1
|
Andreev VP, Helmuth ME, Smith AR, Zisman A, Cameron AP, DeLancey JOL, Bushman WA. Dynamic analysis of the individual patterns of intakes, voids, and bladder sensations reported in bladder diaries collected in the LURN study. PLoS One 2023; 18:e0284544. [PMID: 37983243 PMCID: PMC10659201 DOI: 10.1371/journal.pone.0284544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
The goal of this study was to develop the novel analytical approach and to perform an in-depth dynamic analysis of individual bladder diaries to inform which behavioral modifications would best reduce lower urinary tract symptoms, such as frequency and urgency. Three-day bladder diaries containing data on timing, volumes, and types of fluid intake, as well as timing, volumes, and bladder sensation at voids were analyzed for 197 participants with lower urinary tract symptoms. A novel dynamic analytic approach to bladder diary time series data was proposed and developed, including intra-subject correlations between time-varying variables: rates of intake, bladder filling rate, and urge growth rate. Grey-box models of bladder filling rate and multivariable linear regression models of urge growth rate were developed for individual diaries. These models revealed that bladder filling rate, rather than urine volume, was the primary determinant of urinary frequency and urgency growth rate in the majority of participants. Simulations performed with the developed models predicted that the most beneficial behavioral modifications to reduce the number of urgency episodes are those that smooth profiles of bladder filling rate, which might include behaviors such as exclusion of caffeine and alcohol and/or other measures, e.g., increasing number and decreasing volumes of intakes.
Collapse
Affiliation(s)
- Victor P. Andreev
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States of America
| | - Margaret E. Helmuth
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States of America
| | - Abigail R. Smith
- Arbor Research Collaborative for Health, Ann Arbor, MI, United States of America
| | - Anna Zisman
- Section of Nephrology, University of Chicago, Chicago, IL, United States of America
| | - Anne P. Cameron
- Department of Urology, University of Michigan, Ann Arbor, MI, United States of America
| | - John O. L. DeLancey
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States of America
| | - Wade A. Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| |
Collapse
|
2
|
Andreev VP, Helmuth ME, Smith AR, Zisman A, Cameron AP, DeLancey JOL, Bushman WA. Dynamic analysis of the individual patterns of intakes, voids, and bladder sensations reported in bladder diaries collected in the LURN study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.05.23288100. [PMID: 37066258 PMCID: PMC10104230 DOI: 10.1101/2023.04.05.23288100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The goal of this study was to perform an in-depth dynamic analysis of individual bladder diaries to inform which behavioral modifications would best reduce lower urinary tract symptoms, such as frequency and urgency. Three-day bladder diaries containing data on timing, volumes, and types of fluid intake, as well as timing, volumes, and bladder sensation at voids were analyzed for 197 participants with lower urinary tract symptoms. A novel dynamic analytic approach to bladder diary time series data was proposed and developed, including intra-subject correlations between time-varying variables: rates of intake, bladder filling rate, and urge growth rate. Grey-box models of bladder filling rate and multivariable linear regression models of urge growth rate were developed for individual diaries. These models revealed that bladder filling rate, rather than urine volume, was the primary determinant of urinary frequency and urgency growth rate in the majority of participants. Simulations performed with the developed models predicted that the most beneficial behavioral modifications to reduce the number of urgency episodes are those that smooth profiles of bladder filling rate, which might include behaviors such as exclusion of caffeine and alcohol and/or other measures, e.g., increasing number and decreasing volumes of intakes.
Collapse
Affiliation(s)
| | | | | | - Anna Zisman
- Section of Nephrology, University of Chicago, Chicago IL, US
| | - Anne P. Cameron
- Department of Urology, University of Michigan, Ann Arbor MI, US
| | - John O. L. DeLancey
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, US
| | - Wade A. Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison WI, US
| |
Collapse
|
3
|
Stadt MM, Layton AT. Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis. Front Physiol 2022; 13:991705. [PMID: 36246142 PMCID: PMC9559190 DOI: 10.3389/fphys.2022.991705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to investigate the functional implications of sex and species differences in the pattern of transporters along nephrons in the rat and mouse kidney, as reported by Veiras et al. (J Am Soc Nephrol 28: 3504–3517, 2017). To do so, we developed the first sex-specific computational models of epithelial water and solute transport along the nephrons from male and female mouse kidneys, and conducted simulations along with our published rat models. These models account for the sex differences in the abundance of apical and basolateral transporters, glomerular filtration rate, and tubular dimensions. Model simulations predict that 73% and 57% of filtered Na+ is reabsorbed by the proximal tubules of male and female rat kidneys, respectively. Due to their smaller transport area and lower NHE3 activity, the proximal tubules in the mouse kidney reabsorb a significantly smaller fraction of the filtered Na+, at 53% in male and only 34% in female. The lower proximal fractional Na+ reabsorption in female kidneys of both rat and mouse is due primarily to their smaller transport area, lower Na+/H+ exchanger activity, and lower claudin-2 abundance, culminating in significantly larger fractional delivery of water and Na+ to the downstream nephron segments in female kidneys. Conversely, the female distal nephron exhibits a higher abundance of key Na+ transporters, including Na+-Cl− cotransporters in both species, epithelial Na+ channels for the female rat, and Na+-K+-Cl−cotransporters for the female mouse. The higher abundance of transporters accounts for the enhanced water and Na+ transport along the female rat and mouse distal nephrons, relative to the respective male, resulting in similar urine excretion between the sexes. Model simulations indicate that the sex and species differences in renal transporter patterns may partially explain the experimental observation that, in response to a saline load, the diuretic and natriuretic responses were more rapid in female rats than males, but no significant sex difference was found in mice. These computational models can serve as a valuable tool for analyzing findings from experimental studies conducted in rats and mice, especially those involving genetic modifications.
Collapse
Affiliation(s)
- Melissa Maria Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Anita T. Layton,
| |
Collapse
|
4
|
Stadt M, Layton AT. Adaptive Changes in single-nephron GFR, Tubular Morphology, and Transport in a Pregnant Rat Nephron: Modeling and Analysis. Am J Physiol Renal Physiol 2021; 322:F121-F137. [PMID: 34894726 DOI: 10.1152/ajprenal.00264.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Normal pregnancy is characterized by massive increases in plasma volume and electrolyte retention. Given that the kidneys regulate homeostasis of electrolytes and volume, the organ undergoes major adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required in pregnancy. These adaptations are complex, sometimes counterintuitive, and not fully understood. In addition, the demands of the developing fetus and placenta change throughout the pregnancy. For example, during late pregnancy, K+ retention and thus enhanced renal K+ reabsorption is required despite many kaliuretic factors. The goal of this study is to unravel how known adaptive changes along the nephrons contribute to the ability of the kidney to meet volume and electrolyte requirements in mid- and late pregnancy. We developed computational models of solute and water transport in the superficial nephron of the kidney of a rat in mid- and late pregnancy. The mid-pregnant and late-pregnant rat superficial nephron models predict that morphological adaptations and increased activity of the sodium hydrogen exchanger 3 (NHE3) and epithelial sodium channel (ENaC) are essential for enhanced Na+ reabsorption observed during pregnancy. Model simulations showed that for sufficient K+ reabsorption, increased H +-K +-ATPase activity and decreased K+ secretion along the distal segments is required in both mid- and late-pregnancy. Furthermore, certain known sex differences in renal transporter pattern (e.g., the higher NHE3 protein abundance but lower activity in the proximal tubules of virgin female rats compared to male) may serve to better prepare the female for the increased transport demand in pregnancy.
Collapse
Affiliation(s)
- Melissa Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Thomas SR. Mathematical models for kidney function focusing on clinical interest. Morphologie 2019; 103:161-168. [PMID: 31722814 DOI: 10.1016/j.morpho.2019.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
We give an overview of mathematical models of renal physiology and anatomy with the clinician in mind. Beyond the past focus on issues of local transport mechanisms along the nephron and the urine concentrating mechanism, recent models have brought insight into difficult problems such as renal ischemia (oxygen and CO2 diffusion in the medulla) or calcium and potassium homeostasis. They have also provided revealing 3D reconstructions of the full trajectories of families of nephrons and collecting ducts through cortex and medulla. The recent appearance of sophisticated whole-kidney models representing nephrons and their associated renal vasculature promises more realistic simulation of renal pathologies and pharmacological treatments in the foreseeable future.
Collapse
Affiliation(s)
- S Randall Thomas
- Inserm, LTSI - UMR 1099, Université Rennes, 35000 Rennes, France.
| |
Collapse
|
6
|
Moss R, Thomas SR. Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis. Am J Physiol Renal Physiol 2013; 306:F224-48. [PMID: 24107423 DOI: 10.1152/ajprenal.00089.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We present a lumped-nephron model that explicitly represents the main features of the underlying physiology, incorporating the major hormonal regulatory effects on both tubular and vascular function, and that accurately simulates hormonal regulation of renal salt and water excretion. This is the first model to explicitly couple glomerulovascular and medullary dynamics, and it is much more detailed in structure than existing whole organ models and renal portions of multiorgan models. In contrast to previous medullary models, which have only considered the antidiuretic state, our model is able to regulate water and sodium excretion over a variety of experimental conditions in good agreement with data from experimental studies of the rat. Since the properties of the vasculature and epithelia are explicitly represented, they can be altered to simulate pathophysiological conditions and pharmacological interventions. The model serves as an appropriate starting point for simulations of physiological, pathophysiological, and pharmacological renal conditions and for exploring the relationship between the extrarenal environment and renal excretory function in physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Robert Moss
- Mathematics Dept., Duke Univ., Box 90320, Durham, NC 27708-0320.
| | | |
Collapse
|
7
|
Maclaren OJ, Sneyd J, Crampin EJ. What do aquaporin knockout studies tell us about fluid transport in epithelia? J Membr Biol 2013; 246:297-305. [PMID: 23430220 PMCID: PMC3622118 DOI: 10.1007/s00232-013-9530-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
The investigation of near-isosmotic water transport in epithelia goes back over 100 years; however, debates over mechanism and pathway remain. Aquaporin (AQP) knockouts have been used by various research groups to test the hypothesis of an osmotic mechanism as well as to explore the paracellular versus transcellular pathway debate. Nonproportional reductions in the water permeability of a water-transporting epithelial cell (e.g., a reduction of around 80-90 %) compared to the reduction in overall water transport rate in the knockout animal (e.g., a reduction of 50-60 %) are commonly found. This nonproportionality has led to controversy over whether AQP knockout studies support or contradict the osmotic mechanism. Arguments raised for and against an interpretation supporting the osmotic mechanism typically have partially specified, implicit, or incorrect assumptions. We present a simple mathematical model of the osmotic mechanism with clear assumptions and, for models based on this mechanism, establish a baseline prediction of AQP knockout studies. We allow for deviations from isotonic/isosmotic conditions and utilize dimensional analysis to reduce the number of parameters that must be considered independently. This enables a single prediction curve to be used for multiple epithelial systems. We find that a simple, transcellular-only osmotic mechanism sufficiently predicts the results of knockout studies and find criticisms of this mechanism to be overstated. We note, however, that AQP knockout studies do not give sufficient information to definitively rule out an additional paracellular pathway.
Collapse
Affiliation(s)
- Oliver J Maclaren
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
8
|
Niederalt C, Wendl T, Kuepfer L, Claassen K, Loosen R, Willmann S, Lippert J, Schultze-Mosgau M, Winkler J, Burghaus R, Bräutigam M, Pietsch H, Lengsfeld P. Development of a physiologically based computational kidney model to describe the renal excretion of hydrophilic agents in rats. Front Physiol 2013; 3:494. [PMID: 23355822 PMCID: PMC3553339 DOI: 10.3389/fphys.2012.00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/26/2012] [Indexed: 12/28/2022] Open
Abstract
A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption.
Collapse
Affiliation(s)
- Christoph Niederalt
- Computational Systems Biology, Bayer Technology Services GmbH Leverkusen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The kidney plays an indispensable role in the regulation of whole-organism water balance, electrolyte balance, and acid-base balance, and in the excretion of metabolic wastes and toxins. In this paper, we review representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, and regulation of renal oxygen transport. We discuss how such modeling efforts have significantly expanded our understanding of renal function in both health and disease.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, P.O. Box 90320, Durham, NC 27708-0320, USA
| |
Collapse
|
10
|
Erratum to: Mathematical properties of pump-leak models of cell volume control and electrolyte balance. J Math Biol 2012. [DOI: 10.1007/s00285-011-0499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
|
12
|
Lee SY, Shin JA, Kwon HM, Weiner ID, Han KH. Renal ischemia-reperfusion injury causes intercalated cell-specific disruption of occludin in the collecting duct. Histochem Cell Biol 2011; 136:637-47. [PMID: 22048282 PMCID: PMC3214267 DOI: 10.1007/s00418-011-0881-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2011] [Indexed: 11/30/2022]
Abstract
Renal ischemic events open tight junctions and disrupt epithelial polarity. The purpose of this study was to examine the effects of ischemia–reperfusion (IR) injury on expression and distribution of the tight junction proteins, occludin and ZO-1, in the rat kidney. IR injury was induced by clamping both renal pedicles for 30 min and animals were killed at 6 h after the reperfusion. IR injury decreased blood bicarbonate level, but did not persistently alter pH, Na+, K+, or Cl−. In control kidneys, occludin immunoreactivity was intense in the tight junctions in the thick ascending limb, distal convoluted tubule, and collecting duct, moderate in the thin limbs of the loop of Henle, and was not detected in the proximal tubule, glomerulus, and blood vessels. ZO-1 was expressed in the same sites in which occludin was expressed, and additionally was also expressed in the proximal tubule, glomerulus, and vascular endothelial cells. IR kidneys exhibited damaged renal tubular epithelial cells in both proximal tubule and collecting duct segments in the outer medulla. In the collecting duct, the response of intercalated cells and principal cells differed. Following IR injury, intercalated cells, but not principal cells, lost their normal epithelial polarity and were frequently extruded into the tubule lumen. Occludin, instead of being localized to tight junctions, was localized diffusely in the cytoplasm in intercalated cells of IR kidneys. Principal cells, in contrast, were not detectably affected and neither occludin nor ZO-1 expression were altered in response to IR injury. The normal localization of ZO-1 expression to tight junction sites in both the proximal tubule and collecting duct was altered in response to IR, and, instead, ZO-1 expression was present diffusely in the cytoplasm. IR injury did not alter detectably either occludin or ZO-1 localization to the tight junction of the thick ascending limb cells. The abundance of total occludin protein by immunoblot analysis was not changed with IR injury. These results demonstrate that renal IR injury causes tight junction disruptions in both the proximal tubule and the collecting duct, and that altered distribution of the tight junction protein, occludin, may play a critical role in the collecting duct dysfunction which IR induces.
Collapse
Affiliation(s)
- Su-Youn Lee
- Department of Anatomy, Ewha Womans University School of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul, 158-710 Korea
| | - Jung-A Shin
- Department of Anatomy, Ewha Womans University School of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul, 158-710 Korea
| | - H. Moo Kwon
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD USA
| | - I. David Weiner
- Division of Nephrology, University of Florida College of Medicine, Gainesville, FL USA
- Nephrology Section, NF/SGVHS, Gainesville, FL USA
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul, 158-710 Korea
| |
Collapse
|
13
|
Mathematical properties of pump-leak models of cell volume control and electrolyte balance. J Math Biol 2011; 65:875-918. [PMID: 22042535 DOI: 10.1007/s00285-011-0483-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Homeostatic control of cell volume and intracellular electrolyte content is a fundamental problem in physiology and is central to the functioning of epithelial systems. These physiological processes are modeled using pump-leak models, a system of differential algebraic equations that describes the balance of ions and water flowing across the cell membrane. Despite their widespread use, very little is known about their mathematical properties. Here, we establish analytical results on the existence and stability of steady states for a general class of pump-leak models. We treat two cases. When the ion channel currents have a linear current-voltage relationship, we show that there is at most one steady state, and that the steady state is globally asymptotically stable. If there are no steady states, the cell volume tends to infinity with time. When minimal assumptions are placed on the properties of ion channel currents, we show that there is an asymptotically stable steady state so long as the pump current is not too large. The key analytical tool is a free energy relation satisfied by a general class of pump-leak models, which can be used as a Lyapunov function to study stability.
Collapse
|
14
|
Abstract
Kidney diseases manifest in progressive loss of renal function, which ultimately leads to complete kidney failure. The mechanisms underlying the origins and progression of kidney diseases are not fully understood. Multiple factors involved in the pathogenesis of kidney diseases have made the traditional candidate gene approach of limited value toward full understanding of the molecular mechanisms of these diseases. A systems biology approach that integrates computational modeling with large-scale data gathering of the molecular changes could be useful in identifying the multiple interacting genes and their products that drive kidney diseases. Advances in biotechnology now make it possible to gather large data sets to characterize the role of the genome, epigenome, transcriptome, proteome, and metabolome in kidney diseases. When combined with computational analyses, these experimental approaches will provide a comprehensive understanding of the underlying biological processes. Multiscale analysis that connects the molecular interactions and cell biology of different kidney cells to renal physiology and pathology can be utilized to identify modules of biological and clinical importance that are perturbed in disease processes. This integration of experimental approaches and computational modeling is expected to generate new knowledge that can help to identify marker sets to guide the diagnosis, monitor disease progression, and identify new therapeutic targets.
Collapse
|
15
|
Edwards A. Modeling transport in the kidney: investigating function and dysfunction. Am J Physiol Renal Physiol 2009; 298:F475-84. [PMID: 19889951 DOI: 10.1152/ajprenal.00501.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mathematical models of water and solute transport in the kidney have significantly expanded our understanding of renal function in both health and disease. This review describes recent theoretical developments and emphasizes the relevance of model findings to major unresolved questions and controversies. These include the fundamental processes by which urine is concentrated in the inner medulla, the ultrastructural basis of proteinuria, irregular flow oscillation patterns in spontaneously hypertensive rats, and the mechanisms underlying the hypotensive effects of thiazides. Macroscopic models of water, NaCl, and urea transport in populations of nephrons have served to test, confirm, or refute a number of hypotheses related to the urine concentrating mechanism. Other macroscopic models focus on the mechanisms, role, and irregularities of renal hemodynamic control and on the regulation of renal oxygenation. At the mesoscale, models of glomerular filtration have yielded significant insight into the ultrastructural basis underlying a number of disorders. At the cellular scale, models of epithelial solute transport and pericyte Ca2+ signaling are being used to elucidate transport pathways and the effects of hormones and drugs. Areas where further theoretical progress is conditional on experimental advances are also identified.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA.
| |
Collapse
|
16
|
Randall Thomas S. Kidney modeling and systems physiology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2009; 1:172-190. [DOI: 10.1002/wsbm.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- S. Randall Thomas
- IBISC CNRS FRE 3190 and University of Evry, Tour Evry 2, 91000 Evry, France
| |
Collapse
|
17
|
Moss R, Kazmierczak E, Kirley M, Harris P. A computational model for emergent dynamics in the kidney. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:2125-2140. [PMID: 19414449 DOI: 10.1098/rsta.2008.0313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, concepts from network automata are adapted and extended to model complex biological systems. Specifically, systems of nephrons, the operational units of the kidney, are modelled and the dynamics of such systems are explored. Nephron behaviour can fluctuate widely and, under certain conditions, become chaotic. However, the behaviour of the whole kidney remains remarkably stable and blood solute levels are maintained under a wide range of conditions even when many nephrons are damaged or lost. A network model is used to investigate the stability of systems of nephrons and interactions between nephrons. More sophisticated dynamics are explored including the observed oscillations in single nephron filtration rates and the development of stable ionic and osmotic gradients in the inner medulla which contribute to the countercurrent exchange mechanism. We have used the model to explore the effects of changes in input parameters including hydrostatic and osmotic pressures and concentrations of ions, such as sodium and chloride. The intrinsic nephron control, tubuloglomerular feedback, is included and the effects of coupling between nephrons are explored in two-, eight- and 72-nephron models.
Collapse
Affiliation(s)
- Robert Moss
- Department of Computer Science and Software Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
18
|
Figueiredo JF, Bertels IMV, Gontijo JAR. Actin cytoskeletal and functional studies of the proximal convoluted tubules after preservation. Transplant Proc 2008; 40:3311-5. [PMID: 19100379 DOI: 10.1016/j.transproceed.2008.06.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 02/08/2008] [Accepted: 06/18/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Proximal tubule cells have specialized apical membranes with microvilli that provide an extensive surface area for unidirectional transport of solute from lumen to blood. The major structural solute component is F-actin, which interacts with transmembrane proteins, including ion transport molecules related to normal absorptive and secretory functions. Our study was to evaluate F-actin and fluid absorption (Jv) in proximal tubules after exposure to preservation solutions. METHODS In vitro microperfusion technique and immunohistochemistry analysis. RESULTS 1. Absorptions were similar in 1- and 24-hour-preserved tubules, as well as in fresh tubules. The exception was tubules for 24 hours in Euro-Collins solution, which did not show absorption, suggesting that it was affected. 2. Fluorescence intensity of actin tubules preserved for 1 hour in both solutions showed similar values to each other and to the control group; tubules preserved for 24 hours in both solutions were similar to each other, although statistically different than the control group and those preserved for 1 hour in Belzer (UW) solution. CONCLUSION There were differences among groups in the distribution of F-actin; Jv values were different for 24-hour preservation in each solution, whereas fluorescence intensity was similar in both 24-hour solutions. Thus, actin cytoskeleton was not responsible for it, because 24-hour preservation in UW showed Jv results comparable to the control group.
Collapse
Affiliation(s)
- J F Figueiredo
- Organ Preservation Laboratories, Faculty of Medical Sciences, State University of Campimas, Unicamp, Brazil
| | | | | |
Collapse
|
19
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
21
|
|
22
|
Dias JC, Ferreira FC, Ferreira HG, Moura TF. A mathematical model of the diluting power of the cortical thick ascending limb of the loop of Henle. J Membr Biol 2007; 214:59-73. [PMID: 17568980 DOI: 10.1007/s00232-006-0078-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/07/2006] [Indexed: 10/23/2022]
Abstract
A mathematical model is presented that describes the ionic transport across the cortical thick ascending limb (cTAL) of the Henle's loop, taking into account its tubular geometry. A comprehensive description of the cTAL is given for the first time in terms of potential, ion concentrations and ion fluxes along the tubule. For given ion concentrations at the entrance of the tubule, the model simulates steady-state profiles and allows the fitting of existing experimentally measured values at its exit. Moreover, the model expands the potentialities of experiments in situ and enables testing the effect of different perturbations induced by drugs or mutation-altering transport activity. One of the main insights given by this model is the increase of the lumenal electrical potential from the entrance to the exit of the tubule with a profile determined by the transepithelial electrical potential difference and by the chemical gradients along the lumen, both reflecting transepithelial salt transport. Furthermore, model and experimental results are consistent, showing that when the TAL is perfused at high rates with a diluted NaCl solution in relation to the bath, the transepithelial electrical potential difference increases from 6.7 to 23.0 mV and the potential difference across the basolateral barrier changes very little. The model predicts that the same static head is obtained independently of the NaCl concentration at the entrance of the tubule. A final important insight concerns the lowest reported NaCl concentrations (20-30 mM) at the exit of the tubule, which is controlled by a very tight epithelium, where the back-leak is substantially reduced.
Collapse
Affiliation(s)
- João C Dias
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | |
Collapse
|
23
|
Rubashkin A, Iserovich P, Hernández JA, Fischbarg J. Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions. J Membr Biol 2006; 208:251-63. [PMID: 16648941 DOI: 10.1007/s00232-005-0831-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 12/21/2005] [Indexed: 11/30/2022]
Abstract
The purpose of the present work is to investigate whether the idea of epithelial fluid transport based on electro-osmotic coupling at the level of the leaky tight junction (TJ) can be further supported by a plausible theoretical model. We develop a model for fluid transport across epithelial layers based on electro-osmotic coupling at leaky tight junctions (TJ) possessing protruding macromolecules and fixed electrical charges. The model embodies systems of electro-hydrodynamic equations for the intercellular pathway, namely the Brinkman and the Poisson-Boltzmann differential equations applied to the TJ. We obtain analytical solutions for a system of these two equations, and are able to derive expressions for the fluid velocity profile and the electrostatic potential. We illustrate the model by employing geometrical parameters and experimental data from the corneal endothelium, for which we have previously reported evidence for a central role for electro-osmosis in translayer fluid transport. Our results suggest that electro-osmotic coupling at the TJ can account for fluid transport by the corneal endothelium. We conclude that electro-osmotic coupling at the tight junctions could represent one of the basic mechanisms driving fluid transport across some leaky epithelia, a process that remains unexplained.
Collapse
Affiliation(s)
- A Rubashkin
- Institute of Cytology, Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | | | | | | |
Collapse
|
24
|
Ring T, Frische S, Nielsen S. Clinical review: Renal tubular acidosis--a physicochemical approach. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2005; 9:573-80. [PMID: 16356241 PMCID: PMC1414010 DOI: 10.1186/cc3802] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Canadian physiologist PA Stewart advanced the theory that the proton concentration, and hence pH, in any compartment is dependent on the charges of fully ionized and partly ionized species, and on the prevailing CO2 tension, all of which he dubbed independent variables. Because the kidneys regulate the concentrations of the most important fully ionized species ([K+], [Na+], and [Cl-]) but neither CO2 nor weak acids, the implication is that it should be possible to ascertain the renal contribution to acid–base homeostasis based on the excretion of these ions. One further corollary of Stewart's theory is that, because pH is solely dependent on the named independent variables, transport of protons to and from a compartment by itself will not influence pH. This is apparently in great contrast to models of proton pumps and bicarbonate transporters currently being examined in great molecular detail. Failure of these pumps and cotransporters is at the root of disorders called renal tubular acidoses. The unquestionable relation between malfunction of proton transporters and renal tubular acidosis represents a problem for Stewart theory. This review shows that the dilemma for Stewart theory is only apparent because transport of acid–base equivalents is accompanied by electrolytes. We suggest that Stewart theory may lead to new questions that must be investigated experimentally. Also, recent evidence from physiology that pH may not regulate acid–base transport is in accordance with the concepts presented by Stewart.
Collapse
Affiliation(s)
- Troels Ring
- Department of Nephrology, Aalborg Hospital, Aalborg, Denmark.
| | | | | |
Collapse
|
25
|
Abstract
Calcium-activated chloride channels (CaCCs) play important roles in cellular physiology, including epithelial secretion of electrolytes and water, sensory transduction, regulation of neuronal and cardiac excitability, and regulation of vascular tone. This review discusses the physiological roles of these channels, their mechanisms of regulation and activation, and the mechanisms of anion selectivity and conduction. Despite the fact that CaCCs are so broadly expressed in cells and play such important functions, understanding these channels has been limited by the absence of specific blockers and the fact that the molecular identities of CaCCs remains in question. Recent status of the pharmacology and molecular identification of CaCCs is evaluated.
Collapse
Affiliation(s)
- Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
26
|
Petrovic S, Barone S, Weinstein AM, Soleimani M. Activation of the apical Na+/H+ exchanger NHE3 by formate: a basis of enhanced fluid and electrolyte reabsorption by formate in the kidney. Am J Physiol Renal Physiol 2004; 287:F336-46. [PMID: 15082449 DOI: 10.1152/ajprenal.00400.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formate stimulates sodium chloride and fluid reabsorption in kidney proximal tubule; however, the exact cellular mechanism of this effect remains unknown. We hypothesized that the primary target of formate is the apical Na(+)/H(+) exchanger. Here, we demonstrate that formate directly enhances the apical Na(+)/H(+) exchanger (NHE3) activity in mouse kidney proximal tubule. In the absence of CO(2)/HCO(3)(-), addition of formate (500 microM) to the bath and lumen of microperfused mouse kidney proximal tubule caused significant intracellular alkalinization, with intracellular pH (pH(i)) increasing from baseline levels 7.17 +/- 0.01 to 7.55 +/- 0.01 (P < 0.001, n = 14), with a Delta pH of 0.38 +/- 0.02. Removal of luminal chloride did not block cell pH alkalinization by formate (baseline pH of 7.26 +/- 0.01 to 7.53 +/- 0.01 with formate, P < 0.001, n = 10), indicating that the apical Cl(-)/OH(-) exchanger was not the primary mediator of the effect of formate on cell pH. However, removal of sodium from the lumen or addition of EIPA completely prevented cell pH alkalinization. Addition of formate to the lumen and bath in the outer medullary collecting duct, which does not express any apical Na(+)/H(+) exchanger, did not cause any cell pH alkalinization. At lower concentrations (50 microM), formate caused significant pH(i) alkalinization in proximal tubule cells, with pH(i) increasing from baseline levels 7.15 +/- 0.02 to 7.36 +/- 0.02 (P < 0.02, n = 11). Acetate, at 50 microM, had no effect on pH(i). Formate's effect was observed both in the absence and presence of CO(2)/HCO(3)(-) in the media. We conclude that formate stimulates the apical Na(+)/H(+) exchanger NHE3 in the kidney proximal tubule. We propose that formate stimulation of chloride reabsorption in the proximal tubule is indirect and is secondary to the activation of apical Na(+)/H(+) exchanger NHE3, which then leads to the stimulation of the apical chloride/base exchanger.
Collapse
Affiliation(s)
- Snezana Petrovic
- Department of Medicine, University of Cincinnati, and Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
27
|
Boese SH, Aziz O, Simmons NL, Gray MA. Kinetics and regulation of a Ca2+-activated Cl- conductance in mouse renal inner medullary collecting duct cells. Am J Physiol Renal Physiol 2003; 286:F682-92. [PMID: 14678946 DOI: 10.1152/ajprenal.00123.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using the whole cell patch-clamp technique, a Ca2+-activated Cl- conductance (CaCC) was transiently activated by extracellular ATP (100 microM) in primary cultures of mouse inner medullary collecting duct (IMCD) cells and in the mouse IMCD-K2 cell line. ATP also transiently increased intracellular Ca2+ concentration ([Ca2+]i) from 100 nM to peak values of approximately 750 nM in mIMCD-K2 cells, with a time course similar to the ATP-induced activation and decay of the CaCC. Removal of extracellular Ca2+ had no major effect on the peak Cl- conductance or the increase in [Ca2+]i induced by ATP, suggesting that Ca2+ released from intracellular stores directly activates the CaCC. In mIMCD-K2 cells, a rectifying time- and voltage-dependent current was observed when [Ca2+]i was fixed via the patch pipette to between 100 and 500 nM. Maximal activation occurred at approximately 1 microM [Ca2+]i, with currents losing any kinetics and displaying a linear current-voltage relationship. From Ca2+-dose-response curves, an EC50 value of approximately 650 nM at -80 mV was obtained, suggesting that under physiological conditions the CaCC would be near fully activated by mucosal nucleotides. Noise analysis of whole cell currents in mIMCD-K2 cells suggests a single-channel conductance of 6-8 pS and a density of approximately 5,000 channels/cell. In conclusion, the CaCC in mouse IMCD cells is a low-conductance, nucleotide-sensitive Cl- channel, whose activity is tightly coupled to changes in [Ca2+]i over the normal physiological range.
Collapse
Affiliation(s)
- S H Boese
- School of Cell and Molecular Bioscience, Univ. Medical School, Newcastle Upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|