthood, after induction with doxycycline. Nephron-specific PRR KO mice have normal survival to ∼1 yr of age and no renal histological defects. Compared with control mice, PRR KO mice had 65% lower medullary PRR mRNA and protein levels and markedly diminished renal PRR immunofluorescence. During both normal water intake and mild water restriction, PRR KO mice had significantly lower urine osmolality, higher water intake, and higher urine volume compared with control mice. No differences were seen in urine vasopressin excretion, urine Na(+) and K(+) excretion, plasma Na(+), or plasma osmolality between the two groups. However, PRR KO mice had reduced medullary aquaporin-2 levels and arginine vasopressin-stimulated cAMP accumulation in the isolated renal medulla compared with control mice. Taken together, these results suggest nephron PRR can potentially modulate renal water excretion.
Collapse
Affiliation(s)
- Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah;
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matias Calquin
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Syed Quadri
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Alfred N Van Hoek
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Helmy M Siragy
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - Atsuhiro Ichihara
- Department of Medicine II, Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| | - Donald E Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|