1
|
Moreira-Rodrigues M, Quelhas-Santos J, Roncon-Albuquerque R, Serrão P, Leite-Moreira A, Sampaio-Maia B, Pestana M. Blunted renal dopaminergic system in a mouse model of diet-induced obesity. Exp Biol Med (Maywood) 2012; 237:949-55. [DOI: 10.1258/ebm.2012.012077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Obesity has reached epidemic proportions in the Western world and is implicated in the pathophysiology of essential hypertension. The aim of the present study was to evaluate sodium handling, blood pressure and renal dopaminergic system activity in a mouse model of obesity induced by exposure to a hypercaloric diet. From six to 18 weeks of age, animals were fed with a control diet or a high-fat high-simple-carbohydrate (HFHSC) diet. Renal function, blood pressure and urinary and plasmatic catecholamines and biochemical parameters were evaluated in both groups. In parallel, the effects of high sodium intake (HS, 1.0% NaCl, 3 days) on natriuresis, urinary catecholamine excretion and aromatic l-amino acid decarboxylase (AADC) activity were evaluated in control and obese mice. Mice exposed to the HFHSC diet presented obesity, hyperglycemia, glucose intolerance, insulin resistance, hyperinsulinemia and increased blood pressure. This was accompanied, in obese mice, by decreases in urinary excretion of dopamine and metabolites as well as reduced AADC activity in renal tissues. During HS intake, absolute urinary dopamine excretion increased in control, but not in obese mice. This was accompanied in obese mice by a natriuretic resistance on day 1 of the HS diet. In addition, obese mice presented increased urinary and plasmatic noradrenaline levels, as well as an increased heart rate when compared with control mice. In conclusion, in this model of diet-induced obesity hyperinsulinemia, insulin resistance and increased sympathetic tone are associated with blunted renal dopaminergic activity. It is suggested that this may contribute to compromised sodium excretion and increased blood pressure in obesity.
Collapse
Affiliation(s)
- Mónica Moreira-Rodrigues
- Nephrology Research and Development Unit, Faculty of Medicine
- Neuropharmacology, IBMC
- Department of Pharmacology and Therapeutics, Faculty of Medicine
| | | | | | - Paula Serrão
- Department of Pharmacology and Therapeutics, Faculty of Medicine
| | | | - Benedita Sampaio-Maia
- Nephrology Research and Development Unit, Faculty of Medicine
- Faculty of Dental Medicine, University of Porto, 4200 Porto
| | - Manuel Pestana
- Nephrology Research and Development Unit, Faculty of Medicine
- Department of Nephrology, Hospital S. João, 4200–319 Porto, Portugal
| |
Collapse
|
2
|
Pinho MJ, Cabral JM, Silva E, Serrão MP, Soares-da-Silva P. LAT1 overexpression and function compensates downregulation of ASCT2 in an in vitro model of renal proximal tubule cell ageing. Mol Cell Biochem 2010; 349:107-16. [DOI: 10.1007/s11010-010-0665-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
3
|
Silva E, Gomes P, Soares-da-Silva P. Overexpression of Na(+)/K (+)-ATPase parallels the increase in sodium transport and potassium recycling in an in vitro model of proximal tubule cellular ageing. J Membr Biol 2007; 212:163-75. [PMID: 17334838 DOI: 10.1007/s00232-005-7017-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/11/2006] [Indexed: 11/26/2022]
Abstract
Na(+)/K(+)-ATPase plays a key role in the transport of Na(+) throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na(+) and K(+) ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na(+)/K(+)-ATPase activity and K(+) conductance were evaluated using electrophysiological methods. Na(+)K(+)-ATPase alpha(1)- and beta(1)-subunit expression was quantified by Western blot techniques. Na(+)/H(+) exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na(+) transport, which results from an increase in the number of Na(+)/K(+)-ATPase alpha(1)- and beta(1)-subunits, in the membrane. Increases in Na(+)/K(+)-ATPase activity were accompanied by increases in K(+) conductance as a result of functional coupling between Na(+)/K(+)-ATPase and basolateral K(+) channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na(+)/H(+) exchanger activity were observed. H(2)O(2) production was increased in aged cells, but exposure for 5 days to 1 and 10 microM: of H(2)O(2) had no effect on Na(+)/K(+)-ATPase expression. Ouabain (100 nM: ) increased alpha(1)-subunit, but not beta(1)-subunit, Na(+)/K(+)-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.
Collapse
Affiliation(s)
- E Silva
- Faculty of Medicine, Institute of Pharmacology and Therapeutics, 4200-319 , Porto, Portugal
| | | | | |
Collapse
|
4
|
Ashman N, Brunini TM, Mann GE, Mendes Ribeiro AC, Yaqoob MM. Increased L-arginine transport via system b0,+ in human proximal tubular cells exposed to albumin. Clin Sci (Lond) 2006; 111:389-99. [PMID: 16928190 DOI: 10.1042/cs20060158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Albumin has complex effects on PTECs (proximal tubular epithelial cells) and is able to stimulate growth or injury depending on its bound moieties. Albumin itself is a mitogen, inducing proliferation through a number of pathways. In PTEC exposed to purified albumin, polyamines are required for entry into the cell cycle and are critical for proliferation. Polyamines are synthesized from L-ornithine (itself derived by the action of arginase on L-arginine), and the transport and availability of L-arginine may thus be important for subsequent polyamine-dependent proliferation. In the present study we investigated radiolabelled cationic amino-acid transport in cultured PTEC exposed to 20 mg/ml ultrapure recombinant human albumin, describing the specific kinetic characteristics of transport and the expression of transporters. L-[3H]Arginine transport capacity in human PTEC is increased after exposure for 24 h to human albumin, mediated by the broad-scope high-affinity system b0,+ and, to a lesser extent, system y+L (but not system y+) transport. Increased transport is associated with increased b0,+-associated transporter expression. Inhibition of phosphoinositide 3-kinase, a key regulator of albumin endocytosis and signalling, inhibited proliferation, but had no effect on the observed increase in transport. PTEC proliferated in response to albumin. L-Lysine, a competitive inhibitor of L-arginine transport, had no effect on albumin-induced proliferation; however, arginine deprivation effectively reversed the albumin-induced proliferation observed. In conclusion, in PTEC exposed to albumin, increased L-arginine transport is mediated by increased transcription and activity of the apical b0,+ transport system. This may make L-arginine available as a substrate for the downstream synthesis of polyamines, but is not critical for cell proliferation.
Collapse
Affiliation(s)
- Neil Ashman
- Department of Experimental Medicine, Critical Care and Nephrology, William Harvey Research Institute, Queen Mary College, University of London, London, UK.
| | | | | | | | | |
Collapse
|
5
|
Silva E, Gomes P, Soares-da-Silva P. Increases in transepithelial vectorial Na+ transport facilitates Na+-dependent L-DOPA transport in renal OK cells. Life Sci 2006; 79:723-9. [PMID: 16600308 DOI: 10.1016/j.lfs.2006.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 12/15/2022]
Abstract
The present study evaluated the hypothesis of whether increases in vectorial Na+ transport translate into facilitation of Na+-dependent L-DOPA uptake in cultured renal epithelial tubular cells. Increases in vectorial Na+ transport were obtained in opossum kidney (OK) cells engineered to overexpress Na+-K+-ATPase after transfection of wild type OK cells with the rodent Na+-K+-ATPase alpha1 subunit. The most impressive differences between wild type and transfected OK cells are that the latter overexpressed Na+-K+-ATPase accompanied by an increased activity of the transporter. Non-linear analysis of the saturation curve for l-DOPA uptake revealed a Vmax value (in nmol mg protein/6 min) of 62 and 80 in wild type and transfected cells, respectively. The uptake of a non-saturating concentration (0.25 microM) of [14C]-L-DOPA in OK-WT cells was not affected by Na+ removal, whereas in OK-alpha1 cells accumulation of [14C]-L-DOPA was clearly dependent on the presence of extracellular Na+. When Na+ was replaced by choline, the inhibitory profile of neutral l-amino acids, but not of basic and acidic amino acids, upon [14C]-L-DOPA uptake in both cell types, was significantly greater than that observed in the presence of extracellular Na+. It is concluded that enhanced ability of OK cells overexpressing Na+-K+-ATPase to translocate Na+ from the apical to the basal cell side correlates positively with their ability to accumulate L-DOPA, which is in agreement with the role of Na+ in taking up the precursor of renal dopamine.
Collapse
Affiliation(s)
- E Silva
- Institute of Pharmacology and Therapeutics, Faculty of Medicine 4200-319 Porto, Portugal
| | | | | |
Collapse
|
6
|
Gomes P, Soares-da-Silva P. Upregulation of apical NHE3 in renal OK cells overexpressing the rodent alpha(1)-subunit of the Na(+) pump. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1142-50. [PMID: 16293683 DOI: 10.1152/ajpregu.00102.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | |
Collapse
|
7
|
Parathormone sensitivity and responses to protein kinases in subclones of opossum kidney cells. Pediatr Nephrol 2005; 20:721-4. [PMID: 15834620 DOI: 10.1007/s00467-005-1832-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 12/13/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Parathyroid hormone (PTH) inhibits sodium-dependent phosphate (Na(+)-Pi) transport in the renal proximal tubule and opossum kidney (OK) cells by mechanisms involving protein kinases (PK) A and C, and 20-hydroxyeicosatetraneoic acid (20-HETE). The magnitude of the effect of PKA and PKC on Na(+)-Pi transport in OK cells varies in different studies, suggesting that OK cell subclones are functionally heterogeneous despite their morphological similarity. We studied the effect of PTH and PK effectors in two separate sets of OK cells at two different time periods. Each group of cells were derived from the same stock, at passages 75-85. In one group of OK cells 20-HETE (10(-7 )M) induced a 24% decrease in Na-(32)Pi transport. Addition of PTH (10(-7) M) inhibited Pi transport by 44%. Addition of TPA (10(-8) M) resulted in a 32% decrease in Na-(32)Pi transport. Exposure of cells to the PKC inhibitor staurosporine (10(-7) M) induced a significant increase in Na-(32)Pi transport. Simultaneous addition of 20-HETE and staurosporine restored baseline Pi transport. Finally, Br-cAMP (10(-7) M) inhibited Na-(32)Pi transport by 32%. In another group of OK cells we reexamined the affect of these substances on Na-(32)Pi transport. 20-HETE (10(-7) M) induced a significant increase (30%) in Na-(32)Pi transport. PTH (10(-7) M) had no effect on Na-(32)Pi transport (P = 0.05). TPA (10(-8) M) induced a 42% increase in Na-(32)Pi transport (P < 0.01). Staurosporine (10(-7) M) induced a slight decrease in Na-(32)Pi transport (P < 0.05). Simultaneous addition of 20-HETE and staurosporine restored Na-(32)Pi transport to baseline levels. Finally, Br-cAMP (10(-7) M) inhibited Na-(32)Pi transport by 23%. We conclude that different groups OK cells have markedly different responses to regulators of Na-Pi cotransport.
Collapse
|
8
|
Efrati E, Arsentiev-Rozenfeld J, Zelikovic I. The human paracellin-1 gene (hPCLN-1): renal epithelial cell-specific expression and regulation. Am J Physiol Renal Physiol 2004; 288:F272-83. [PMID: 15353399 DOI: 10.1152/ajprenal.00021.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tubular reabsorption of Mg2+ is mediated by the tight junction protein paracellin-1, which is encoded by the gene PCLN-1 (CLDN16) and exclusively expressed in the kidney. Tubular Mg2+ reclamation is modulated by many hormones and factors. The aim of this study was to define regulatory elements essential for renal tubular cell-specific expression of human PCLN-1 (hPCLN-1) and to explore the effect of Mg2+ transport modulators on the paracellin-1 gene promoter. Endogenous paracellin-1 mRNA and protein were detected in renal cell lines opossom kidney (OK), HEK293, and MDCT, but not in the fibroblast cell line NIH3T3. A 7.5-kb hPCLN-1 5'-flanking DNA sequence along with seven 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the renal and nonrenal cells. The highest levels of luciferase activity resulted from transfection of a 5'-flanking 2.5-kb fragment (pJ2M). This activity was maximal in OK cells, was orientation dependent, and was absent in NIH3T3 cells. Mg2+ deprivation significantly increased pJ2M-driven activity in transfected OK cells, whereas Mg2+ load decreased it compared with conditions of normal Mg2+. Deletion analysis along with electrophoretic mobility-shift assay demonstrated that OK cells contain nuclear proteins, which bind a 70-bp region between -1633 and -1703 of major functional significance. Deleting this 70-bp segment, which contains a single peroxisome proliferator-response element (PPRE), or mutating the PPRE, caused a 60% reduction in luciferase activity. Stimulating the 70-bp sequence with 1,25(OH)2 vitamin D decreased luciferase activity by 52%. This effect of 1,25(OH)2 vitamin D was abolished in the absence of PPRE or in the presence of mutated PPRE. We conclude that the PPRE within this 70-bp DNA region may play a key role in the cell-specific and regulatory activity of the hPCLN-1 promoter. Ambient Mg2+ concentration and 1,25(OH)2 vitamin D may modulate paracellular, paracellin-1-mediated, Mg2+ transport at the transcriptional level. 1,25(OH)2 vitamin D exerts its activity on the hPCLN-1 promoter likely via the PPRE site.
Collapse
Affiliation(s)
- Edna Efrati
- Laboratory of Developmental Nephrology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
9
|
Pedrosa R, Gomes P, Hopfer U, Jose PA, Soares-da-Silva P. Gialpha3 protein-coupled dopamine D3 receptor-mediated inhibition of renal NHE3 activity in SHR proximal tubular cells is a PLC-PKC-mediated event. Am J Physiol Renal Physiol 2004; 287:F1059-66. [PMID: 15265766 DOI: 10.1152/ajprenal.00139.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the transduction pathway associated with type 3 Na(+)/H(+) exchanger (NHE3) activity-induced inhibition during dopamine D(3) receptor activation in immortalized renal proximal tubular epithelial cells from the spontaneously hypertensive rat. The dopamine D(3) receptor agonist 7-OH-DPAT decreased NHE3 activity, which was prevented by the D(2)-like receptor antagonist S-sulpiride, pertussis toxin (PTX; overnight treatment), and the PKC inhibitor chelerythrine, but not by cholera toxin (overnight treatment), the MAPK inhibitor PD-098059, or the p38 inhibitor SB-203580. The PKA inhibitor H-89 abolished the inhibitory effects of forskolin on NHE3 activity, but not that of 7-OH-DPAT. The phospholipase C (PLC) inhibitor U-73122 prevented the inhibitory effects of 7-OH-DPAT, whereas PDBu and 7-OH-DPAT increased PLC activity and reduced NHE3 activity; downregulation of PKC abolished the inhibitory effects of both PDBu and 7-OH-DPAT on NHE activity. The inhibition of NHE3 activity by GTPgammaS and the prevention of the effect of 7-OH-DPAT by PTX suggest an involvement of a G(i/o) protein coupled to the dopamine D(3) receptor. Indeed, the 7-OH-DPAT-induced decrease in NHE3 activity was abolished in cells treated overnight with the anti-G(i)alpha3 antibody, but not in cells treated with antibodies against G(q/11), G(s)alpha, G(beta), and G(i)alpha1,2 proteins. The calcium ionophore A-23187 and the Ca(2+)-ATPase inhibitor thapsigargin increased intracellular Ca(2+) but did not affect NHE3 activity. However, the inhibitory effects of PDBu and 7-OH-DPAT on NHE3 activity were completely abolished by A-23287 and thapsigargin. It is concluded that inhibition of NHE3 activity by dopamine D(3) receptors coupled to G(i)alpha3 proteins is a PLC-PKC-mediated event, modulated by intracellular Ca(2+).
Collapse
Affiliation(s)
- Rui Pedrosa
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|