1
|
Inada A, Fukatsu A. Persistence and expansion of hypoxia detected by pimonidazole adduct immunostaining during progression of diabetic nephropathy in diabetic mice. Am J Physiol Renal Physiol 2023; 325:F527-F535. [PMID: 37615048 DOI: 10.1152/ajprenal.00160.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
Hypoxia and oxidative stress are considered to be underlying factors in the deterioration of renal function and pathogenesis in acute kidney injury (AKI) and chronic kidney disease, including diabetic nephropathy (DN). However, the long-term role of hypoxia in DN is unknown. Here, we investigated the distribution, severity, and time course of hypoxia during DN development in our well-established severely diabetic transgenic (Tg) DN mouse model that mimics human DN up to 80 wk of age, using pimonidazole adduct immunohistochemistry. The relationship between pimonidazole adduct distribution and hypoxia-inducible factor (HIF) expression was also examined. We found 1) persistent pimonidazole immunostaining mainly in the outer zone of the outer medulla, extending into the inner zone, 2) significant expansion of area and intensity up to 40 wk of age, and 3) characteristic subcellular localization mainly at apical sites in vesicular form by laser scanning microscopy of thin slices. The distribution of pimonidazole adducts was different from that of HIF reported previously, indicating that hypoxia does not directly contribute to persistent abnormal HIF expression. These results suggest that pimonidazole adducts produced under low [Formula: see text] conditions are sustained by a mechanism distinct from direct ischemia. We propose that in the long course of DN development, persistent hyperfiltration and hyperexcretion of glucose, albumin, and water increase metabolism and energy expenditure in the tubules, and such chronic stimulation leads to relative ischemia and local hypoxia, which may contribute in part to the loss of nephrons.NEW & NOTEWORTHY This study provides new insights into hypoxia during the long course of diabetic nephropathy development. Hypoxia was persistently localized only in limited areas and its distribution differed significantly from that of hypoxia-inducible factors. These findings suggests that in the long course of diabetic nephropathy development, increased energy requirements and limited blood supply may lead to relative ischemia and induction of local and persistent hypoxia, which may contribute in part to the loss of nephrons.
Collapse
Affiliation(s)
- Akari Inada
- Clinical Research Department, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Diabetes and Genes, Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
2
|
Habas E, Al Adab A, Arryes M, Alfitori G, Farfar K, Habas AM, Akbar RA, Rayani A, Habas E, Elzouki A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023; 15:e46737. [PMID: 38022248 PMCID: PMC10631488 DOI: 10.7759/cureus.46737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic kidney disease (CKD) is caused by hypoxia in the renal tissue, leading to inflammation and increased migration of pathogenic cells. Studies showed that leukocytes directly sense hypoxia and respond by initiating gene transcription, encoding the 2-integrin adhesion molecules. Moreover, other mechanisms participate in hypoxia, including anemia. CKD-associated anemia is common, which induces and worsens hypoxia, contributing to CKD progression. Anemia correction can slow CKD progression, but it should be cautiously approached. In this comprehensive review, the underlying pathophysiology mechanisms and the impact of renal tissue hypoxia and anemia in CKD onset and progression will be reviewed and discussed in detail. Searching for the latest updates in PubMed Central, Medline, PubMed database, Google Scholar, and Google search engines were conducted for original studies, including cross-sectional studies, cohort studies, clinical trials, and review articles using different keywords, phrases, and texts such as "CKD progression, anemia in CKD, CKD, anemia effect on CKD progression, anemia effect on CKD progression, and hypoxia and CKD progression". Kidney tissue hypoxia and anemia have an impact on CKD onset and progression. Hypoxia causes nephron cell death, enhancing fibrosis by increasing interstitium protein deposition, inflammatory cell activation, and apoptosis. Severe anemia correction improves life quality and may delay CKD progression. Detection and avoidance of the risk factors of hypoxia prevent recurrent acute kidney injury (AKI) and reduce the CKD rate. A better understanding of kidney hypoxia would prevent AKI and CKD and lead to new therapeutic strategies.
Collapse
Affiliation(s)
| | - Aisha Al Adab
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Mehdi Arryes
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | | | | - Ala M Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | - Raza A Akbar
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | - Amnna Rayani
- Hemat-oncology Department, Pediatric Tripoli Hospital, Tripoli University, Tripoli, LBY
| | - Eshrak Habas
- Internal Medicine, Tripoli University, Tripoli, LBY
| | | |
Collapse
|
3
|
Dilken O, Ince C, Kapucu A, Heeman PM, Ergin B. Furosemide exacerbated the impairment of renal function, oxygenation and medullary damage in a rat model of renal ischemia/reperfusion induced AKI. Intensive Care Med Exp 2023; 11:25. [PMID: 37121963 PMCID: PMC10149155 DOI: 10.1186/s40635-023-00509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Perioperative acute kidney injury (AKI) caused by ischemia-reperfusion (IR) is a significant contributor to mortality and morbidity after major surgery. Furosemide is commonly used in postoperative patients to promote diuresis and reduce tissue edema. However, the effects of furosemide on renal microcirculation, oxygenation and function are poorly understood during perioperative period following ischemic insult. Herein, we investigated the effects of furosemide in rats subjected IR insult. METHODS 24 Wistar albino rats were divided into 4 groups, with 6 in each; Sham-operated Control (C), Control + Furosemide (C + F), ischemia/reperfusion (IR), and IR + F. After induction of anesthesia (BL), supra-aortic occlusion was applied to IR and IR + F groups for 45 min followed by ongoing reperfusion for 15 min (T1) and 2 h (T2). Furosemide infusion was initiated simultaneously in the intervention groups after ischemia. Renal blood flow (RBF), vascular resistance (RVR), oxygen delivery (DO2ren) and consumption (VO2ren), sodium reabsorption (TNa+), oxygen utilization efficiency (VO2/TNa+), cortical (CμO2) and medullary (MμO2) microvascular oxygen pressures, urine output (UO) and creatinine clearance (Ccr) were measured. Biomarkers of inflammation, oxidative and nitrosative stress were measured and kidneys were harvested for histological analysis. RESULTS IR significantly decreased RBF, mainly by increasing RVR, which was exacerbated in the IR + F group at T2 (2198 ± 879 vs 4233 ± 2636 dyne/s/cm5, p = 0.07). CμO2 (61.6 ± 6.8 vs 86 ± 6.6 mmHg) and MμO2 (51.1 ± 4.1 vs 68.7 ± 4.9 mmHg, p < 0.05) were both reduced after IR and did not improve by furosemide. Moreover, VO2/TNa+ increased in the IR + F group at T2 with respect to the IR group (IR: 3.3 ± 2 vs IR + F: 8.2 ± 10 p = 0.07) suggesting a possible deterioration of oxygen utilization. Ccr did not change, but plasma creatinine increased significantly in IR + F groups. Histopathology revealed widespread damage both in the cortex and medulla in IR, IR + F and C + F groups. CONCLUSION Renal microvascular oxygenation, renal function, renal vascular resistance, oxygen utilization and damage were not improved by furosemide administration after IR insult. Our study suggests that furosemide may cause additional structural and functional impairment to the kidney following ischemic injury and should be used with caution.
Collapse
Affiliation(s)
- Olcay Dilken
- Laboratory of Translational Intensive Care, Department of Intensive Care Adult, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Intensive Care, Faculty of Medicine, University of Istanbul-Cerrahpasa, Istanbul, Turkey
| | - Can Ince
- Laboratory of Translational Intensive Care, Department of Intensive Care Adult, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Aysegul Kapucu
- Department of Zoology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Paul M Heeman
- Department of Medical Technical Innovation & Development (MIO), Amsterdam University Medical Centre (UMC) Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bülent Ergin
- Laboratory of Translational Intensive Care, Department of Intensive Care Adult, Erasmus MC, University Medical Center Rotterdam, Erasmus University, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|
5
|
Development of a photoacoustic microscopy technique to assess peritubular capillary function and oxygen metabolism in the mouse kidney. Kidney Int 2021; 100:613-620. [PMID: 34224760 DOI: 10.1016/j.kint.2021.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Microcirculatory changes and oxidative stress have long been associated with acute kidney injury. Despite substantial progress made by two-photon microscopy of microvascular responses to acute kidney injury in rodent models, little is known about the underlying changes in blood oxygen delivery and tissue oxygen metabolism. To fill this gap, we developed a label-free kidney imaging technique based on photoacoustic microscopy, which enables simultaneous quantification of hemoglobin concentration, oxygen saturation of hemoglobin, and blood flow in peritubular capillaries in vivo. Based on these microvascular parameters, microregional oxygen metabolism was quantified. We demonstrated the utility of this technique by studying kidney hemodynamic and oxygen-metabolic responses to acute kidney injury in mice subject to lipopolysaccharide-induced sepsis. Dynamic photoacoustic microscopy of the peritubular capillary function and tissue oxygen metabolism revealed that sepsis induced an acute and significant reduction in peritubular capillary oxygen saturation of hemoglobin, concomitant with a marked reduction in kidney ATP levels and contrasted with nominal changes in peritubular capillary flow and plasma creatinine. Thus, our technique opens new opportunities to study microvascular and metabolic dysfunction in acute and chronic kidney diseases.
Collapse
|
6
|
Franzén S, Näslund E, Wang H, Frithiof R. Prevention of hemorrhage-induced renal vasoconstriction and hypoxia by angiotensin II type 1 receptor antagonism in pigs. Am J Physiol Regul Integr Comp Physiol 2021; 321:R12-R20. [PMID: 34009032 DOI: 10.1152/ajpregu.00073.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Angiotensin II (ANG II) is a potent vasoconstrictor and may reduce renal blood flow (RBF), causing renal hypoxia. Hypotensive hemorrhage elevates plasma ANG II levels and is associated with increased risk of acute kidney injury. We hypothesized that ANG II antagonism prevents renal vasoconstriction and hypoxia caused by hemorrhage. Pigs were anaesthetized, surgically prepared, and randomized to intravenous losartan (1.5 mg·kg-1·h-1, n = 8) or an equal volume of intravenous Ringer acetate (vehicle-treated, n = 8). Hemorrhage was induced by continuous aspiration of blood to reach and sustain mean arterial pressure of <50 mmHg for 30 min. Plasma ANG II levels, hemodynamics and oxygenation were assessed 60 min prehemorrhage, 30-min after the start of hemorrhage, and 60 min posthemorrhage. Erythropoietin mRNA was analyzed in cortical and medullary tissue sampled at the end of the experiment. Hypotensive hemorrhage increased plasma ANG II levels and decreased RBF and oxygen delivery in both groups. Losartan-treated animals recovered in RBF and oxygen delivery, whereas vehicle-treated animals had persistently reduced RBF and oxygen delivery. In accordance, renal vascular resistance increased over time post hemorrhage in vehicle-treated animals but was unchanged in losartan-treated animals. Renal oxygen extraction rate and cortical erythropoietin mRNA levels increased in the vehicle group but not in the losartan group. In conclusion, ANG II antagonism alleviates prolonged renal vasoconstriction and renal hypoxia in a large animal model of hypotensive hemorrhage.
Collapse
Affiliation(s)
- Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Centre for Research and Development, Uppsala University/Region Gävleborg, Gavle, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Infections and Defenses, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2020; 28:e12673. [PMID: 33236393 DOI: 10.1111/micc.12673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Impaired tissue oxygen delivery is a major cause of organ damage and failure in critically ill patients, which can occur even when systemic parameters, including cardiac output and arterial hemoglobin saturation, are close to normal. This review addresses oxygen transport mechanisms at the microcirculatory scale, and how hypoxia may occur in spite of adequate convective oxygen supply. The structure of the microcirculation is intrinsically heterogeneous, with wide variations in vessel diameters and flow pathway lengths, and consequently also in blood flow rates and oxygen levels. The dynamic processes of structural adaptation and flow regulation continually adjust microvessel diameters to compensate for heterogeneity, redistributing flow according to metabolic needs to ensure adequate tissue oxygenation. A key role in flow regulation is played by conducted responses, which are generated and propagated by endothelial cells and signal upstream arterioles to dilate in response to local hypoxia. Several pathophysiological conditions can impair local flow regulation, causing hypoxia and tissue damage leading to organ failure. Therapeutic measures targeted to systemic parameters may not address or may even worsen tissue oxygenation at the microvascular level. Restoration of tissue oxygenation in critically ill patients may depend on restoration of endothelial cell function, including conducted responses.
Collapse
Affiliation(s)
- Tuhin K Roy
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, 85724, USA
| |
Collapse
|
8
|
Ullah MM, Ow CPC, Evans RG, Hilliard Krause LM. Impact of choice of kinetic model for the determination of transcutaneous FITC-sinistrin clearance in rats with streptozotocin-induced type 1 diabetes. Clin Exp Pharmacol Physiol 2020; 47:1158-1168. [PMID: 32160333 DOI: 10.1111/1440-1681.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Transcutaneous assessment of fluorescein isothiocyanate (FITC)-sinistrin clearance using an optical device was recently validated for determination of glomerular filtration rate (GFR) in conscious animals. In the current study, we compared four available kinetic models for calculating FITC-sinistrin clearance, to provide further insight into whether the choice of model might influence findings generated using this device. Specifically, we calculated the excretion half-life of FITC-sinistrin (minutes), rate constant (minute-1 ) and GFR indexed to bodyweight in control rats and rats with streptozotocin-induced diabetes across a 4-week experimental period using standard one-compartment (1-COM), two-compartment (2-COM) and three-compartment (3-COM) kinetic models (1-COM), and a three-compartment kinetic model with baseline correction (3-COMB). Glomerular hyperfiltration was detected in STZ-induced diabetic rats with the 2-COM or 3-COMB at day 14 and with the 3-COM at day 3 and 14 after induction of diabetes, but not at any time point using the 1-COM. From a theoretical perspective, we reasoned that the 3-COMB model provides a better estimate of t1/2 than the other models. Linear regression analysis of data generated using the 3-COMB showed a significant relationship between blood glucose and calculated GFR at the day 14 (P = .004) and day 28 (P = .01) time points, and a strong tendency for a relationship at the day 3 time point (P = .06). We conclude that hyperfiltration is an early and sustained characteristic of STZ-induced diabetes in rats. Furthermore, we propose that the 3-COMB model provides the most valid t1/2 for estimation of GFR via transcutaneous detection of FITC-sinistrin clearance.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Connie P C Ow
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Roger G Evans
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
9
|
Polichnowski AJ, Griffin KA, Licea-Vargas H, Lan R, Picken MM, Long J, Williamson GA, Rosenberger C, Mathia S, Venkatachalam MA, Bidani AK. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition. Am J Physiol Renal Physiol 2020; 318:F1086-F1099. [PMID: 32174143 DOI: 10.1152/ajprenal.00590.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unilateral ischemia-reperfusion (UIR) injury leads to progressive renal atrophy and tubulointerstitial fibrosis (TIF) and is commonly used to investigate the pathogenesis of the acute kidney injury-chronic kidney disease transition. Although it is well known that contralateral nephrectomy (CNX), even 2 wk post-UIR injury, can improve recovery, the physiological mechanisms and tubular signaling pathways mediating such improved recovery remain poorly defined. Here, we examined the renal hemodynamic and tubular signaling pathways associated with UIR injury and its reversal by CNX. Male Sprague-Dawley rats underwent left UIR or sham UIR and 2 wk later CNX or sham CNX. Blood pressure, left renal blood flow (RBF), and total glomerular filtration rate were assessed in conscious rats for 3 days before and over 2 wk after CNX or sham CNX. In the presence of a contralateral uninjured kidney, left RBF was lower (P < 0.05) from 2 to 4 wk following UIR (3.6 ± 0.3 mL/min) versus sham UIR (9.6 ± 0.3 mL/min). Without CNX, extensive renal atrophy, TIF, and tubule dedifferentiation, but minimal pimonidazole and hypoxia-inducible factor-1α positivity in tubules, were present at 4 wk post-UIR injury. Conversely, CNX led (P < 0.05) to sustained increases in left RBF (6.2 ± 0.6 mL/min) that preceded the increases in glomerular filtration rate. The CNX-induced improvement in renal function was associated with renal hypertrophy, more redifferentiated tubules, less TIF, and robust pimonidazole and hypoxia-inducible factor-1α staining in UIR injured kidneys. Thus, contrary to expectations, indexes of hypoxia are not observed with the extensive TIF at 4 wk post-UIR injury in the absence of CNX but are rather associated with the improved recovery of renal function and structure following CNX.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Karen A Griffin
- Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Hector Licea-Vargas
- Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Jainrui Long
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Christian Rosenberger
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin, Berlin, Germany
| | - Susanne Mathia
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin, Berlin, Germany
| | | | - Anil K Bidani
- Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| |
Collapse
|
10
|
Lee CJ, Gardiner BS, Evans RG, Smith DW. Analysis of the critical determinants of renal medullary oxygenation. Am J Physiol Renal Physiol 2019; 317:F1483-F1502. [DOI: 10.1152/ajprenal.00315.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously developed a three-dimensional computational model of oxygen transport in the renal medulla. In the present study, we used this model to quantify the sensitivity of renal medullary oxygenation to four of its major known determinants: medullary blood flow (MBF), medullary oxygen consumption rate (V̇o2,M), hemoglobin (Hb) concentration in the blood, and renal perfusion pressure. We also examined medullary oxygenation under special conditions of hydropenia, extracellular fluid volume expansion by infusion of isotonic saline, and hemodilution during cardiopulmonary bypass. Under baseline (normal) conditions, the average medullary tissue Po2 predicted for the whole renal medulla was ~30 mmHg. The periphery of the interbundle region in the outer medulla was identified as the most hypoxic region in the renal medulla, which demonstrates that the model prediction is qualitatively accurate. Medullary oxygenation was most sensitive to changes in renal perfusion pressure followed by Hb, MBF, and V̇o2,M, in that order. The medullary oxygenation also became sensitized by prohypoxic changes in other parameters, leading to a greater fall in medullary tissue Po2 when multiple parameters changed simultaneously. Hydropenia did not induce a significant change in medullary oxygenation compared with the baseline state, while volume expansion resulted in a large increase in inner medulla tissue Po2 (by ~15 mmHg). Under conditions of cardiopulmonary bypass, the renal medulla became severely hypoxic, due to hemodilution, with one-third of the outer stripe of outer medulla tissue having a Po2 of <5 mmHg.
Collapse
Affiliation(s)
- Chang-Joon Lee
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce S. Gardiner
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Zhang M, Wang K, Zheng H, Zhao X, Xie S, Liu C. Monocyte lymphocyte ratio predicts the new-onset of chronic kidney disease: A cohort study. Clin Chim Acta 2019; 503:181-189. [PMID: 31794768 DOI: 10.1016/j.cca.2019.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The role of monocyte lymphocyte ratio (MLR) in predicting the risk of chronic kidney disease (CKD) is unclear, although inflammation contributes to the development of CKD. This study aimed to investigate whether elevated MLR predicts new-onset CKD. METHODS This study enrolled 14,033 consecutively Chinese participants. The primary outcome was the new-onset CKD defined as an estimated glomerular filtration rate <60 mL/min/1.73 m2 or the presence of proteinuria after follow-up. After the descriptive analyses of baseline data, Univariate and multivariate Cox proportional models were used to evaluate the independent relationship between MLR and new-onset CKD. RESULTS 11,280 participants were included in the final analysis, and 58.44% (n = 6592) of them were male. The mean age was 44.67 ± 12.85 years. After a median follow-up of 1.94 years, 2.55% (n = 288) of participants developed new-onset CKD. MLR was associated with the increased risk of CKD (HR = 16.12, 95% CI = 4.52-57.56, p < 0.0001). After adjustment for age, gender, body mass index, history of hypertension, systolic blood pressure, high-density lipoprotein cholesterol, triglyceride, fasting plasma glucose, uric acid and estimated glomerular filtration rate, MLR remained an independent risk factor for CKD (HR = 8.89, 95%CI = 2.18-36.27, p = 0.0023). CONCLUSION MLR is an independent predictor of the risk of CKD, which might be expected to better guide early prevention and treatment interventions.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huabo Zheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofang Zhao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songpu Xie
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengyun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Ullah MM, Ow CPC, Hilliard Krause LM, Evans RG. Renal oxygenation during the early stages of adenine-induced chronic kidney disease. Am J Physiol Renal Physiol 2019; 317:F1189-F1200. [DOI: 10.1152/ajprenal.00253.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To assess whether renal hypoxia is an early event in adenine-induced chronic kidney disease, adenine (100 mg) or its vehicle was administered to male Sprague-Dawley rats by daily oral gavage for 7 days. Kidney oxygenation was assessed by 1) blood oximetry and Clark electrode in thiobutabarbital-anesthetized rats, 2) radiotelemetry in unanesthetized rats, and 3) expression of hypoxia-inducible factor (HIF)-1α and HIF-2α protein. After 7 days of treatment, under anesthesia, renal O2 delivery was 51% less, whereas renal O2 consumption was 65% less, in adenine-treated rats than in vehicle-treated rats. Tissue Po2 measured by Clark electrode was similar in the renal cortex but 44% less in the medulla of adenine-treated rats than in that of vehicle-treated rats. In contrast, in unanesthetized rats, both cortical and medullary tissue Po2 measured by radiotelemetry remained stable across 7 days of adenine treatment. Notably, anesthesia and laparotomy led to greater reductions in medullary tissue Po2 measured by radiotelemetry in rats treated with adenine (37%) than in vehicle-treated rats (16%), possibly explaining differences between our observations with Clark electrodes and radiotelemetry. Renal expression of HIF-1α was less after 7 days of adenine treatment than after vehicle treatment, whereas expression of HIF-2α did not differ significantly between the two groups. Renal dysfunction was evident after 7 days of adenine treatment, with glomerular filtration rate 65% less and serum creatinine concentration 183% greater in adenine-treated rats than in vehicle-treated rats. Renal cortical tissue hypoxia may not precede renal dysfunction in adenine-induced chronic kidney disease and so may not be an early pathological feature in this model.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Connie P. C. Ow
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Lucinda M. Hilliard Krause
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Mazaheri B, Emami F, Moslemi F, Talebi A, Nematbakhsh M. Zinc Supplementation and Ischemia Pre-conditioning in Renal Ischemia/Reperfusion Injury. Malays J Med Sci 2019; 26:39-46. [PMID: 31496892 PMCID: PMC6719886 DOI: 10.21315/mjms2019.26.4.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/02/2019] [Indexed: 12/16/2022] Open
Abstract
Backgrounds Renal ischemia/reperfusion (RIR) is a major cause of kidney dysfunction in clinic. The main objective of this study was to investigate the effect of pre-conditioning ischemia (IPC) and zinc (Zn) supplementation on renal RIR injury. Methods A total of 63 unilateral nephrectomised male and female Wistar rats were divided into five groups. Group 1 (ShOPR): Rats as sham-operated group were subjected to surgical procedure without RIR. Group 2 (Isch): Rats underwent RIR (left kidney ischemia for 30 min followed by 48 h reperfusion). Group 3 (Zn+Isch): Rats were treated as group 2 but they received Zn sulphate (30 mg/kg) 1 h before induction of RIR. Group 4 (IPC+Isch): Rats were treated as group 2 but they underwent 1 min of ischemia followed by 3 min reperfusion as IPC, which was repeated for three times before induction of RIR. Group 5 (Zn+IPC+Isch): Rats were subjected to receive both Zn sulphate and IPC before induction of RIR. Urine samples were collected in the last 6 h of reperfusion, and finally biochemical and histological measurements were performed. Results The serum level of creatinine (Cr), normalised kidney weight (KW) and kidney tissue damage score (KTDS) increased by RIR alone significantly (P < 0.05). These parameters were attenuated statistically by Zn supplementation (P < 0.05). However, IPC alone or co-treatment of Zn and IPC did not improve the biochemical and histological markers altered by RIR injury. Conclusion Zn supplementation had a protective role against RIR while such protective effect was not observed by IPC alone or by co-treatment of Zn and IPC.
Collapse
Affiliation(s)
- Bahar Mazaheri
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Emami
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Moslemi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Clinical Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Institute of Basic and Applied Sciences Research, Isfahan, Iran
| |
Collapse
|
14
|
Ow CPC, Ullah MM, Ngo JP, Sayakkarage A, Evans RG. Detection of cellular hypoxia by pimonidazole adduct immunohistochemistry in kidney disease: methodological pitfalls and their solution. Am J Physiol Renal Physiol 2019; 317:F322-F332. [PMID: 31188031 DOI: 10.1152/ajprenal.00219.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pimonidazole adduct immunohistochemistry is one of the few available methods for assessing renal tissue hypoxia at the cellular level. It appears to be prone to artifactual false positive staining under some circumstances. Here, we assessed the nature of this false positive staining and, having determined how to avoid it, reexamined the nature of cellular hypoxia in rat models of kidney disease. When a mouse-derived anti-pimonidazole primary antibody was used, two types of staining were observed. First, there was diffuse staining of the cytoplasm of tubular epithelial cells, which was largely absent when the primary antibody was omitted from the incubation protocol or in tissues known not to contain pimonidazole adducts. Second, there was staining of the apical membranes of tubular epithelial cells, debris within the lumen of renal tubules, including tubular casts, and the interstitium; this latter staining was present even when the primary antibody was omitted from the incubation protocol. Such false positive staining was particularly prominent in acutely injured kidneys. It could not be avoided by preincubation of sections with a mouse IgG blocking reagent. Furthermore, preadsorption of the secondary antibody against rat Ig abolished all staining; however, when a rabbit-derived polyclonal anti-pimonidazole primary antibody was used, the false positive staining was largely avoided. Using this method, we confirmed the presence of hypoxia, localized mainly to the tubular epithelium, in the acute phase of severe renal ischemia-reperfusion injury, adenine-induced chronic kidney disease, and polycystic kidney disease. We conclude that this new method provides improved detection of renal cellular hypoxia.
Collapse
Affiliation(s)
- Connie P C Ow
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Md Mahbub Ullah
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Jennifer P Ngo
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Adheeshee Sayakkarage
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University , Melbourne, Victoria , Australia
| |
Collapse
|
15
|
Hypoxia and Renal Tubulointerstitial Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:467-485. [PMID: 31399980 DOI: 10.1007/978-981-13-8871-2_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia, one of the most common causes of kidney injury, is a key pathological condition in various kidney diseases. Renal fibrosis is the terminal pathway involved in the continuous progression of chronic kidney disease (CKD), characterized by glomerulosclerosis and tubulointerstitial fibrosis (TIF). Recent studies have shown that hypoxia is a key factor promoting the progression of TIF. Loss of microvasculature, reduced oxygen dispersion, and metabolic abnormality of cells in the kidney are the main causes of the hypoxic state. Hypoxia can, in turn, profoundly affect the tubular epithelial cells, endothelial cells, pericytes, fibroblasts, inflammatory cells, and progenitor cells. In this chapter, we reviewed the critical roles of hypoxia in the pathophysiology of TIF and discussed the potential of anti-hypoxia as its promising therapeutic target.
Collapse
|
16
|
Lee CJ, Gardiner BS, Evans RG, Smith DW. A model of oxygen transport in the rat renal medulla. Am J Physiol Renal Physiol 2018; 315:F1787-F1811. [DOI: 10.1152/ajprenal.00363.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The renal medulla is prone to hypoxia. Medullary hypoxia is postulated to be a leading cause of acute kidney injury, so there is considerable interest in predicting the oxygen tension in the medulla. Therefore we have developed a computational model for blood and oxygen transport within a physiologically normal rat renal medulla, using a multilevel modeling approach. For the top-level model we use the theory of porous media and advection-dispersion transport through a realistic three-dimensional representation of the medulla’s gross anatomy to describe blood flow and oxygen transport throughout the renal medulla. For the lower-level models, we employ two-dimensional reaction-diffusion models describing the distribution of oxygen through tissue surrounding the vasculature. Steady-state model predictions at the two levels are satisfied simultaneously, through iteration between the levels. The computational model was validated by simulating eight sets of experimental data regarding renal oxygenation in rats (using 4 sets of control groups and 4 sets of treatment groups, described in 4 independent publications). Predicted medullary tissue oxygen tension or microvascular oxygen tension for control groups and for treatment groups that underwent moderate perturbation in hemodynamic and renal functions is within ±2 SE values observed experimentally. Diffusive shunting between descending and ascending vasa recta is predicted to be only 3% of the oxygen delivered. The validation tests confirm that the computational model is robust and capable of capturing the behavior of renal medullary oxygenation in both normal and early-stage pathological states in the rat.
Collapse
Affiliation(s)
- Chang-Joon Lee
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia, Australia
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia, Australia
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute, and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Pirfenidone alleviates lung ischemia-reperfusion injury in a rat model. J Thorac Cardiovasc Surg 2018; 158:289-296. [PMID: 30385019 DOI: 10.1016/j.jtcvs.2018.08.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Lung ischemia-reperfusion injury is among the complications seen after lung transplantation, resulting in morbidity and mortality. Pirfenidone, an antifibrotic agent for the treatment of idiopathic pulmonary fibrosis, is reported to have cytoprotective properties in various disease models. The purpose of this study was to investigate the effect of pirfenidone on lung ischemia-reperfusion injury. METHODS Male Lewis rats (260-290 g) were divided into 3 groups: sham group (n = 5), warm ischemia (WI) group (n = 10), and WI plus pirfenidone (WI+PFD) group (n = 10). The sham group underwent 210 minutes of perfusion without ischemia. The WI and WI+PFD groups underwent 90 minutes of warm ischemia and 120 minutes of reperfusion. In the WI+PFD group, pirfenidone (300 mg/kg) was administered orally by gavage 30 minutes before ischemia. After reperfusion, arterial blood gas analysis, lung mechanics, lung wet-to-dry weight ratio, and histologic findings were obtained. The gene expressions of proinflammatory cytokines in lung tissue were measured by quantitative reverse transcription polymerase chain reaction. RESULTS Compared with the WI group, the WI+PFD group had significantly better dynamic pulmonary compliance (P < .01) and oxygenation levels (P < .05). The wet-to-dry ratio was lower in the WI+PFD group (P < .05). Histologic analysis showed that the WI+PFD group had reduced perivascular edema and neutrophil infiltration. The expression of tumor necrosis factor-α messenger RNA was decreased in the WI+PFD group (P < .05). CONCLUSIONS Our results revealed that in a rat hilar clamp model, pirfenidone alleviated lung ischemia-reperfusion through anti-inflammatory effects.
Collapse
|
18
|
Ow CPC, Ngo JP, Ullah MM, Barsha G, Meex RC, Watt MJ, Hilliard LM, Koeners MP, Evans RG. Absence of renal hypoxia in the subacute phase of severe renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2018; 315:F1358-F1369. [PMID: 30110566 PMCID: PMC6293301 DOI: 10.1152/ajprenal.00249.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tissue hypoxia has been proposed as an important event in renal ischemia-reperfusion injury (IRI), particularly during the period of ischemia and in the immediate hours following reperfusion. However, little is known about renal oxygenation during the subacute phase of IRI. We employed four different methods to assess the temporal and spatial changes in tissue oxygenation during the subacute phase (24 h and 5 days after reperfusion) of a severe form of renal IRI in rats. We hypothesized that the kidney is hypoxic 24 h and 5 days after an hour of bilateral renal ischemia, driven by a disturbed balance between renal oxygen delivery (Do2) and oxygen consumption (V̇o2). Renal Do2 was not significantly reduced in the subacute phase of IRI. In contrast, renal V̇o2 was 55% less 24 h after reperfusion and 49% less 5 days after reperfusion than after sham ischemia. Inner medullary tissue Po2, measured by radiotelemetry, was 25 ± 12% (mean ± SE) greater 24 h after ischemia than after sham ischemia. By 5 days after reperfusion, tissue Po2 was similar to that in rats subjected to sham ischemia. Tissue Po2 measured by Clark electrode was consistently greater 24 h, but not 5 days, after ischemia than after sham ischemia. Cellular hypoxia, assessed by pimonidazole adduct immunohistochemistry, was largely absent at both time points, and tissue levels of hypoxia-inducible factors were downregulated following renal ischemia. Thus, in this model of severe IRI, tissue hypoxia does not appear to be an obligatory event during the subacute phase, likely because of the markedly reduced oxygen consumption.
Collapse
Affiliation(s)
- Connie P C Ow
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Jennifer P Ngo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Md Mahbub Ullah
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Giannie Barsha
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Ruth C Meex
- Department of Human Biology, NUTRIM School of Nutritional and Translational Research in Metabolism, Maastricht University Medical Centre , Maastricht , The Netherlands
| | - Matthew J Watt
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Lucinda M Hilliard
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University , Melbourne, Victoria , Australia
| | - Maarten P Koeners
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol , Bristol , United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter , United Kingdom
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Physiology, Monash University , Melbourne, Victoria , Australia
| |
Collapse
|
19
|
Luo F, Shi J, Shi Q, He X, Xia Y. ERK and p38 Upregulation versus Bcl-6 Downregulation in Rat Kidney Epithelial Cells Exposed to Prolonged Hypoxia. Cell Transplant 2018; 26:1441-1451. [PMID: 28901193 PMCID: PMC5680977 DOI: 10.1177/0963689717720296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is a common cause of kidney injury and a major issue in kidney transplantation. Mitogen-activated protein kinases (MAPKs) are involved in the cellular response to hypoxia, but the precise roles of MAPKs in renal cell reactions to hypoxic stress are not well known yet. This work was conducted to investigate the regulation of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and p38 and their signaling-relevant molecules in kidney epithelial cells exposed to prolonged hypoxia. Rat kidney epithelial cells Normal Rat Kidney (NRK)-52E were exposed to hypoxic conditions (1% O2) for 24 to 72 h. Cell morphology was examined by light microscopy, and cell viability was checked by 3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxypheny]-2-[4-sulfophenyl]-2H-tetrazolium (MTS). The expression of ERK1/2 and p38 MAPK, as well as their signaling-related molecules, was measured by Western blot and real-time polymerase chain (RT-PCR) reaction. At the 1% oxygen level, cell morphology had no appreciable changes compared to the control up to 72 h of exposure under light microscopy, whereas the results of MTS showed a slight but significant reduction in cell viability after 72 h of hypoxia. On the other hand, ERK1/2 and p38 phosphorylation remarkably increased in these cells after 24 to 72 h of hypoxia. In sharp contrast, the expression of transcription factor B-cell lymphoma 6 (Bcl-6) was significantly downregulated in response to hypoxic stress. Other intracellular molecules relevant to the ERK1/2 and p38 signaling pathway, such as protein kinase A, protein kinase C, Bcl-2, nuclear factor erythroid 2-related factor 2, tristetraprolin, and interleukin-10(IL-10), had no significant alterations after 24 to 72 h of hypoxic exposure. We conclude that hypoxic stress increases the phosphorylation of both ERK1/2 and p38 but decreases the level of Bcl-6 in rat kidney epithelial cells.
Collapse
Affiliation(s)
- Fengbao Luo
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jian Shi
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianqian Shi
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- 1 Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- 2 Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG. Renal hypoxia in kidney disease: Cause or consequence? Acta Physiol (Oxf) 2018; 222:e12999. [PMID: 29159875 DOI: 10.1111/apha.12999] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Tissue hypoxia has been proposed as an important factor in the pathophysiology of both chronic kidney disease (CKD) and acute kidney injury (AKI), initiating and propagating a vicious cycle of tubular injury, vascular rarefaction, and fibrosis and thus exacerbation of hypoxia. Here, we critically evaluate this proposition by systematically reviewing the literature relevant to the following six questions: (i) Is kidney disease always associated with tissue hypoxia? (ii) Does tissue hypoxia drive signalling cascades that lead to tissue damage and dysfunction? (iii) Does tissue hypoxia per se lead to kidney disease? (iv) Does tissue hypoxia precede pathology? (v) Does tissue hypoxia colocalize with pathology? (vi) Does prevention of tissue hypoxia prevent kidney disease? We conclude that tissue hypoxia is a common feature of both AKI and CKD. Furthermore, at least under in vitro conditions, renal tissue hypoxia drives signalling cascades that lead to tissue damage and dysfunction. Tissue hypoxia itself can lead to renal pathology, independent of other known risk factors for kidney disease. There is also some evidence that tissue hypoxia precedes renal pathology, at least in some forms of kidney disease. However, we have made relatively little progress in determining the spatial relationships between tissue hypoxia and pathological processes (i.e. colocalization) or whether therapies targeted to reduce tissue hypoxia can prevent or delay the progression of renal disease. Thus, the hypothesis that tissue hypoxia is a "common pathway" to both AKI and CKD still remains to be adequately tested.
Collapse
Affiliation(s)
- C. P. C. Ow
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - J. P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - M. M. Ullah
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - L. M. Hilliard
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| | - R. G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Vic. Australia
| |
Collapse
|
21
|
Zhu MZL, Martin A, Cochrane AD, Smith JA, Thrift AG, Harrop GK, Ngo JP, Evans RG. Urinary hypoxia: an intraoperative marker of risk of cardiac surgery-associated acute kidney injury. Nephrol Dial Transplant 2018; 33:2191-2201. [DOI: 10.1093/ndt/gfy047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/06/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Michael Z L Zhu
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
| | - Andrew Martin
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
| | - Julian A Smith
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
| | - Amanda G Thrift
- Department of Medicine (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Australia and
| | - Gerard K Harrop
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Jennifer P Ngo
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Roger G Evans
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Clayton, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| |
Collapse
|
22
|
Zhang Z, Payne K, Pallone TL. Adaptive responses of rat descending vasa recta to ischemia. Am J Physiol Renal Physiol 2018; 314:F373-F380. [PMID: 28814437 DOI: 10.1152/ajprenal.00062.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tested whether rat descending vasa recta (DVR) undergo regulatory adaptations after the kidney is exposed to ischemia. Left kidneys (LK) were subjected to 30-min renal artery cross clamp. After 48 h, the postischemic LK and contralateral right kidney (RK) were harvested for study. When compared with DVR isolated from either sham-operated LK or the contralateral RK, postischemic LK DVR markedly increased their NO generation. The selective inducible NOS (iNOS) inhibitor 1400W blocked the NO response. Immunoblots from outer medullary homogenates showed a parallel 2.6-fold increase in iNOS expression ( P = 0.01). Microperfused postischemic LK DVR exposed to angiotensin II (ANG II, 10 nM), constricted less than those from the contralateral RK, and constricted more when exposed to 1400W (10 µM). Resting membrane potentials of pericytes from postischemic LK DVR pericytes were hyperpolarized relative to contralateral RK pericytes (62.0 ± 1.6 vs. 51.8 ± 2.2 mV, respectively, P < 0.05) or those from sham-operated LK (54.9 ± 2.1 mV, P < 0.05). Blockade of NO generation with 1400W did not repolarize postischemic pericytes (62.5 ± 1.4 vs. 61.1 ± 3.4 mV); however, control pericytes were hyperpolarized by exposure to NO donation from S-nitroso- N-acetyl- dl-penicillamine (51.5 ± 2.9 to 62.1 ± 1.4 mV, P < 0.05). We conclude that postischemic adaptations intrinsic to the DVR wall occur after ischemia. A rise in 1400W sensitive NO generation and iNOS expression occurs that is associated with diminished contractile responses to ANG II. Pericyte hyperpolarization occurs that is not explained by the rise in ambient NO generation within the DVR wall.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland.,Baltimore Veterans Administration Medical Center , Baltimore, Maryland
| |
Collapse
|
23
|
Abstract
Acid-base alterations in patients with kidney failure and on hemodialysis (HD) treatment contribute to (1) intradialytic hypercapnia and hypoxia, (2) hemodynamic instability and cardiac arrhythmia, (3) systemic inflammation, and (4) a number of associated electrolyte alterations including potentiating effects of hypokalemia, hypocalcemia and, chronically, soft-tissue and vascular calcification, imparting poor prognosis and mortality. This paper discusses acid-base regulation and pathogenesis of dysregulation in patients with kidney failure. Major organ and systemic effects of acid-base perturbations with a specific focus on kidney failure patients on HD are emphasized, and potential mitigating strategies proposed. The high rate of HD-related complications, specifically those that can be accounted for by rapid and steep acid-base perturbations imposed by HD treatment, attests to the pressing need for investigations to establish a better dialysis regimen.
Collapse
Affiliation(s)
- Qi Qian
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
24
|
Low dose nitrite improves reoxygenation following renal ischemia in rats. Sci Rep 2017; 7:14597. [PMID: 29097777 PMCID: PMC5668317 DOI: 10.1038/s41598-017-15058-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/16/2017] [Indexed: 11/09/2022] Open
Abstract
In hypoxic and acidic tissue environments, nitrite is metabolised to nitric oxide, thus, bringing about novel therapeutic options in myocardial infarction, peripheral artery disease, stroke, and hypertension. Following renal ischemia, reperfusion of the kidney remains incomplete and tissue oxygenation is reduced for several minutes to hours. Thus, in renal ischemia-reperfusion injury, providing nitrite may have outstanding therapeutic value. Here we demonstrate nitrite's distinct potential to rapidly restore tissue oxygenation in the renal cortex and medulla after 45 minutes of complete unilateral kidney ischemia in the rat. Notably, tissue oxygenation was completely restored, while tissue perfusion did not fully reach pre-ischemia levels within 60 minutes of reperfusion. Nitrite was infused intravenously in a dose, which can be translated to the human. Specifically, methaemoglobin did not exceed 3%, which is biologically negligible. Hypotension was not observed. Providing nitrite well before ischemia and maintaining nitrite infusion throughout the reperfusion period prevented the increase in serum creatinine by ischemia reperfusion injury. In conclusion, low-dose nitrite restores renal tissue oxygenation in renal ischemia reperfusion injury and enhances regional kidney post-ischemic perfusion. As nitrite provides nitric oxide predominantly in hypoxic tissues, it may prove a specific measure to reduce renal ischemia reperfusion injury.
Collapse
|
25
|
Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E. Oxidative Stress and Acute Kidney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers-Interventions, and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6193694. [PMID: 29104728 PMCID: PMC5637835 DOI: 10.1155/2017/6193694] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 08/20/2017] [Indexed: 01/22/2023]
Abstract
Acute kidney injury (AKI) is a multifactorial entity that occurs in a variety of clinical settings. Although AKI is not a usual reason for intensive care unit (ICU) admission, it often complicates critically ill patients' clinical course requiring renal replacement therapy progressing sometimes to end-stage renal disease and increasing mortality. The causes of AKI in the group of ICU patients are further complicated from damaged metabolic state, systemic inflammation, sepsis, and hemodynamic dysregulations, leading to an imbalance that generates oxidative stress response. Abundant experimental and to a less extent clinical data support the important role of oxidative stress-related mechanisms in the injury phase of AKI. The purpose of this article is to present the main pathophysiologic mechanisms of AKI in ICU patients focusing on the different aspects of oxidative stress generation, the available evidence of interventional measures for AKI prevention, biomarkers used in a clinical setting, and future perspectives in oxidative stress regulation.
Collapse
Affiliation(s)
- Paraskevi Pavlakou
- Department of Nephrology, Medical School University of Ioannina, Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Michael Mitsis
- Department of Surgery, Medical School University of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School University of Ioannina, Ioannina, Greece
| |
Collapse
|
26
|
Lee CJ, Ngo JP, Kar S, Gardiner BS, Evans RG, Smith DW. A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood. Am J Physiol Renal Physiol 2017; 313:F237-F253. [DOI: 10.1152/ajprenal.00659.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 01/13/2023] Open
Abstract
To assess the physiological significance of arterial-to-venous (AV) oxygen shunting, we generated a new pseudo-three-dimensional computational model of oxygen diffusion from intrarenal arteries to cortical tissue and veins. The model combines the 11 branching levels (known as “Strahler” orders) of the preglomerular renal vasculature in the rat, with an analysis of an extensive data set obtained using light microscopy to estimate oxygen mass transfer coefficients for each Strahler order. Furthermore, the AV shunting model is now set within a global oxygen transport model that includes transport from arteries, glomeruli, peritubular capillaries, and veins to tissue. While a number of lines of evidence suggest AV shunting is significant, most importantly, our AV oxygen shunting model predicts AV shunting is small under normal physiological conditions (~0.9% of total renal oxygen delivery; range 0.4–1.4%), but increases during renal ischemia, glomerular hyperfiltration (~2.1% of total renal oxygen delivery; range 0.84–3.36%), and some cardiovascular disease states (~3.0% of total renal oxygen delivery; range 1.2–4.8%). Under normal physiological conditions, blood Po2 is predicted to fall by ~16 mmHg from the root of the renal artery to glomerular entry, with AV oxygen shunting contributing ~40% and oxygen diffusion from arteries to tissue contributing ~60% of this decline. Arterial Po2 is predicted to fall most rapidly from Strahler order 4, under normal physiological conditions. We conclude that AV oxygen shunting normally has only a small impact on renal oxygenation, but may exacerbate renal hypoxia during renal ischemia, hyperfiltration, and some cardiovascular disease states.
Collapse
Affiliation(s)
- Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Sydney, Australia; and
| | - Saptarshi Kar
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Sydney, Australia; and
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Lee CJ, Gardiner BS, Ngo JP, Kar S, Evans RG, Smith DW. Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia. Am J Physiol Renal Physiol 2017; 313:F218-F236. [DOI: 10.1152/ajprenal.00657.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
We develop a pseudo-three-dimensional model of oxygen transport for the renal cortex of the rat, incorporating both the axial and radial geometry of the preglomerular circulation and quantitative information regarding the surface areas and transport from the vasculature and renal corpuscles. The computational model was validated by simulating four sets of published experimental studies of renal oxygenation in rats. Under the control conditions, the predicted cortical tissue oxygen tension ([Formula: see text]) or microvascular oxygen tension (µPo2) were within ±1 SE of the mean value observed experimentally. The predicted [Formula: see text] or µPo2 in response to ischemia-reperfusion injury, acute hemodilution, blockade of nitric oxide synthase, or uncoupling mitochondrial respiration, were within ±2 SE observed experimentally. We performed a sensitivity analysis of the key model parameters to assess their individual or combined impact on the predicted [Formula: see text] and µPo2. The model parameters analyzed were as follows: 1) the major determinants of renal oxygen delivery ([Formula: see text]) (arterial blood Po2, hemoglobin concentration, and renal blood flow); 2) the major determinants of renal oxygen consumption (V̇o2) [glomerular filtration rate (GFR) and the efficiency of oxygen utilization for sodium reabsorption (β)]; and 3) peritubular capillary surface area (PCSA). Reductions in PCSA by 50% were found to profoundly increase the sensitivity of [Formula: see text] and µPo2 to the major the determinants of [Formula: see text] and V̇o2. The increasing likelihood of hypoxia with decreasing PCSA provides a potential explanation for the increased risk of acute kidney injury in some experimental animals and for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Chang-Joon Lee
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia, Australia; and
| | - Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Sydney, Australia
| | - Saptarshi Kar
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Sydney, Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
28
|
Bullen A, Liu ZZ, Hepokoski M, Li Y, Singh P. Renal Oxygenation and Hemodynamics in Kidney Injury. Nephron Clin Pract 2017; 137:260-263. [PMID: 28614837 DOI: 10.1159/000477830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI) continues to be a major therapeutic challenge. Despite significant advances made in cellular and molecular pathophysiology of AKI, major gaps in knowledge exist regarding the changes in renal hemodynamics and oxygenation in the early stages and through the continuum of AKI. Particular features of renal hemodynamics and oxygenation increase the susceptibility of the kidney to sustain injury due to oxygen demand-supply mismatch and also play an important role in the recovery and repair from AKI as well as the transition of AKI to chronic kidney disease. However, lack of well-established physiological biomarkers and noninvasive imaging techniques limit our understanding of the interactions between renal macro and microcirculation and tissue oxygenation in AKI. Advances in our ability to assess these parameters in preclinical and clinical AKI will enable the development of targeted therapeutics to improve clinical outcomes.
Collapse
Affiliation(s)
- Alexander Bullen
- Division of Nephrology-Hypertension, University of California, San Diego School of Medicine and VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Venkatachalam MA, Weinberg JM. Pericytes Preserve Capillary Integrity to Prevent Kidney Hypoxia. J Am Soc Nephrol 2016; 28:717-719. [PMID: 27979991 DOI: 10.1681/asn.2016111157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
30
|
Fong D, Ullah MM, Lal JG, Abdelkader A, Ow CP, Hilliard LM, Ricardo SD, Kelly DJ, Evans RG. Renal cellular hypoxia in adenine-induced chronic kidney disease. Clin Exp Pharmacol Physiol 2016; 43:896-905. [DOI: 10.1111/1440-1681.12621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/30/2016] [Accepted: 07/02/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Debra Fong
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| | - Md Mahbub Ullah
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| | - Jaswini G. Lal
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| | - Amany Abdelkader
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| | - Connie P.C. Ow
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| | - Lucinda M. Hilliard
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| | - Sharon D. Ricardo
- Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology; Monash University; Clayton Melbourne Vic. Australia
| | - Darren J. Kelly
- Department of Medicine; University of Melbourne; St Vincent's Hospital; Fitzroy Melbourne Vic. Australia
| | - Roger G. Evans
- Biomedicine Discovery Institute and Department of Physiology; Monash University; Clayton Melbourne Vic. Australia
| |
Collapse
|
31
|
Layton AT. Recent advances in renal hypoxia: insights from bench experiments and computer simulations. Am J Physiol Renal Physiol 2016; 311:F162-5. [PMID: 27147670 DOI: 10.1152/ajprenal.00228.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 11/22/2022] Open
Abstract
The availability of oxygen in renal tissue is determined by the complex interactions among a host of processes, including renal blood flow, glomerular filtration, arterial-to-venous oxygen shunting, medullary architecture, Na(+) transport, and oxygen consumption. When this delicate balance is disrupted, the kidney may become susceptible to hypoxic injury. Indeed, renal hypoxia has been implicated as one of the major causes of acute kidney injury and chronic kidney diseases. This review highlights recent advances in our understanding of renal hypoxia; some of these studies were published in response to a recent Call for Papers of this journal: Renal Hypoxia.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, North Carolina
| |
Collapse
|
32
|
Lan R, Geng H, Singha PK, Saikumar P, Bottinger EP, Weinberg JM, Venkatachalam MA. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI. J Am Soc Nephrol 2016; 27:3356-3367. [PMID: 27000065 DOI: 10.1681/asn.2015020177] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/03/2016] [Indexed: 02/01/2023] Open
Abstract
During recovery by regeneration after AKI, proximal tubule cells can fail to redifferentiate, undergo premature growth arrest, and become atrophic. The atrophic tubules display pathologically persistent signaling increases that trigger production of profibrotic peptides, proliferation of interstitial fibroblasts, and fibrosis. We studied proximal tubules after ischemia-reperfusion injury (IRI) to characterize possible mitochondrial pathologies and alterations of critical enzymes that govern energy metabolism. In rat kidneys, tubules undergoing atrophy late after IRI but not normally recovering tubules showed greatly reduced mitochondrial number, with rounded profiles, and large autophagolysosomes. Studies after IRI of kidneys in mice, done in parallel, showed large scale loss of the oxidant-sensitive mitochondrial protein Mpv17L. Renal expression of hypoxia markers also increased after IRI. During early and late reperfusion after IRI, kidneys exhibited increased lactate and pyruvate content and hexokinase activity, which are indicators of glycolysis. Furthermore, normally regenerating tubules as well as tubules undergoing atrophy exhibited increased glycolytic enzyme expression and inhibitory phosphorylation of pyruvate dehydrogenase. TGF-β antagonism prevented these effects. Our data show that the metabolic switch occurred early during regeneration after injury and was reversed during normal tubule recovery but persisted and became progressively more severe in tubule cells that failed to redifferentiate. In conclusion, irreversibility of the metabolic switch, taking place in the context of hypoxia, high TGF-β signaling and depletion of mitochondria characterizes the development of atrophy in proximal tubule cells and may contribute to the renal pathology after AKI.
Collapse
Affiliation(s)
- Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Hui Geng
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Prajjal K Singha
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Pothana Saikumar
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Erwin P Bottinger
- Department of Medicine, Mount Sinai School of Medicine, New York, New York; and
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | | |
Collapse
|
33
|
Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016; 14:15-39. [PMID: 26847481 PMCID: PMC4851450 DOI: 10.3121/cmr.2015.1282] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy.
Collapse
Affiliation(s)
- Qiangwei Fu
- Kabara Cancer Research Institute, La Crosse, WI
| | - Sean P Colgan
- Mucosal Inflammation Program and University of Colorado School of Medicine, Aurora, CO
| | - Carl Simon Shelley
- University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
34
|
The Complex Relationship of Extracorporeal Membrane Oxygenation and Acute Kidney Injury: Causation or Association? BIOMED RESEARCH INTERNATIONAL 2016; 2016:1094296. [PMID: 27006941 PMCID: PMC4783537 DOI: 10.1155/2016/1094296] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 12/23/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass (CPB) circuit capable of providing prolonged cardiorespiratory support. Recent advancement in ECMO technology has resulted in increased utilisation and clinical application. It can be used as a bridge-to-recovery, bridge-to-bridge, bridge-to-transplant, or bridge-to-decision. ECMO can restitute physiology in critically ill patients, which may minimise the risk of progressive multiorgan dysfunction. Alternatively, iatrogenic complications of ECMO clearly contribute to worse outcomes. These factors affect the risk : benefit ratio of ECMO which ultimately influence commencement/timing of ECMO. The complex interplay of pre-ECMO, ECMO, and post-ECMO pathophysiological processes are responsible for the substantial increased incidence of ECMO-associated acute kidney injury (EAKI). The development of EAKI significantly contributes to morbidity and mortality; however, there is a lack of evidence defining a potential benefit or causative link between ECMO and AKI. This area warrants investigation as further research will delineate the mechanisms involved and subsequent strategies to minimise the risk of EAKI. This review summarizes the current literature of ECMO and AKI, considers the possible benefits and risks of ECMO on renal function, outlines the related pathophysiology, highlights relevant investigative tools, and ultimately suggests an approach for future research into this under investigated area of critical care.
Collapse
|
35
|
Wang C, Zhang R, Wang R, Jiang L, Zhang X, Wang H, Zhao K, Jin L, Zhang J, Wang X, Fang J. Noninvasive measurement of renal oxygen extraction fraction under the influence of respiratory challenge. J Magn Reson Imaging 2016; 44:230-7. [PMID: 26800848 DOI: 10.1002/jmri.25163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Chengyan Wang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
| | - Rui Zhang
- College of Engineering; Peking University; Beijing PR China
| | - Rui Wang
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - Li Jiang
- Philips Healthcare; Suzhou Jiangsu PR China
| | - Xiaodong Zhang
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - He Wang
- Philips Healthcare; Suzhou Jiangsu PR China
| | - Kai Zhao
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - Lixin Jin
- Philips Healthcare; Suzhou Jiangsu PR China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
- College of Engineering; Peking University; Beijing PR China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
- Department of Radiology; Peking University First Hospital; Beijing PR China
| | - Jing Fang
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing PR China
- College of Engineering; Peking University; Beijing PR China
| |
Collapse
|
36
|
Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985) 2016; 120:226-35. [DOI: 10.1152/japplphysiol.00298.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022] Open
Abstract
After shock, persistent oxygen extraction deficit despite the apparent adequate recovery of systemic hemodynamic and oxygen-derived variables has been a source of uncertainty and controversy. Dysfunction of oxygen transport pathways during intensive care underlies the sequelae that lead to organ failure, and the limitations of techniques used to measure tissue oxygenation in vivo have contributed to the lack of progress in this area. Novel techniques have provided detailed quantitative insight into the determinants of microcirculatory and mitochondrial oxygenation. These techniques, which are based on the oxygen-dependent quenching of phosphorescence or delayed luminescence are briefly reviewed. The application of these techniques to animal models of shock and resuscitation revealed the heterogeneous nature of oxygen distributions and the alterations in oxygen distribution in the microcirculation and in mitochondria. These studies identified functional shunting in the microcirculation as an underlying cause of oxygen extraction deficit observed in states of shock and resuscitation. The translation of these concepts to the bedside has been enabled by our development and clinical introduction of hand-held microscopy. This tool facilitates the direct observation of the microcirculation and its alterations at the bedside under the conditions of shock and resuscitation. Studies identified loss of coherence between the macrocirculation and the microcirculation, in which resuscitation successfully restored systemic circulation but did not alleviate microcirculatory perfusion alterations. Various mechanisms responsible for these alterations underlie the loss of hemodynamic coherence during unsuccessful resuscitation procedures. Therapeutic resolution of persistent heterogeneous microcirculatory alterations is expected to improve outcomes in critically ill patients.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Egbert G. Mik
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam
- Department of Anesthesiology, Erasmus MC, University Medical Center, Rotterdam; and
| |
Collapse
|
37
|
Zafrani L, Ince C. Microcirculation in Acute and Chronic Kidney Diseases. Am J Kidney Dis 2015; 66:1083-94. [DOI: 10.1053/j.ajkd.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/15/2015] [Indexed: 01/20/2023]
|
38
|
Matejovic M, Ince C, Chawla LS, Blantz R, Molitoris BA, Rosner MH, Okusa MD, Kellum JA, Ronco C. Renal Hemodynamics in AKI: In Search of New Treatment Targets. J Am Soc Nephrol 2015; 27:49-58. [PMID: 26510884 DOI: 10.1681/asn.2015030234] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Novel therapeutic interventions are required to prevent or treat AKI. To expedite progress in this regard, a consensus conference held by the Acute Dialysis Quality Initiative was convened in April of 2014 to develop recommendations for research priorities and future directions. Here, we highlight the concepts related to renal hemodynamics in AKI that are likely to reveal new treatment targets on investigation. Overall, we must better understand the interactions between systemic, total renal, and glomerular hemodynamics, including the role of tubuloglomerular feedback. Furthermore, the net consequences of therapeutic maneuvers aimed at restoring glomerular filtration need to be examined in relation to the nature, magnitude, and duration of the insult. Additionally, microvascular blood flow heterogeneity in AKI is now recognized as a common occurrence; timely interventions to preserve the renal microcirculatory flow may interrupt the downward spiral of injury toward progressive kidney failure and should, therefore, be investigated. Finally, development of techniques that permit an integrative physiologic approach, including direct visualization of renal microvasculature and measurement of oxygen kinetics and mitochondrial function in intact tissue in all nephron segments, may provide new insights into how the kidney responds to various injurious stimuli and allow evaluation of new therapeutic strategies.
Collapse
Affiliation(s)
- Martin Matejovic
- First Medical Department and Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Teaching Hospital in Plzen, Plzen, Czech Republic
| | - Can Ince
- Department of Intensive Care, Erasmus Medical Center University Hospital, Rotterdam, The Netherlands
| | - Lakhmir S Chawla
- Department of Medicine, Division of Intensive Care Medicine and Division of Nephrology, Veterans Affairs Medical Center, Washington, DC
| | - Roland Blantz
- Nephrology-Hypertension Division, University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Bruce A Molitoris
- Department of Medicine, Division of Nephrology and Department of Cellular and Integrative Physiology, Indiana University School of Medicine and the Rouderbush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Mitchell H Rosner
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia;
| | - Mark D Okusa
- Division of Nephrology, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - John A Kellum
- Center for Critical Care Nephrology and Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Claudio Ronco
- Department of Nephrology Dialysis and Transplantation, San Bortolo Hospital and the International Renal Research Institute, Vicenza, Italy
| | | |
Collapse
|
39
|
Ergin B, Zuurbier CJ, Bezemer R, Kandil A, Almac E, Demirci C, Ince C. Ascorbic acid improves renal microcirculatory oxygenation in a rat model of renal I/R injury. J Transl Int Med 2015; 3:116-125. [PMID: 27847899 PMCID: PMC4936463 DOI: 10.1515/jtim-2015-0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and objectives Acute kidney injury (AKI) is a clinical condition associated with a degree of morbidity and mortality despite supportive care, and ischemia/reperfusion injury (I/R) is one of the main causes of AKI. The pathophysiology of I/R injury is a complex cascade of events including the release of free oxygen radicals followed by damage to proteins, lipids, mitochondria, and deranged tissue oxygenation. In this study, we investigated whether the antioxidant ascorbic acid would be able to largely prevent oxidative stress and consequently, reduce I/R-related injury to the kidneys in terms of oxygenation, inflammation, and renal failure. Materials and methods Rats were divided into three groups (n = 6/group): (1) a time control group; (2) a group subjected to renal ischemia for 60 min by high aortic occlusion followed by 2 h of reperfusion (I/R); and (3) a group subjected to I/R and treated with an i.v. 100 mg/kg bolus ascorbic acid 15 min before ischemia and continuous infusion of 50 mg/kg/hour for 2 h during reperfusion (I/R + AA). We measured renal tissue oxidative stress, microvascular oxygenation, renal oxygen delivery and consumption, and renal expression of inflammatory and injury markers. Results We demonstrated that aortic clamping and release resulted in increased oxidative stress and inflammation that was associated with a significant fall in systemic and renal hemodynamics and oxygenation parameters. The treatment of ascorbic acid completely abrogated oxidative stress and inflammatory parameters. However, it only partly improved microcirculatory oxygenation and was without any effect on anuria. Conclusion The ascorbic acid treatment partly improves microcirculatory oxygenation and prevents oxidative stress without restoring urine output in a severe I/R model of AKI.
Collapse
Affiliation(s)
- Bulent Ergin
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Anesthesiology and Intensive Care, Department of Anesthesiology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Rick Bezemer
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asli Kandil
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Emre Almac
- Department of Anesthesiology, St. Antonius Hospital Nieuwegein, Nieuwegein, The Netherlands
| | - Cihan Demirci
- Department of Biology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Assadi F, Sharbaf FG. Practical considerations to drug dosing in children with acute kidney injury. J Clin Pharmacol 2015; 56:399-407. [PMID: 26363281 DOI: 10.1002/jcph.636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 01/12/2023]
Abstract
Medication dosing for children with acute kidney injury (AKI) needs to be individualized based on pharmacokinetic and pharmacodynamic principles of the prescribed drugswhenever possible to optimize therapeutic outcome and to minimize toxicity. The pediatric RIFLE criteria should be prospectively utilized to identify patients at highest risk of developing AKI. Serum creatinine and urine output along with volume status should be utilized to guide drug dosing when urinary biomarkers including kidney injury molecule 1, interleukin-18, or neutrophil gelatinase-associated lipocalin are not readily available. Because of the presence of a positive fluid balance in early stages of AKI, the dosing regimen for many drugs, especially antimicrobial agents, should be initiated at a larger loading dose based on the expected volume of distribution to achieve target serum concentrations.When possible, therapeutic drug monitoring should be utilized for those medications where serum drug concentrations can be obtained in a clinically relevant time frame. For these medications, close monitoring of serum drug concentrations is highly recommended. This review addresses drug-dosing strategies in pediatric patients with AKI including the roles of therapeutic drug monitoring and newer kidney injury biomarkers.
Collapse
Affiliation(s)
- Farahnak Assadi
- Department of Pediatrics, Section of Nephrology, Rush University Medical Center, Chicago, IL, USA
| | - Fatemeh Ghane Sharbaf
- Department of Pediatrics, Section of Nephrology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol 2015; 26:1765-76. [PMID: 25810494 PMCID: PMC4520181 DOI: 10.1681/asn.2015010006] [Citation(s) in RCA: 499] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transition of AKI to CKD has major clinical significance. As reviewed here, recent studies show that a subpopulation of dedifferentiated, proliferating tubules recovering from AKI undergo pathologic growth arrest, fail to redifferentiate, and become atrophic. These abnormal tubules exhibit persistent, unregulated, and progressively increasing profibrotic signaling along multiple pathways. Paracrine products derived therefrom perturb normal interactions between peritubular capillary endothelium and pericyte-like fibroblasts, leading to myofibroblast transformation, proliferation, and fibrosis as well as capillary disintegration and rarefaction. Although signals from injured endothelium and inflammatory/immune cells also contribute, tubule injury alone is sufficient to produce the interstitial pathology required for fibrosis. Localized hypoxia produced by microvascular pathology may also prevent tubule recovery. However, fibrosis is not intrinsically progressive, and microvascular pathology develops strictly around damaged tubules; thus, additional deterioration of kidney structure after the transition of AKI to CKD requires new acute injury or other mechanisms of progression. Indeed, experiments using an acute-on-chronic injury model suggest that additional loss of parenchyma caused by failed repair of AKI in kidneys with prior renal mass reduction triggers hemodynamically mediated processes that damage glomeruli to cause progression. Continued investigation of these pathologic mechanisms should reveal options for preventing renal disease progression after AKI.
Collapse
Affiliation(s)
| | - Joel M Weinberg
- Department of Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wilhelm Kriz
- Medical Fakultät Mannheim, Abteilung Anatomie und Entwicklungsbiologie Mannheim, University of Heidelberg, Baden-Wuerttemberg, Germany; and
| | - Anil K Bidani
- Department of Medicine, Loyola University and Hines Veterans Affairs Hospital, Maywood, Illinois
| |
Collapse
|
42
|
Layton AT. Recent advances in renal hemodynamics: insights from bench experiments and computer simulations. Am J Physiol Renal Physiol 2015; 308:F951-5. [PMID: 25715984 DOI: 10.1152/ajprenal.00008.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
It has been long known that the kidney plays an essential role in the control of body fluids and blood pressure and that impairment of renal function may lead to the development of diseases such as hypertension (Guyton AC, Coleman TG, Granger Annu Rev Physiol 34: 13-46, 1972). In this review, we highlight recent advances in our understanding of renal hemodynamics, obtained from experimental and theoretical studies. Some of these studies were published in response to a recent Call for Papers of this journal: Renal Hemodynamics: Integrating with the Nephron and Beyond.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
43
|
Grosenick D, Cantow K, Arakelyan K, Wabnitz H, Flemming B, Skalweit A, Ladwig M, Macdonald R, Niendorf T, Seeliger E. Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach. BIOMEDICAL OPTICS EXPRESS 2015; 6:309-23. [PMID: 25780726 PMCID: PMC4354597 DOI: 10.1364/boe.6.000309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 05/04/2023]
Abstract
We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation.
Collapse
Affiliation(s)
- Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin,
Germany
| | - Kathleen Cantow
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | - Karen Arakelyan
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin,
Germany
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin,
Germany
| | - Bert Flemming
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | - Angela Skalweit
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | - Mechthild Ladwig
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin,
Germany
| | - Erdmann Seeliger
- Institut für Vegetative Physiologie, Charité – Universitätsmedizin Berlin, Berlin,
Germany
| |
Collapse
|
44
|
Evans RG, Ow CPC, Bie P. The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am J Physiol Renal Physiol 2015; 308:F101-2. [DOI: 10.1152/ajprenal.00587.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Roger G. Evans
- Department of Physiology, Monash University, Melbourne, Australia; and
| | - Connie P. C. Ow
- Department of Physiology, Monash University, Melbourne, Australia; and
| | - Peter Bie
- Department of Physiology, Monash University, Melbourne, Australia; and
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
45
|
|
46
|
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 2015; 213:19-38. [PMID: 25204811 DOI: 10.1111/apha.12393] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Collapse
Affiliation(s)
- T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - K. Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Flemming
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Cantow
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - D. Grosenick
- Physikalisch-Technische Bundesanstalt (PTB); Berlin Germany
| | - M. Ladwig
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - H. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - E. Seeliger
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
47
|
Ince C. The central role of renal microcirculatory dysfunction in the pathogenesis of acute kidney injury. Nephron Clin Pract 2014; 127:124-8. [PMID: 25343835 DOI: 10.1159/000363203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Acute kidney injury (AKI) is a rapidly developing condition often associated with critical illness, with a high degree of morbidity and mortality, whose pathophysiology is ill understood. Recent investigations have identified the dysfunction of the renal microcirculation and its cellular and subcellular constituents as being central to the etiology of AKI. Injury is caused by inflammatory activation involving endothelial leucocyte interactions in combination with dysregulation of the homeostatis between oxygen, nitric oxide, and reactive oxygen species. Effective therapies expected to resolve AKI will have to control inflammation and restore this homeostasis. In order to apply and guide these therapies effectively, diagnostic tools aimed at physiological biomarkers of AKI for monitoring renal microcirculatory function in advance of changes in pharmacological biomarkers associated with structural damage of the kidney will need to be developed.
Collapse
Affiliation(s)
- Can Ince
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Hypoxia in diabetic kidneys. BIOMED RESEARCH INTERNATIONAL 2014; 2014:837421. [PMID: 25054148 PMCID: PMC4094876 DOI: 10.1155/2014/837421] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is now a leading cause of end-stage renal disease. In addition, DN accounts for the increased mortality in type 1 and type 2 diabetes, and then patients without DN achieve long-term survival compatible with general population. Hypoxia represents an early event in the development and progression of DN, and hypoxia-inducible factor- (HIF-) 1 mediates the metabolic responses to renal hypoxia. Diabetes induces the "fraternal twins" of hypoxia, that is, pseudohypoxia and hypoxia. The kidneys are susceptible to hyperoxia because they accept 20% of the cardiac output. Therefore, the kidneys have specific vasculature to avoid hyperoxia, that is, AV oxygen shunting. The NAD-dependent histone deacetylases (HDACs) sirtuins are seven mammalian proteins, SIRTs 1-7, which are known to modulate longevity and metabolism. Recent studies demonstrated that some isoforms of sirtuins inhibit the activation of HIF by deacetylation or noncatalyzing effects. The kidneys, which have a vascular system that protects them against hyperoxia, unfortunately experience extraordinary hypernutrition today. Then, an unexpected overload of glucose augments the oxygen consumption, which ironically results in hypoxia. This review highlights the primary role of HIF in diabetic kidneys for the metabolic adaptation to diabetes-induced hypoxia.
Collapse
|
49
|
Zhang Z, Payne K, Pallone TL. Syncytial communication in descending vasa recta includes myoendothelial coupling. Am J Physiol Renal Physiol 2014; 307:F41-52. [PMID: 24785189 DOI: 10.1152/ajprenal.00178.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using dual cell patch-clamp recording, we examined pericyte, endothelial, and myoendothelial cell-to-cell communication in descending vasa recta. Graded current injections into pericytes or endothelia yielded input resistances of 220 ± 21 and 128 ± 20 MΩ, respectively (P < 0.05). Injection of positive or negative current into an endothelial cell depolarized and hyperpolarized adjacent endothelial cells, respectively. Similarly, current injection into a pericyte depolarized and hyperpolarized adjacent pericytes. During myoendothelial studies, current injection into a pericyte or an endothelial cell yielded small, variable, but significant change of membrane potential in heterologous cells. Membrane potentials of paired pericytes or paired endothelia were highly correlated and identical. Paired measurements of resting potentials in heterologous cells were also correlated, but with slight hyperpolarization of the endothelium relative to the pericyte, -55.2 ± 1.8 vs. -52.9 ± 2.2 mV (P < 0.05). During dual recordings, angiotensin II or bradykinin stimulated temporally identical variations of pericyte and endothelial membrane potential. Similarly, voltage clamp depolarization of pericytes or endothelial cells induced parallel changes of membrane potential in the heterologous cell type. We conclude that the descending vasa recta endothelial syncytium is of lower resistance than the pericyte syncytium and that high-resistance myoendothelial coupling also exists. The myoendothelial communication between pericytes and endothelium maintains near identity of membrane potentials at rest and during agonist stimulation. Finally, endothelia membrane potential lies slightly below pericyte membrane potential, suggesting a tonic role for the former to hyperpolarize the latter and provide a brake on vasoconstriction.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|