1
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
2
|
Li X, Hu J, Yin P, Liu L, Chen Y. Mechanotransduction in the urothelium: ATP signalling and mechanoreceptors. Heliyon 2023; 9:e19427. [PMID: 37674847 PMCID: PMC10477517 DOI: 10.1016/j.heliyon.2023.e19427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
The urothelium, which covers the inner surface of the bladder, is continuously exposed to a complex physical environment where it is stimulated by, and responds to, a wide range of mechanical cues. Mechanically activated ion channels endow the urothelium with functioning in the conversion of mechanical stimuli into biochemical events that influence the surface of the urothelium itself as well as suburothelial tissues, including afferent nerve fibres, interstitial cells of Cajal and detrusor smooth muscle cells, to ensure normal urinary function during the cycle of filling and voiding. However, under prolonged and abnormal loading conditions, the urothelial sensory system can become maladaptive, leading to the development of bladder dysfunction. In this review, we summarize developments in the understanding of urothelial mechanotransduction from two perspectives: first, with regard to the functions of urothelial mechanotransduction, particularly stretch-mediated ATP signalling and the regulation of urothelial surface area; and secondly, with regard to the mechanoreceptors present in the urothelium, primarily transient receptor potential channels and mechanosensitive Piezo channels, and the potential pathophysiological role of these channels in the bladder. A more thorough understanding of urothelial mechanotransduction function may inspire the development of new therapeutic strategies for lower urinary tract diseases.
Collapse
Affiliation(s)
| | | | - Ping Yin
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lumin Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuelai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
3
|
Janzadeh A, Ramezani F, Yousefi S, Hamblin MR, Mojarad N, Nasirinezhad F. Time-dependent photobiomodulation management of neuropathic pain induced by spinal cord injury in male rats. Lasers Med Sci 2023; 38:120. [PMID: 37160475 DOI: 10.1007/s10103-023-03722-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/16/2023] [Indexed: 05/11/2023]
Abstract
Neuropathic pain (NP) following spinal cord injury (SCI) often lasts for a long time and causes a range of problems that reduce the quality of life. Current treatments are not generally effective; however, photobiomodulation therapy (PBMT) has made some progress in this area. Due to the novelty of this treatment, standard therapeutic protocols have not yet been agreed upon. In the present study, we compare the analgesic effect of two PBMT protocols (2 and 4 weeks of radiation). A total of thirty-two adult male Wistar rats were divided into four groups: control, SCI, 2 W PBMT, and 4 W PBMT. SCI was induced by an aneurism clip and PBMT used a 660-nm, initiated 30 min post-SCI, and continued daily for 2 or 4 weeks. Functional recovery, hyperalgesia, and allodynia were measured weekly. At the end of the study, the Gad65, interleukin 1-alpha (IL1α), interleukin 10 (IL10), IL4, and purinergic receptor (P2xR and P2yR) expressions were measured. Data were analyzed by Prism6. The results showed PBM irradiation for 2 and 4 weeks had the same effects in improving hyperalgesia. In the case of allodynia and functional recovery, 4 W PBMT was more effective (p<0.01). 4 W PBMT increased the Gad65 expression (p <0.001) and reduced P2Y4R (p <0.05) compared to SCI animals. The effects of 2 and 4 W PBMT were the same for IL1α, IL10, and P2X3 receptors. 4 W PBMT was more effective in reducing the complications of SCI such as pain and disability. PBMT therapy is an effective method aimed at immune system function modulation to reduce NP and motor dysfunction.
Collapse
Affiliation(s)
- Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Yousefi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Michael R Hamblin
- Laser Research Center, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Negin Mojarad
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI, 48859, USA
| | - Farinaz Nasirinezhad
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Perkins ME, Vizzard MA. Transient receptor potential vanilloid type 4 (TRPV4) in urinary bladder structure and function. CURRENT TOPICS IN MEMBRANES 2022; 89:95-138. [PMID: 36210154 PMCID: PMC10486315 DOI: 10.1016/bs.ctm.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a urologic, chronic pelvic pain syndrome characterized by pelvic pain, pressure, or discomfort with urinary symptoms. Symptom exacerbation (flare) is common with multiple, perceived triggers including stress. Multiple transient receptor potential (TRP) channels (TRPA1, TRPV1, TRPV4) expressed in the bladder have specific tissue distributions in the lower urinary tract (LUT) and are implicated in bladder disorders including overactive bladder (OAB) and BPS/IC. TRPV4 channels are strong candidates for mechanosensors in the urinary bladder and TRPV4 antagonists are promising therapeutic agents for OAB. In this perspective piece, we address the current knowledge of TRPV4 distribution and function in the LUT and its plasticity with injury or disease with an emphasis on BPS/IC. We review our studies that extend the knowledge of TRPV4 in urinary bladder function by focusing on (i) TRPV4 involvement in voiding dysfunction, pelvic pain, and non-voiding bladder contractions in NGF-OE mice; (ii) distention-induced luminal ATP release mechanisms and (iii) involvement of TRPV4 and vesicular release mechanisms. Finally, we review our lamina propria studies in postnatal rat studies that demonstrate: (i) the predominance of the TRPV4+ and PDGFRα+ lamina propria cellular network in early postnatal rats; (ii) the ability of exogenous mediators (i.e., ATP, TRPV4 agonist) to activate and increase the number of lamina propria cells exhibiting active Ca2+ events; and (iii) the ability of ATP and TRPV4 agonist to increase the rate of integrated Ca2+ activity corresponding to coupled lamina propria network events and the formation of propagating wavefronts.
Collapse
Affiliation(s)
- Megan Elizabeth Perkins
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A Vizzard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States.
| |
Collapse
|
5
|
Lee CL, Lee J, Park JM, Na HS, Shin JH, Na YG, Kim KH. Sophisticated regulation of micturition: review of basic neurourology. J Exerc Rehabil 2021; 17:295-307. [PMID: 34805017 PMCID: PMC8566102 DOI: 10.12965/jer.2142594.297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
The neurological regulation of the lower urinary tract can be viewed separately from the perspective of sensory neurons and motor neurons. First, in the receptors of the bladder and urethra of sensory nerves, sensations are transmitted through the periaqueductal gray matter of the midbrain to the cerebral cortex, and the cerebrum goes through the process of decision-making. Motor neurons are divided into upper motor neurons (UMNs) and lower motor neurons (LMNs). UMNs coordinate storage and micturition in the brain stem so that synergic voiding can occur. LMNs facilitate muscle contractions in the spinal cord. The muscles involved in urinary storage and micturition are innervated by the somatic branches of sympathetic, parasympathetic, and peripheral nerves. Sympathetic nerves are responsible for contractions of urethral smooth muscles, while parasympathetic nerves originate from S2–S4 and are in charge of contractions of the bladder muscle. Somatic nerves originate from the motor neurons in Onuf’s nucleus, which is a specific part of somatic nerves. In this review, we will investigate the structures of the nervous systems related to the lower urinary tract and the regulatory system of innervation for the urinary storage and micturition and discuss the clinical significance and future prospects of neurourological research.
Collapse
Affiliation(s)
- Chung Lyul Lee
- Department of Urology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jaegeun Lee
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Jong Mok Park
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Hyun Seok Na
- Department of Urology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Ju Hyun Shin
- Department of Urology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Yong Gil Na
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| | - Khae Hawn Kim
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University School of Medicine, Sejong, Korea
| |
Collapse
|
6
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Abstract
Purinergic signaling was proposed in 1972, after it was demonstrated that adenosine 5'-triphosphate (ATP) was a transmitter in nonadrenergic, noncholinergic inhibitory nerves supplying the guinea-pig taenia coli. Later, ATP was identified as an excitatory cotransmitter in sympathetic and parasympathetic nerves, and it is now apparent that ATP acts as a cotransmitter in most, if not all, nerves in both the peripheral nervous system and central nervous system (CNS). ATP acts as a short-term signaling molecule in neurotransmission, neuromodulation, and neurosecretion. It also has potent, long-term (trophic) roles in cell proliferation, differentiation, and death in development and regeneration. Receptors to purines and pyrimidines have been cloned and characterized: P1 adenosine receptors (with four subtypes), P2X ionotropic nucleotide receptors (seven subtypes) and P2Y metabotropic nucleotide receptors (eight subtypes). ATP is released from different cell types by mechanical deformation, and after release, it is rapidly broken down by ectonucleotidases. Purinergic receptors were expressed early in evolution and are widely distributed on many different nonneuronal cell types as well as neurons. Purinergic signaling is involved in embryonic development and in the activities of stem cells. There is a growing understanding about the pathophysiology of purinergic signaling and there are therapeutic developments for a variety of diseases, including stroke and thrombosis, osteoporosis, pain, chronic cough, kidney failure, bladder incontinence, cystic fibrosis, dry eye, cancer, and disorders of the CNS, including Alzheimer's, Parkinson's. and Huntington's disease, multiple sclerosis, epilepsy, migraine, and neuropsychiatric and mood disorders.
Collapse
|
8
|
Roberts MWG, Sui G, Wu R, Rong W, Wildman S, Montgomery B, Ali A, Langley S, Ruggieri MR, Wu C. TRPV4 receptor as a functional sensory molecule in bladder urothelium: Stretch-independent, tissue-specific actions and pathological implications. FASEB J 2020; 34:263-286. [PMID: 31914645 PMCID: PMC6973053 DOI: 10.1096/fj.201900961rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022]
Abstract
The newly recognized sensory role of bladder urothelium has generated intense interest in identifying its novel sensory molecules. Sensory receptor TRPV4 may serve such function. However, specific and physiologically relevant tissue actions of TRPV4, stretch-independent responses, and underlying mechanisms are unknown and its role in human conditions has not been examined. Here we showed TRPV4 expression in guinea-pig urothelium, suburothelium, and bladder smooth muscle, with urothelial predominance. Selective TRPV4 activation without stretch evoked significant ATP release-key urothelial sensory process, from live mucosa tissue, full-thickness bladder but not smooth muscle, and sustained muscle contractions. ATP release was mediated by Ca2+-dependent, pannexin/connexin-conductive pathway involving protein tyrosine kinase, but independent from vesicular transport and chloride channels. TRPV4 activation generated greater Ca2+ rise than purinergic activation in urothelial cells. There was intrinsic TRPV4 activity without exogeneous stimulus, causing ATP release. TRPV4 contributed to 50% stretch-induced ATP release. TRPV4 activation also triggered superoxide release. TRPV4 expression was increased with aging. Human bladder mucosa presented similarities to guinea pigs. Overactive bladders exhibited greater TRPV4-induced ATP release with age dependence. These data provide the first evidence in humans for the key functional role of TRPV4 in urothelium with specific mechanisms and identify TRPV4 up-regulation in aging and overactive bladders.
Collapse
Affiliation(s)
| | - Guiping Sui
- Guy's and St Thomas Hospitals NHS TrustLondonUK
| | - Rui Wu
- University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Weifang Rong
- Department of PhysiologyShanghai Jiaotong University School of MedicineShanghaiChina
| | | | | | | | | | | | - Changhao Wu
- School of Biosciences and MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
9
|
Chess-Williams R, Sellers DJ, Brierley SM, Grundy D, Grundy L. Purinergic receptor mediated calcium signalling in urothelial cells. Sci Rep 2019; 9:16101. [PMID: 31695098 PMCID: PMC6834637 DOI: 10.1038/s41598-019-52531-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/07/2019] [Indexed: 01/23/2023] Open
Abstract
Non-neuronal ATP released from the urothelium in response to bladder stretch is a key modulator of bladder mechanosensation. Whilst non-neuronal ATP acts on the underlying bladder afferent nerves to facilitate sensation, there is also the potential for ATP to act in an autocrine manner, modulating urothelial cell function. The aim of this study was to systematically characterise the functional response of primary mouse urothelial cells (PMUCs) to ATP. PMUCs isolated from male mice (14–16 weeks) were used for live-cell fluorescent calcium imaging and qRT-PCR to determine the expression profile of P2X and P2Y receptors. The majority of PMUCs (74–92%) responded to ATP (1 μM–1 mM), as indicted by an increase in intracellular calcium (iCa2+). PMUCs exhibited dose-dependent responses to ATP (10 nM–1 mM) in both calcium containing (2 mM, EC50 = 3.49 ± 0.77 μM) or calcium free (0 mM, EC50 = 9.5 ± 1.5 μM) buffers. However, maximum iCa2+ responses to ATP were significantly attenuated upon repetitive applications in calcium containing but not in calcium free buffer. qRT-PCR revealed expression of P2X1–6, and P2Y1–2, P2Y4, P2Y6, P2Y11–14, but not P2X7 in PMUCs. These findings suggest the major component of ATP induced increases in iCa2+ are mediated via the liberation of calcium from intracellular stores, implicating functional P2Y receptors that are ubiquitously expressed on PMUCs.
Collapse
Affiliation(s)
- Russell Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Luke Grundy
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia. .,Visceral Pain Research Group, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia. .,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia. .,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
10
|
Taidi Z, Mansfield KJ, Bates L, Sana-Ur-Rehman H, Liu L. Purinergic P2X7 receptors as therapeutic targets in interstitial cystitis/bladder pain syndrome; key role of ATP signaling in inflammation. Bladder (San Franc) 2019; 6:e38. [PMID: 32775480 PMCID: PMC7401983 DOI: 10.14440/bladder.2019.789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic lower urinary tract condition. Patients with IC/BPS suffer from debilitating pain and urinary urgency. The underlying etiology of IC/BPS is unknown and as such current treatments are mostly symptomatic with no real cure. Many theories have been proposed to describe the etiology of IC/BPS, but this review focuses on the role of inflammation. In IC/BPS patients, the permeability of the urothelium barrier is compromised and inflammatory cells infiltrate the bladder wall. There are increased levels of many inflammatory mediators in patients with IC/BPS and symptoms such as pain and urgency that have been associated with the degree of inflammation. Recent evidence has highlighted the role of purinergic receptors, specifically the P2X7 receptor, in the process of inflammation. The results from studies in animals including cyclophosphamide-induced hemorrhagic cystitis strongly support the role of P2X7 receptors in inflammation. Furthermore, the deletion of the P2X7 receptor or antagonism of this receptor significantly reduces inflammatory mediator release from the bladder and improves symptoms. Research results from IC/BPS patients and animal models of IC/BPS strongly support the crucial role of inflammation in the pathophysiology of this painful disease. Purinergic signaling and purinergic receptors, especially the P2X7 receptor, play an undisputed role in inflammation. Purinergic receptor antagonists show positive results in treating different symptoms of IC/BPS.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lucy Bates
- Westmead Hospital, Westmead, NSW 2145, Australia
| | - Hafiz Sana-Ur-Rehman
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| | - Lu Liu
- School of Medical Sciences, The University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
11
|
Kubota Y, Hamakawa T, Osaga S, Okada A, Hamamoto S, Kawai N, Kohri K, Yasui T. A kit ligand, stem cell factor as a possible mediator inducing overactive bladder. Neurourol Urodyn 2017; 37:1258-1265. [DOI: 10.1002/nau.23449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yasue Kubota
- Department of Clinical PhysiologyNagoya City University School of Nursing Graduate School of NursingNagoyaJapan
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takashi Hamakawa
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoshi Osaga
- Clinical Research Management CenterNagoya City University HospitalNagoyaJapan
| | - Atsushi Okada
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shuzo Hamamoto
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriyasu Kawai
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kenjiro Kohri
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takahiro Yasui
- Department of Nephro‐urologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
12
|
Shiina K, Hayashida KI, Ishikawa K, Kawatani M. ATP release from bladder urothelium and serosa in a rat model of partial bladder outlet obstruction. Biomed Res 2017; 37:299-304. [PMID: 27784873 DOI: 10.2220/biomedres.37.299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Overactive bladder is one of the major health problem especially in elderly people. Adenosine triphosphate (ATP) is released from urinary bladder cells and acts as a smooth muscle contraction and sensory signal in micturition but little is known about the role of ATP release in the pathophysiology of overactive bladder. To assess the relationship between ATP and overactive bladder, we used a partial bladder outlet obstruction (pBOO) model in rats. The bladder caused several changes by pBOO: An increase in bladder weight, hypertrophy of sub-urothelium and sub-serosal area, and frequent non-voiding bladder contraction during urine storage. Basal ATP release from urothelium and serosa of pBOO rats was significantly higher than that of normal rats. Distentioninduced ATP release from urothelium of normal and pBOO rats had no significant change. However, distention-induced ATP release from serosa of pBOO rats was higher than that of normal. These findings may identify ATP especially released from serosa as one of causes of non-voiding contractions and overactive bladder symptoms.
Collapse
Affiliation(s)
- Kazuhiro Shiina
- Departments of Neurophysiology, Akita University Graduate School of Medicine
| | | | | | | |
Collapse
|
13
|
Durnin L, Hayoz S, Corrigan RD, Yanez A, Koh SD, Mutafova-Yambolieva VN. Urothelial purine release during filling of murine and primate bladders. Am J Physiol Renal Physiol 2016; 311:F708-F716. [PMID: 27465992 DOI: 10.1152/ajprenal.00387.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023] Open
Abstract
During urinary bladder filling the bladder urothelium releases chemical mediators that in turn transmit information to the nervous and muscular systems to regulate sensory sensation and detrusor muscle activity. Defects in release of urothelial mediators may cause bladder dysfunctions that are characterized with aberrant bladder sensation during bladder filling. Previous studies have demonstrated release of ATP from the bladder urothelium during bladder filling, and ATP remains the most studied purine mediator that is released from the urothelium. However, the micturition cycle is likely regulated by multiple purine mediators, since various purine receptors are found present in many cell types in the bladder wall, including urothelial cells, afferent nerves, interstitial cells in lamina propria, and detrusor smooth muscle cells. Information about the release of other biologically active purines during bladder filling is still lacking. Decentralized bladders from C57BL/6 mice and Cynomolgus monkeys (Macaca fascicularis) were filled with physiological solution at different rates. Intraluminal fluid was analyzed by high-performance liquid chromatography with fluorescence detection for simultaneous evaluation of ATP, ADP, AMP, adenosine, nicotinamide adenine dinucleotide (NAD+), ADP-ribose, and cADP-ribose content. We also measured ex vivo bladder filling pressures and performed cystometry in conscious unrestrained mice at different filling rates. ATP, ADP, AMP, NAD+, ADPR, cADPR, and adenosine were detected released intravesically at different ratios during bladder filling. Purine release increased with increased volumes and rates of filling. Our results support the concept that multiple urothelium-derived purines likely contribute to the complex regulation of bladder sensation during bladder filling.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sebastien Hayoz
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Robert D Corrigan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Andrew Yanez
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | | |
Collapse
|
14
|
Contreras-Sanz A, Krska L, Balachandran AA, Curtiss NL, Khasriya R, Kelley S, Strutt M, Gill HS, Taylor KM, Mansfield KJ, Wu C, Peppiatt-Wildman CM, Malone-Lee J, Duckett J, Wildman SS. Altered urothelial ATP signaling in a major subset of human overactive bladder patients with pyuria. Am J Physiol Renal Physiol 2016; 311:F805-F816. [PMID: 27358056 DOI: 10.1152/ajprenal.00339.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 06/24/2016] [Indexed: 01/23/2023] Open
Abstract
Overactive Bladder (OAB) is an idiopathic condition, characterized by urgency, urinary frequency, and urgency incontinence, in the absence of routinely traceable urinary infection. We have described microscopic pyuria (≥10 wbc/μl) in patients suffering from the worst symptoms. It is established that inflammation is associated with increased ATP release from epithelial cells, and extracellular ATP originating from the urothelium following increased hydrostatic pressure is a mediator of bladder sensation. Here, using bladder biopsy samples, we have investigated urothelial ATP signaling in OAB patients with microscopic pyuria. Basal, but not stretch-evoked, release of ATP was significantly greater from the urothelium of OAB patients with pyuria than from non-OAB patients or OAB patients without pyuria (<10 wbc/μl). Basal ATP release from the urothelium of OAB patients with pyuria was inhibited by the P2 receptor antagonist suramin and abolished by the hemichannel blocker carbenoxolone, which differed from stretch-activated ATP release. Altered P2 receptor expression was evident in the urothelium from pyuric OAB patients. Furthermore, intracellular bacteria were visualized in shed urothelial cells from ∼80% of OAB patients with pyuria. These data suggest that increased ATP release from the urothelium, involving bacterial colonization, may play a role in the heightened symptoms associated with pyuric OAB patients.
Collapse
Affiliation(s)
| | - Louise Krska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, United Kingdom
| | | | - Natasha L Curtiss
- Obstetrics and Urogynaecology, Medway Maritime Hospital, Kent, United Kingdom
| | | | - Stephen Kelley
- Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, United Kingdom
| | - Matthew Strutt
- Department of Microbiology, East Kent Hospitals University Foundation Trust, Kent, United Kingdom
| | - Hardyal S Gill
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Kevin M Taylor
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; and
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | | | - James Malone-Lee
- Division of Medicine, UCL Medical School, London, United Kingdom
| | - Jonathan Duckett
- Obstetrics and Urogynaecology, Medway Maritime Hospital, Kent, United Kingdom
| | - Scott S Wildman
- Medway School of Pharmacy, Universities of Kent and Greenwich, Kent, United Kingdom;
| |
Collapse
|
15
|
Gonzalez EJ, Heppner TJ, Nelson MT, Vizzard MA. Purinergic signalling underlies transforming growth factor-β-mediated bladder afferent nerve hyperexcitability. J Physiol 2016; 594:3575-88. [PMID: 27006168 DOI: 10.1113/jp272148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/17/2016] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS The sensory components of the urinary bladder are responsible for the transduction of bladder filling and are often impaired with neurological injury or disease. Elevated extracellular ATP contributes, in part, to bladder afferent nerve hyperexcitability during urinary bladder inflammation or irritation. Transforming growth factor-β1 (TGF-β1) may stimulate ATP release from the urothelium through vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels to increase bladder afferent nerve discharge. Bladder afferent nerve hyperexcitability and urothelial ATP release with CYP-induced cystitis is decreased with TGF-β inhibition. These results establish a causal link between an inflammatory mediator, TGF-β, and intrinsic signalling mechanisms of the urothelium that may contribute to the altered sensory processing of bladder filling. ABSTRACT The afferent limb of the micturition reflex is often compromised following bladder injury, disease and inflammatory conditions. We have previously demonstrated that transforming growth factor-β (TGF-β) signalling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Despite the functional presence of TGF-β in bladder inflammation, the precise mechanisms of TGF-β mediating bladder dysfunction are not yet known. Thus, the present studies investigated the sensory components of the urinary bladder that may underlie the pathophysiology of aberrant TGF-β activation. We utilized bladder-pelvic nerve preparations to characterize bladder afferent nerve discharge and the mechanisms of urothelial ATP release with distention. Our findings indicate that bladder afferent nerve discharge is sensitive to elevated extracellular ATP during pathological conditions of urinary bladder inflammation or irritation. We determined that TGF-β1 may increase bladder afferent nerve excitability by stimulating ATP release from the urothelium via vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels. Furthermore, blocking aberrant TGF-β signalling in cyclophosphamide-induced cystitis with TβR-1 inhibition decreased afferent nerve hyperexcitability with a concomitant decrease in urothelial ATP release. Taken together, these results establish a role for purinergic signalling mechanisms in TGF-β-mediated bladder afferent nerve activation that may ultimately facilitate increased voiding frequency. The synergy between intrinsic urinary bladder signalling mechanisms and an inflammatory mediator provides novel insight into bladder dysfunction and supports new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Thomas J Heppner
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT, 05405, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
16
|
Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 2016; 13:193-204. [PMID: 26926246 DOI: 10.1038/nrurol.2016.13] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation.
Collapse
Affiliation(s)
- Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Beatrice M Girard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| |
Collapse
|
17
|
de Groat WC, Yoshimura N. Anatomy and physiology of the lower urinary tract. HANDBOOK OF CLINICAL NEUROLOGY 2015; 130:61-108. [PMID: 26003239 DOI: 10.1016/b978-0-444-63247-0.00005-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. Neural control of micturition is organized as a hierarchic system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brainstem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brainstem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily during the early postnatal period, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults cause re-emergence of involuntary micturition, leading to urinary incontinence. The mechanisms underlying these pathologic changes are discussed.
Collapse
Affiliation(s)
- William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Abstract
It is well established that in most species, exocytotic vesicular release of ATP from parasympathetic neurons contributes to contraction of the bladder. However, ATP is released not only from parasympathetic nerves, but also from the urothelium. During bladder filling, the urothelium is stretched and ATP is released from the umbrella cells thereby activating mechanotransduction pathways. ATP release can also be induced by various mediators present in the urine and and/or released from nerves or other components of the lamina propria. Urothelial release of ATP is mainly attributable to vesicular transport or exocytosis and, to a smaller extent, to pannexin hemichannel conductive efflux. After release, ATP acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex and to mediate the sensation of bladder filling and urgency. ATP also acts on suburothelial interstitial cells/myofibroblasts generating an inward Ca(2+) transient that via gap junctions could provide a mechanism for long-distance spread of signals from the urothelium to the detrusor muscle. ATP release can be affected by urological diseases, e.g., interstitial cystitis and both the mechanisms of release and the receptors activated by ATP may be targets for future drugs for treatment of lower urinary tract disorders.
Collapse
|
19
|
Beckel JM, Daugherty SL, Tyagi P, Wolf-Johnston AS, Birder LA, Mitchell CH, de Groat WC. Pannexin 1 channels mediate the release of ATP into the lumen of the rat urinary bladder. J Physiol 2015; 593:1857-71. [PMID: 25630792 DOI: 10.1113/jphysiol.2014.283119] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS ATP is released through pannexin channels into the lumen of the rat urinary bladder in response to distension or stimulation with bacterial endotoxins. Luminal ATP plays a physiological role in the control of micturition because intravesical perfusion of apyrase or the ecto-ATPase inhibitor ARL67156 altered reflex bladder activity in the anaesthetized rat. The release of ATP from the apical and basolateral surfaces of the urothelium appears to be mediated by separate mechanisms because intravesical administration of the pannexin channel antagonist Brilliant Blue FCF increased bladder capacity, whereas i.v. administration did not. Intravesical instillation of small interfering RNA-containing liposomes decreased pannexin 1 expression in the rat urothelium in vivo and increased bladder capacity. These data indicate a role for pannexin-mediated luminal ATP release in both the physiological and pathophysiological control of micturition and suggest that urothelial pannexin may be a viable target for the treatment of overactive bladder disorders. ABSTRACT ATP is released from the bladder epithelium, also termed the urothelium, in response to mechanical or chemical stimuli. Although numerous studies have described the contribution of this release to the development of various bladder disorders, little information exists regarding the mechanisms of release. In the present study, we examined the role of pannexin channels in mechanically-induced ATP release from the urothelium. PCR confirmed the presence of pannexin 1 and 2 mRNA in rat urothelial tissue, whereas immunofluorescence experiments localized pannexin 1 to all three layers of the urothelium. During continuous bladder cystometry in anaesthetized rats, inhibition of pannexin 1 channels using carbenoxolone (CBX) or Brilliant Blue FCF (BB-FCF) (1-100 μm, intravesically), or by using intravesical small interfering RNA, increased the interval between voiding contractions. Intravenous administration of BB-FCF (1-100 μg kg(-1) ) did not alter bladder activity. CBX or BB-FCF (100 μm intravesically) also decreased basal ATP concentrations in the perfusate from non-distended bladders and inhibited increases in ATP concentrations in response to bladder distension (15 and 30 cmH2 O pressure). Intravesical perfusion of the ATP diphosphohydrolase apyrase (2 U ml(-1) ), or the ATPase inhibitor ARL67156 (10 μm) increased or decreased reflex bladder activity, respectively. Intravesical instillation of bacterial lipopolysaccharides (LPS) (Escherichia coli 055:B5, 100 μg ml(-1) ) increased ATP concentrations in the bladder perfusate, and also increased voiding frequency; these effects were suppressed by BB-FCF. These data indicate that pannexin channels contribute to distension- or LPS-evoked ATP release into the lumen of the bladder and that luminal release can modulate voiding function.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Anaesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed.
Collapse
Affiliation(s)
- William C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Derek Griffiths
- Department of Medicine (Geriatrics), University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
- Department of Urology, University of Pittsburgh, School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 2014; 9:e106269. [PMID: 25170954 PMCID: PMC4149561 DOI: 10.1371/journal.pone.0106269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1), and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ) and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS), a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger). These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.
Collapse
|
22
|
Signalling molecules in the urothelium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:297295. [PMID: 25177686 PMCID: PMC4142380 DOI: 10.1155/2014/297295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/14/2022]
Abstract
The urothelium was long considered to be a silent barrier protecting the body from the toxic effects of urine. However, today a number of dynamic abilities of the urothelium are well recognized, including its ability to act as a sensor of the intravesical environment. During recent years several pathways of these urothelial abilities have been proposed and a major part of these pathways includes release of signalling molecules. It is now evident that the urothelium represents only one part of the sensory web. Urinary bladder signalling is finely tuned machinery of signalling molecules, acting in autocrine and paracrine manner, and their receptors are specifically distributed among different types of cells in the urinary bladder. In the present review the current knowledge of the formation, release, and signalling effects of urothelial acetylcholine, ATP, adenosine, and nitric oxide in health and disease is discussed.
Collapse
|
23
|
Carneiro I, Timóteo MA, Silva I, Vieira C, Baldaia C, Ferreirinha F, Silva-Ramos M, Correia-de-Sá P. Activation of P2Y6 receptors increases the voiding frequency in anaesthetized rats by releasing ATP from the bladder urothelium. Br J Pharmacol 2014; 171:3404-19. [PMID: 24697602 PMCID: PMC4105929 DOI: 10.1111/bph.12711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 01/13/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Despite the abundant expression of the UDP-sensitive P2Y6 receptor in urothelial cells and sub-urothelial myofibroblasts its role in the control of bladder function is not well understood. EXPERIMENTAL APPROACH We compared the effects of UDP and of the selective P2Y6 receptor agonist, PSB0474, on bladder urodynamics in anaesthetized rats; the voided fluid was tested for ATP bioluminescence. The isolated urinary bladder was used for in vitro myographic recordings and [(3) H]-ACh overflow experiments. KEY RESULTS Instillation of UDP or PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions; an effect blocked by the P2Y6 receptor antagonist, MRS2578. Effects mediated by urothelial P2Y6 receptors required extrinsic neuronal circuitry as they were not detected in the isolated bladder. UDP-induced bladder hyperactvity was also prevented by blocking P2X3 and P2Y1 receptors, respectively, with A317491 and MRS2179 applied i.v.. UDP decreased [(3) H]-ACh release from stimulated bladder strips with urothelium, but not in its absence. Inhibitory effects of UDP were converted into facilitation by the P2Y1 receptor antagonist, MRS2179. The P2Y6 receptor agonist increased threefold ATP levels in the voided fluid. CONCLUSIONS AND IMPLICATIONS Activation of P2Y6 receptors increased the voiding frequency indirectly by releasing ATP from the urothelium and activation of P2X3 receptors on sub-urothelial nerve afferents. Bladder hyperactivity may be partly reversed following ATP hydrolysis to ADP by E-NTPDases, thereby decreasing ACh release from cholinergic nerves expressing P2Y1 receptors.
Collapse
Affiliation(s)
- Inês Carneiro
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - M Alexandrina Timóteo
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Cátia Vieira
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Catarina Baldaia
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
- Serviço de Urologia, Centro Hospitalar do Porto (CHP)Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP)Portugal
| |
Collapse
|
24
|
Gonzalez EJ, Merrill L, Vizzard MA. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function. Am J Physiol Regul Integr Comp Physiol 2014; 306:R869-78. [PMID: 24760999 PMCID: PMC4159737 DOI: 10.1152/ajpregu.00030.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/19/2014] [Indexed: 01/19/2023]
Abstract
Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
25
|
P2Y receptor modulation of ATP release in the urothelium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:830374. [PMID: 24829920 PMCID: PMC4009150 DOI: 10.1155/2014/830374] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
The release of ATP from the urothelium in response to stretch during filling demonstrates the importance of the purinergic system for the physiological functioning of the bladder. This study examined the effect of P2 receptor agonists on ATP release from two urothelial cell lines (RT4 and UROtsa cells). Hypotonic Krebs was used as a stretch stimulus. Incubation of urothelial cells with high concentrations of the P2Y agonist ADP induced ATP release to a level that was 40-fold greater than hypotonic-stimulated ATP release (P < 0.0011, ADP EC50 1.8 µM). Similarly, an increase in ATP release was also observed with the P2Y agonist, UTP, up to a maximum of 70% of the hypotonic response (EC50 0.62 µM). Selective P2 receptor agonists, αβ -methylene-ATP, ATP- γ -S, and 2-methylthio-ADP had minimal effects on ATP release. ADP-stimulated ATP release was significantly inhibited by suramin (100 µM, P = 0.002). RT4 urothelial cells break down nucleotides (100 µM) including ATP, ADP, and UTP to liberate phosphate. Phosphate liberation was also demonstrated from endogenous nucleotides with approximately 10% of the released ATP broken down during the incubation. These studies demonstrate a role for P2Y receptor activation in stimulation of ATP release and emphasize the complexity of urothelial P2 receptor signalling.
Collapse
|
26
|
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014; 10:103-55. [PMID: 24265069 PMCID: PMC3944045 DOI: 10.1007/s11302-013-9395-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022] Open
Abstract
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
27
|
Sui G, Fry CH, Montgomery B, Roberts M, Wu R, Wu C. Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions. Am J Physiol Renal Physiol 2013; 306:F286-98. [PMID: 24285497 PMCID: PMC3920053 DOI: 10.1152/ajprenal.00291.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: purinergic and muscarinic agonists on ATP release and its paracrine effect. Guinea pig and human urothelial mucosa were mounted in a perfusion trough; superfusate ATP was measured using a luciferin-luciferase assay, and tissue contractions were recorded with a tension transducer. Intracellular Ca2+ was measured in isolated urothelial cells with fura-2. The P2Y agonist UTP but not the P2X agonist α,β-methylene-ATP generated ATP release. The muscarinic agonist carbachol and the M2-preferential agonist oxotremorine also generated ATP release, which was antagonized by the M2-specific agent methoctramine. Agonist-evoked ATP release was accompanied by mucosal contractions. Urothelial ATP release was differentially mediated by intracellular Ca2+ release, cAMP, exocytosis, or connexins. Urothelium-attached smooth muscle exhibited spontaneous contractions that were augmented by subthreshold concentrations of carbachol, which had little direct effect on smooth muscle. This activity was attenuated by desensitizing P2X receptors on smooth muscle. Urothelial ATP release was increased in aging bladders. Purinergic and muscarinic agents produced similar effects in human urothelial tissue. This is the first demonstration of specific modulation of urothelial ATP release in native tissue by purinergic and muscarinic neurotransmitters via distinct mechanisms. Released ATP produces paracrine effects on underlying tissues. This process is altered during aging and has relevance to human bladder pathologies.
Collapse
Affiliation(s)
- Guiping Sui
- Dept. of Biochemistry and Physiology, Faculty of Health and Medical Science, Univ. of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Timóteo MA, Carneiro I, Silva I, Noronha-Matos JB, Ferreirinha F, Silva-Ramos M, Correia-de-Sá P. ATP released via pannexin-1 hemichannels mediates bladder overactivity triggered by urothelial P2Y6 receptors. Biochem Pharmacol 2013; 87:371-9. [PMID: 24269631 DOI: 10.1016/j.bcp.2013.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
In contrast to the well-known signaling role of urothelial ATP to control bladder function, the hypothesis that uracil nucleotides (UTP and/or UDP) also exert autocrine/paracrine actions only recently gained experimental support. Urothelial cells express UDP-sensitive P2Y6 receptors, yet their role in the control of bladder activity has been mostly neglected. This study was designed to investigate the ability of PSB0474, a stable UDP analogue which exhibits selectivity for P2Y6 receptors, to modulate urodynamic responses in the anaesthetized rat in vivo. Instillation of PSB0474 into the bladder increased the voiding frequency (VF) without affecting the amplitude (A) and the duration (Δt) of bladder contractions. PSB0474-induced bladder overactivity was prevented by the selective P2Y6 antagonist, MRS2578. The increase in the VF produced by PSB0474 was also blocked by inhibitors of pannexin-1 hemichannels, (10)Panx or carbenoxolone, when these drugs were applied inside the bladder lumen but not when they were administered intravenously. Reduction of hemichannels pore permeability with H1152 also prevented PSB0474-induced bladder overactivity, but the exocytosis inhibitor, Exo-1, was inactive. PSB0474 increased by 3-fold the urinary ATP content. Implication of hemichannels permeability on PSB0474-induced ATP release was demonstrated by real-time fluorescence video-microscopy measuring the uptake of propidium iodide by intact urothelial cells in the absence and in the presence of MRS2578 or carbenoxolone. Confocal microscopy studies confirmed the co-localization of pannexin-1 and P2Y6 receptors in the rat urothelium. Data indicate that activation of P2Y6 receptors causes bladder overactivity in the anaesthetized rat indirectly by releasing ATP from the urothelium via pannexin-1 hemichannels.
Collapse
Affiliation(s)
- M Alexandrina Timóteo
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Inês Carneiro
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia/UMIB, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
29
|
Shabir S, Cross W, Kirkwood LA, Pearson JF, Appleby PA, Walker D, Eardley I, Southgate J. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium. Am J Physiol Renal Physiol 2013; 305:F396-406. [PMID: 23720349 DOI: 10.1152/ajprenal.00127.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.
Collapse
Affiliation(s)
- Saqib Shabir
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kurahashi M, Nakano Y, Peri LE, Townsend JB, Ward SM, Sanders KM. A novel population of subepithelial platelet-derived growth factor receptor α-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 2013; 304:G823-34. [PMID: 23429582 PMCID: PMC3652001 DOI: 10.1152/ajpgi.00001.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently platelet-derived growth factor-α-positive cells (PDGFRα(+) cells), previously called "fibroblast-like" cells, have been described in the muscle layers of the gastrointestinal tract. These cells form networks and are involved in purinergic motor neurotransduction. Examination of colon from mice with enhanced green fluorescent protein (eGFP) driven from the endogenous Pdgfra (PDGFRα-eGFP mice) revealed a unique population of PDGFRα(+) cells in the mucosal layer of colon. We investigated the phenotype and potential role of these cells, which have not been characterized previously. Expression of PDGFRα and several additional proteins was surveyed in human and murine colonic mucosae by immunolabeling; PDGFRα(+) cells in colonic mucosa were isolated from PDGFRα-eGFP mice, and the gene expression profile was analyzed by quantitative polymerase chain reaction. We found for the first time that PDGFRα was expressed in subepithelial cells (subepithelial PDGFRα(+) cells) forming a pericryptal sheath from the base to the tip of crypts. These cells were in close proximity to the basolateral surface of epithelial cells and distinct from subepithelial myofibroblasts, which were identified by expression of α-smooth muscle actin and smooth muscle myosin. PDGFRα(+) cells also lay in close proximity to varicose processes of nerve fibers. Mouse subepithelial PDGFRα(+) cells expressed Toll-like receptor genes, purinergic receptor genes, 5-hydroxytryptamine (5-HT) 4 receptor gene, and hedgehog signaling genes. Subepithelial PDGFRα(+) cells occupy an important niche in the lamina propria and may function in transduction of sensory and immune signals and in the maintenance of mucosal homeostasis.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yasuko Nakano
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Lauren E. Peri
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jared B. Townsend
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
31
|
Abstract
The urothelium, which lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide, and acetylcholine. They express a variety of receptors and ion channels, including P2X3 purinergic receptors, nicotinic and muscarinic receptors, and TRP channels, which all have been implicated in urothelial-neuronal interactions, and involved in signals that via components in the underlying lamina propria, such as interstitial cells, can be amplified and conveyed to nerves, detrusor muscle cells, and ultimately the central nervous system. The specialized anatomy of the urothelium and underlying structures, and the possible communication mechanisms from urothelial cells to various cell types within the bladder wall are described. Changes in the urothelium/lamina propria ("mucosa") produced by different bladder disorders are discussed, as well as the mucosa as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lori Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
32
|
Ochodnický P, Michel MB, Butter JJ, Seth J, Panicker JN, Michel MC. Bradykinin modulates spontaneous nerve growth factor production and stretch-induced ATP release in human urothelium. Pharmacol Res 2013; 70:147-54. [PMID: 23376352 DOI: 10.1016/j.phrs.2013.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022]
Abstract
The urothelium plays a crucial role in integrating urinary bladder sensory outputs, responding to mechanical stress and chemical stimulation by producing several diffusible mediators, including ATP and, possibly, neurotrophin nerve growth factor (NGF). Such urothelial mediators activate underlying afferents and thus may contribute to normal bladder sensation and possibly to the development of bladder overactivity. The muscle-contracting and pain-inducing peptide bradykinin is produced in various inflammatory and non-inflammatory pathologies associated with bladder overactivity, but the effect of bradykinin on human urothelial function has not yet been characterized. The human urothelial cell line UROtsa expresses mRNA for both B1 and B2 subtypes of bradykinin receptors, as determined by real-time PCR. Bradykinin concentration-dependently (pEC50=8.3, Emax 4434±277nM) increased urothelial intracellular calcium levels and induced phosphorylation of the mitogen-activated protein kinase (MAPK) ERK1/2. Activation of both bradykinin-induced signaling pathways was completely abolished by the B2 antagonist icatibant (1μM), but not the B1 antagonist R715 (1μM). Bradykinin-induced (100nM) B2 receptor activation markedly increased (192±13% of control levels) stretch-induced ATP release from UROtsa in hypotonic medium, the effect being dependent on intracellular calcium elevations. UROtsa cells also expressed mRNA and protein for NGF and spontaneously released NGF to the medium in the course of hours (11.5±1.4pgNGF/mgprotein/h). Bradykinin increased NGF mRNA expression and accelerated urothelial NGF release to 127±5% in a protein kinase C- and ERK1/2-dependent manner. Finally, bradykinin up-regulated mRNA for transient-receptor potential vanilloid (TRPV1) sensory ion channel in UROtsa. In conclusion, we show that bradykinin represents a versatile modulator of human urothelial phenotype, accelerating stretch-induced ATP release, spontaneous release of NGF, as well as expression of sensory ion channel TRPV1. Bradykinin-induced changes in urothelial sensory function might contribute to the development of bladder dysfunction.
Collapse
Affiliation(s)
- Peter Ochodnický
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Munoz A, Somogyi GT, Boone TB, Smith CP. Lumbosacral sensory neuronal activity is enhanced by activation of urothelial purinergic receptors. Brain Res Bull 2011; 86:380-4. [DOI: 10.1016/j.brainresbull.2011.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/26/2022]
|
34
|
Yu W, Hill WG. Defining protein expression in the urothelium: a problem of more than transitional interest. Am J Physiol Renal Physiol 2011; 301:F932-42. [PMID: 21880838 DOI: 10.1152/ajprenal.00334.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The transitional epithelium of the bladder, the urothelium, is a challenging tissue to study due to its fragility, complex cellular makeup, stratified composition, and intimate connections to both neural and connective tissue elements. With the increasing focus on the urothelium as a mechanosensory tissue with complex autocrine and paracrine signaling activities, there have arisen a number of unresolved controversies in the urothelial literature regarding whether certain important sensory and signaling proteins are expressed by the urothelium. Prominent examples of this include the transient receptor potential (TRP) family member TRPV1 and the purinergic receptor P2X(3). The problem is more than one of scientific bookkeeping since studies utilizing genetic models (primarily knockout mice) claim additional credibility for urothelial functions when phenotypes are discovered. Furthermore, both of the above-mentioned receptors are important therapeutic targets for various bladder disorders including inflammatory and neuropathic pain. The reasons for the confusion about urothelial expression are manifold, but they likely include low expression levels in some cases, poor specificity of antibodies (sometimes lacking adequate controls), the presence of nonurothelial cells resident within the urothelium, and the fact that the urothelium is particularly prone to aspecific adsorption of antibodies. In this review, we attempt to summarize some of the pitfalls with currently accepted practices in this regard, as well as to describe a set of guidelines which will improve the reliability of conclusions related to urothelial expression. It is hoped that this will be of value to investigators studying the urothelium, to those attempting to interpret conflicts in the literature, and hopefully also those charged with reviewing unpublished work. These recommendations will outline a set of "baseline" and "best practice" guidelines by which both researchers and reviewers will be able to evaluate the evidence presented.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Division of Renal Research, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
35
|
TRP channels in urinary bladder mechanosensation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:861-79. [PMID: 21290331 DOI: 10.1007/978-94-007-0265-3_45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Smith PP. Purinoceptors and Bladder Dysfunction. CURRENT BLADDER DYSFUNCTION REPORTS 2011. [DOI: 10.1007/s11884-011-0081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Expression and distribution of ectonucleotidases in mouse urinary bladder. PLoS One 2011; 6:e18704. [PMID: 21533188 PMCID: PMC3077397 DOI: 10.1371/journal.pone.0018704] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/08/2011] [Indexed: 11/30/2022] Open
Abstract
Background Normal urinary bladder function requires bidirectional molecular communication between urothelium, detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP. Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors. Little is known about the role of these enzymes in mammalian bladder despite substantial literature linking bladder diseases to aberrant purinergic signaling. We therefore examined the expression and distribution of ectonucleotidases in the mouse bladder since mice offer the advantage of straightforward genetic modification for future studies. Principal Findings RT-PCR demonstrated that eight members of the ectonucleoside triphosphate diphosphohydrolase (NTPD) family, as well as 5′-nucleotidase (NT5E) are expressed in mouse bladder. NTPD1, NTPD2, NTPD3, NTPD8 and NT5E all catalyze extracellular nucleotide dephosphorylation and in concert achieve stepwise conversion of extracellular ATP to adenosine. Immunofluorescent localization with confocal microscopy revealed NTPD1 in endothelium of blood vessels in the lamina propria and in detrusor smooth muscle cells, while NTPD2 was expressed in cells localized to a region of the lamina propria adjacent to detrusor and surrounding muscle bundles in the detrusor. NTPD3 was urothelial-specific, occurring on membranes of intermediate and basal epithelial cells but did not appear to be present in umbrella cells. Immunoblotting confirmed NTPD8 protein in bladder and immunofluorescence suggested a primary localization to the urothelium. NT5E was present exclusively in detrusor smooth muscle in a pattern complementary with that of NTPD1 suggesting a mechanism for providing adenosine to P1 receptors on the surface of myocytes. Conclusions Ectonucleotidases exhibit highly cell-specific expression patterns in bladder and therefore likely act in a coordinated manner to regulate ligand availability to purinergic receptors. This is the first study to determine the expression and location of ectonucleotidases within the mammalian urinary bladder.
Collapse
|
38
|
Xia M, Zhu Y. Signaling pathways of ATP-induced PGE2 release in spinal cord astrocytes are EGFR transactivation-dependent. Glia 2011; 59:664-74. [PMID: 21294165 DOI: 10.1002/glia.21138] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/09/2010] [Indexed: 01/29/2023]
Abstract
Traumatic spinal cord injury is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should, in principle, be preventable, no effective treatment options currently exist for patients with acute spinal cord injury (SCI). Excessive release of ATP by the traumatized tissue, triggers the rapid release of arachidonic acid (AA) and prostaglandin E2 (PGE2), and has beenimplicated in acute and chronic neuropathic pain and inflammation. But the intracellular pathways between ATP and PGE2 remain largely unknown. We have explored the signaling events involved in this synthesis by primarily culturing spinal cord astrocytes: (1) we determined significant PGE2 production increased by ATP is mainly via Subtype 1 of P2 purinoceptors (P2Y1) but not P2Y2; (2) we found that ATP strongly increased the level of intracellular Ca(2+) via P2Y1 receptor; (3) we indicated that ATP stimulates the definitely release of AA and PGE2 which involved the transactivation of epidermal growth factor (EGF) receptor, the phosphorylation of extracellular-regulated protein kinases 1 and 2 (ERK(1/2) ) and the activation of cytosolic phospholipase A(2) (cPLA(2) ); (4) we examined ATP could increase the phosphorylation of Akt via P2Y1 receptor which also depend on the transactivation of EGFR, but the activation of Akt has no effect on the downstream of cPLA(2) phosphorylation. ATP induced by SCI could mobilize the release of AA and PGE2. And inhibition of PGE2 release reduces behavioral signs of pain after SCI and peripheral nerve injury.
Collapse
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Heping District, Shenyang, People's Republic of China
| | | |
Collapse
|
39
|
Abstract
Much of the current research on lower urinary tract dysfunction is focused on afferent mechanisms. The main goals are to define and modulate the signaling pathways by which afferent information is generated and conveyed to the central nervous system. Alterations in bladder afferent mechanisms are a potential source of voiding dysfunction and an emerging source of drug targets. Even some established drug therapies such as muscarinic receptor antagonists, as well as emerging therapies such as botulinum toxin type-A, may act partly through afferent mechanisms. This review presents up-to-date findings on the localization of afferent fiber types within the bladder wall, afferent receptors and transmitters, and how these may communicate with the urothelium, interstitial cells, and detrusor smooth muscle to regulate micturition in normal and pathological bladders. Peripheral and central mechanisms of afferent sensitization and myogenic mechanisms that lead to detrusor overactivity, overactive bladder symptoms, and urgency sensations are also covered as well as new therapeutic approaches and new and established methods of measuring afferent activity.
Collapse
Affiliation(s)
- Anthony J Kanai
- University of Pittsburgh, School of Medicine, Pittsburgh, PA15261, USA.
| |
Collapse
|
40
|
Santoso AGH, Sonarno IAB, Arsad NAB, Liang W. The role of the urothelium and ATP in mediating detrusor smooth muscle contractility. Urology 2010; 76:1267.e7-12. [PMID: 20869103 DOI: 10.1016/j.urology.2010.06.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To examine the contractility of urothelium-intact (+UE) and urothelium-denuded (-UE) rat detrusor strips under adenosine triphosphate (ATP) treatment. Purinergic signaling exists in the bladder but both the inhibitory effect of ATP on detrusor contractions and the function of urothelial ATP are not established. METHODS Detrusor strips were obtained from bladders of young adult rats. Isometric tension from both transverse and longitudinal contractions was measured using a myograph. The muscarinic agonist carbachol (CCh) was used to induce contractions, which were under the influences of different concentrations of ATP. RESULTS In both +UE and -UE strips, 1 mM ATP suppressed CCh-induced contractions. In longitudinal contractions, ATP added to the inhibitory effect of urothelium on CCh responses. Removal of the urothelium, but with exogenous ATP added, recovered the CCh responses to the same level as in +UE strips with no added ATP. Transverse contractions were less susceptible to ATP in the presence of urothelium. CONCLUSIONS We showed that the urothelium and ATP suppressed CCh-induced contractions to a similar extent. The findings suggest an inhibitory role of urothelial ATP in mediating detrusor smooth muscle contractility, which may be impaired in diseased bladders.
Collapse
|
41
|
Yeh CH, Chiang HS, Chien CT. Hyaluronic acid ameliorates bladder hyperactivity via the inhibition of H2O2-enhanced purinergic and muscarinic signaling in the rat. Neurourol Urodyn 2010; 29:765-70. [PMID: 19852063 DOI: 10.1002/nau.20830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIMS We hypothesize that increased H(2)O(2) in the urinary bladder may affect ATP and acetylcholine release and activate urothelial purinergic and muscarinic signaling consequently leading to hyperactive bladder. MATERIALS AND METHODS We infused 0.3% and 1.5% H(2)O(2) to the urinary bladder to evaluate the voiding function and frequency, pelvic afferent (PANA) and pelvic efferent nerve activity (PENA) simultaneously in the urethane anesthetized rats. We measured ATP and acetylcholine content in the rat urinary bladder under saline or H(2)O(2) stimulation. Hyaluronic acid, muscarinic, and purinergic receptor antagonists were used to evaluate their effects and mechanisms on H(2)O(2)-induced hyperactive bladder. RESULTS Intravesical H(2)O(2) administration increased the frequency of voiding and the maximal amplitude of intravesical pressure (IVP) in the urethane anesthetized rats. Intravesical H(2)O(2) decreased the threshold level of PANA and PENA for triggering micturition and increased ATP and acetylcholine contents in the H(2)O(2)-treated bladder in the rat. Hyaluronic acid in vitro directly scavenged H(2)O(2) in a dose-dependent manner. Intravesical hyaluronic acid for 30 min attenuated H(2)O(2)-elicited excitatory effects on the frequency of voiding, amplitude of IVP and the sensitization of PANA and PENA in the rats. Hyaluronic acid treatment reduced H(2)O(2)-induced ATP and acetylcholine release in the urinary bladder. Intravesical administration of muscarinic receptor antagonist atropine methyl nitrate (50 microM) or purinergic receptor antagonist PPADS (1 mM) ameliorated H(2)O(2)-induced hyperactive bladder. CONCLUSIONS These results indicate that hyaluronic acid treatment can ameliorate H(2)O(2)-induced bladder hyperactivity possibly via the antioxidant activity and the inhibition of activating purinergic and muscarinic signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Division of Urology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
42
|
Birder LA, Kanai AJ, Cruz F, Moore K, Fry CH. Is the urothelium intelligent? Neurourol Urodyn 2010; 29:598-602. [PMID: 20432319 DOI: 10.1002/nau.20914] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The urothelium separates the urinary tract lumen from underlying tissues of the tract wall. Previously considered as merely an effective barrier between these two compartments it is now recognized as a more active tissue that senses and transduces information about physical and chemical conditions within the urinary tract, such as luminal pressure, urine composition, etc. To understand this sensory function it is useful to consider the urothelium and suburothelium as a functional unit; containing uroepithelial cells, afferent and efferent nerve fibers and suburothelial interstitial cells. This structure responds to alterations in its external environment through the release of diffusible agents, such as ATP and acetylcholine, and eventually modulates the activity of afferent nerves and underlying smooth muscles. This review considers different stresses the urothelium/suburothelium responds to; the particular chemicals released; the cellular receptors that are consequently affected; and how nerve and muscle function is modulated. Brief consideration is also to regional differences in the urothelium/suburothelium along the urinary tract. The importance of different pathways in relaying sensory information in the normal urinary tract, or whether they are significant only in pathological conditions is also discussed. An operational definition of intelligence is used, whereby a system (urothelium/suburothelium) responds to external changes, to maximize the possibility of the urinary tract achieving its normal function. If so, the urothelium can be regarded as intelligent. The advantage of this approach is that input-output functions can be mathematically formulated, and the importance of different components contributing to abnormal urinary tract function can be calculated.
Collapse
Affiliation(s)
- L A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | |
Collapse
|
43
|
Sun Y, Chai TC. Role of Purinergic Signaling in Voiding Dysfunction. CURRENT BLADDER DYSFUNCTION REPORTS 2010; 5:219-224. [PMID: 21572572 DOI: 10.1007/s11884-010-0063-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purinergic signaling is a term that relates to adenosine triphosphate binding to its receptor (purinergic receptors such as P2X and P2Y subtypes). This pathway has been implicated in bladder functional disorders related to interstitial cystitis/painful bladder syndrome, neurogenic bladder secondary to spinal cord injury, lower urinary tract symptoms, diabetes, and aging. Purinergic signaling occurs at multiple sites, including the central nervous system, peripheral motor and sensory nerves, detrusor smooth muscle, and bladder urothelium. Future pharmacologic agents to treat bladder functional disorders may be able to target purinergic signaling at one or more of these sites.
Collapse
Affiliation(s)
- Yan Sun
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
44
|
Abstract
Urinary urgency and the associated symptoms which comprise overactive bladder are prevalent amongst the general population and adversely affect quality of life. Disease management consists of a sequential series of options starting with behavioural and lifestyle techniques, pharmacological management (antimuscarinics) and, in severe cases, surgical treatment (urinary diversion, neuromodulation, augmentation cystoplasty and detrusor myectomy). There is increasing recognition of pathophysiological mechanisms in the urothelium, interstitial cells and afferent neurons allowing the importance of peripheral integrative interaction to be identified. The hierarchy of the central nervous system control adds additional complexity to understanding the oflower urinary tract function. Some newer methods of treatment include Botulinum toxin A intramural injections, oral beta-3 adrenergic agonists and rho-kinase inhibitors. The lack of a disease generating hypothesis, the lack of animal models for disease and the subjective nature of the central symptom (urgency) still pose considerable theoretical and scientific hurdles that need to be overcome in the treatment of this condition.
Collapse
Affiliation(s)
- Richard Foon
- Urogynaecology Fellow, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK
| | | |
Collapse
|
45
|
Aronsson P, Andersson M, Ericsson T, Giglio D. Assessment and characterization of purinergic contractions and relaxations in the rat urinary bladder. Basic Clin Pharmacol Toxicol 2010; 107:603-13. [PMID: 20406212 DOI: 10.1111/j.1742-7843.2010.00554.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to assess the purinoceptor functional responses of the urinary bladder by using isolated rat urinary bladder strip preparations. ATP elicited a transient bladder contraction followed by a sustained relaxation and ADP, UDP and UTP generated predominantly potent relaxations (relaxatory potencies: ADP = ATP > UDP = UTP). The ATP contractions were desensitized with the P2X(1/3) purinoceptor agonist/desensitizer alpha,beta-meATP and reduced by the P2 purinoceptor antagonist PPADS but unaffected by the P2 purinoceptor antagonist suramin. Electrical field stimulation (1-60 Hz) evoked frequency-dependent bladder contractions that were decreased by incubation with alpha,beta-meATP but not further decreased by PPADS. Suramin antagonized relaxations generated by UDP but not those by ADP, ATP or UTP. PPADS antagonized and tended to antagonize UTP and UDP relaxations, respectively, but did neither affect ADP nor ATP relaxations. ADP relaxations were insensitive to the P2Y(1) purinoceptor antagonist MRS 2179 and the ATP-sensitive potassium channel antagonist glibenclamide. The ATP relaxations were inhibited by the P1 purinoceptor antagonist 8-p-sulfophenyltheophylline but unaffected by the A2A adenosine receptor antagonist 8-(3-chlorostyryl)caffeine and glibenclamide. Adenosine evoked relaxations that were antagonized by the A2B adenosine receptor antagonist PSB 1115. Thus, in the rat urinary bladder purinergic contractions are elicited predominantly by stimulation of the P2X(1) purinoceptors, while UDP/UTP-sensitive P2Y purinoceptor(s) and P1 purinoceptors of the A2B adenosine receptor subtype are involved in bladder relaxation.
Collapse
Affiliation(s)
- Patrik Aronsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
46
|
Birder LA, Wolf-Johnston AS, Chib MK, Buffington CA, Roppolo JR, Hanna-Mitchell AT. Beyond neurons: Involvement of urothelial and glial cells in bladder function. Neurourol Urodyn 2010; 29:88-96. [PMID: 20025015 DOI: 10.1002/nau.20747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM The urothelium, or epithelial lining of the lower urinary tract (LUT), is likely to play an important role in bladder function by actively communicating with bladder nerves, smooth muscle, and cells of the immune and inflammatory systems. Recent evidence supports the importance of non-neuronal cells that may extend to both the peripheral and central processes of the neurons that transmit normal and nociceptive signals from the urinary bladder. Using cats diagnosed with a naturally occurring syndrome termed feline interstitial cystitis (FIC), we investigated whether changes in physiologic parameters occur within 3 cell types associated with sensory transduction in the urinary bladder: 1) the urothelium, 2) identified bladder dorsal root ganglion (DRG) neurons and 3) grey matter astrocytes in the lumbosacral (S1) spinal cord. As estrogen fluctuations may modulate the severity of many chronic pelvic pain syndromes, we also examined whether 17beta-estradiol (E2) alters cell signaling in rat urothelial cells. RESULTS We have identified an increase in nerve growth factor (NGF) and substance P (SP) in urothelium from FIC cats over that seen in urothelium from unaffected (control) bladders. The elevated NGF expression by FIC urothelium is a possible cause for the increased cell body size of DRG neurons from cats with FIC, reported in this study. At the level of the spinal cord, astrocytic GFAP immuno-intensity was significantly elevated and there was evidence for co-expression of the primitive intermediate filament, nestin (both indicative of a reactive state) in regions of the FIC S1 cord (superficial and deep dorsal horn, central canal and laminae V-VIl) that receive input from pelvic afferents. Finally, we find that E2 triggers an estrus-modifiable activation of p38 MAPK in rat urothelial cells. There were cyclic variations with E2-mediated elevation of p38 MAPK at both diestrus and estrus, and inhibition of p38 MAPK in proestrous urothelial cells. CONCLUSION Though urothelial cells are often viewed as bystanders in the processing of visceral sensation, these and other findings support the view that these cells function as primary transducers of some physical and chemical stimuli. In addition, the pronounced activation of spinal cord astrocytes in an animal model for bladder pain syndrome (BPS) may play an important role in the pain syndrome and open up new potential approaches for drug intervention.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Birder L, de Groat W, Mills I, Morrison J, Thor K, Drake M. Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol Urodyn 2010; 29:128-39. [PMID: 20025024 PMCID: PMC2910109 DOI: 10.1002/nau.20837] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review deals with individual components regulating the neural control of the urinary bladder. This article will focus on factors and processes involved in the two modes of operation of the bladder: storage and elimination. Topics included in this review include: (1) The urothelium and its roles in sensor and transducer functions including interactions with other cell types within the bladder wall ("sensory web"), (2) The location and properties of bladder afferents including factors involved in regulating afferent sensitization, (3) The neural control of the pelvic floor muscle and pharmacology of urethral and anal sphincters (focusing on monoamine pathways), (4) Efferent pathways to the urinary bladder, and (5) Abnormalities in bladder function including mechanisms underlying comorbid disorders associated with bladder pain syndrome and incontinence.
Collapse
Affiliation(s)
- L Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Beyond serving as a simple barrier, there is growing evidence that the urinary bladder urothelium exhibits specialized sensory properties and play a key role in the detection and transmission of both physiological and nociceptive stimuli. These urothelial cells exhibit the ability to sense changes in their extracellular environment including the ability to respond to chemical, mechanical and thermal stimuli that may communicate the state of the urothelial environment to the underlying nervous and muscular systems. Here, we review the specialized anatomy of the urothelium and speculate on possible communication mechanisms from urothelial cells to various cell types within the bladder wall.
Collapse
Affiliation(s)
- Lori A Birder
- University of Pittsburgh School of Medicine, A 1207 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
49
|
A refocus on the bladder as the originator of storage lower urinary tract symptoms: a systematic review of the latest literature. Eur Urol 2009; 56:810-9. [PMID: 19683859 DOI: 10.1016/j.eururo.2009.07.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/28/2009] [Indexed: 02/08/2023]
Abstract
CONTEXT The focus of clinical understanding and management of male storage lower urinary tract symptoms (LUTS) has shifted from the prostate to the bladder. This is mirrored by an increasing body of experimental evidence suggesting that the bladder is the central organ in the pathogenesis of LUTS. OBJECTIVE A systematic review of the literature available on pathophysiologic aspects of storage LUTS. EVIDENCE ACQUISITION Medline was searched for the period ending December 2008 for studies on human and animal tissue exploring possible functional and structural alterations underlying bladder dysfunction. Further studies were chosen on the basis of manual searches of reference lists and review papers. EVIDENCE SYNTHESIS Numerous recent publications on LUTS pathophysiology were identified. They were grouped into studies exploring abnormalities on urothelial/suburothelial, muscular, or central levels. CONCLUSIONS Studies revealed both structural and functional alterations in bladders from patients with LUTS symptoms or animals with experimentally induced bladder dysfunction. In particular, the urothelium and the suburothelial space, containing afferent nerve fibres and interstitial cells, have been found to form a functional unit that is essential in the process of bladder function. Various imbalances within this suburothelial complex have been identified as significant contributors to the generation of storage LUTS, along with potential abnormalities of central function.
Collapse
|
50
|
Abstract
Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|