1
|
Oda Y, Takahashi C, Harada S, Nakamura S, Sun D, Kiso K, Urata Y, Miyachi H, Fujiyoshi Y, Honigmann A, Uchida S, Ishihama Y, Toyoshima F. Discovery of anti-inflammatory physiological peptides that promote tissue repair by reinforcing epithelial barrier formation. SCIENCE ADVANCES 2021; 7:eabj6895. [PMID: 34788088 PMCID: PMC8597994 DOI: 10.1126/sciadv.abj6895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Epithelial barriers that prevent dehydration and pathogen invasion are established by tight junctions (TJs), and their disruption leads to various inflammatory diseases and tissue destruction. However, a therapeutic strategy to overcome TJ disruption in diseases has not been established because of the lack of clinically applicable TJ-inducing molecules. Here, we found TJ-inducing peptides (JIPs) in mice and humans that corresponded to 35 to 42 residue peptides of the C terminus of alpha 1-antitrypsin (A1AT), an acute-phase anti-inflammatory protein. JIPs were inserted into the plasma membrane of epithelial cells, which promoted TJ formation by directly activating the heterotrimeric G protein G13. In a mouse intestinal epithelial injury model established by dextran sodium sulfate, mouse or human JIP administration restored TJ integrity and strongly prevented colitis. Our study has revealed TJ-inducing anti-inflammatory physiological peptides that play a critical role in tissue repair and proposes a previously unidentified therapeutic strategy for TJ-disrupted diseases.
Collapse
Affiliation(s)
- Yukako Oda
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chisato Takahashi
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan
| | - Shota Harada
- Laboratory of Human Interface, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun Nakamura
- Cellular and Structural Physiology Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- CeSPIA Inc., Tokyo 100-0004, Japan
| | - Daxiao Sun
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01309, Germany
| | - Kazumi Kiso
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yuko Urata
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
- CeSPIA Inc., Tokyo 100-0004, Japan
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01309, Germany
| | - Seiichi Uchida
- Laboratory of Human Interface, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
A Low Cost Antibody Signal Enhancer Improves Immunolabeling in Cell Culture, Primate Brain and Human Cancer Biopsy. Neuroscience 2020; 439:275-286. [DOI: 10.1016/j.neuroscience.2020.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
3
|
Parker MI, Nikonova AS, Sun D, Golemis EA. Proliferative signaling by ERBB proteins and RAF/MEK/ERK effectors in polycystic kidney disease. Cell Signal 2019; 67:109497. [PMID: 31830556 DOI: 10.1016/j.cellsig.2019.109497] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
Abstract
A primary pathological feature of polycystic kidney disease (PKD) is the hyperproliferation of epithelial cells in renal tubules, resulting in formation of fluid-filled cysts. The proliferative aspects of the two major forms of PKD-autosomal dominant PKD (ADPKD), which arises from mutations in the polycystins PKD1 and PKD2, and autosomal recessive PKD (ARPKD), which arises from mutations in PKHD1-has encouraged investigation into protein components of the core cell proliferative machinery as potential drivers of PKD pathogenesis. In this review, we examine the role of signaling by ERBB proteins and their effectors, with a primary focus on ADPKD. The ERBB family of receptor tyrosine kinases (EGFR/ERBB1, HER2/ERBB2, ERBB3, and ERBB4) are activated by extracellular ligands, inducing multiple pro-growth signaling cascades; among these, activation of signaling through the RAS GTPase, and the RAF, MEK1/2, and ERK1/2 kinases enhance cell proliferation and restrict apoptosis during renal tubuloepithelial cyst formation. Characteristics of PKD include overexpression and mislocalization of the ERBB receptors and ligands, leading to enhanced activation and increased activity of downstream signaling proteins. The altered regulation of ERBBs and their effectors in PKD is influenced by enhanced activity of SRC kinase, which is promoted by the loss of cytoplasmic Ca2+ and an increase in cAMP-dependent PKA kinase activity that stimulates CFTR, driving the secretory phenotype of ADPKD. We discuss the interplay between ERBB/SRC signaling, and polycystins and their depending signaling, with emphasis on thes changes that affect cell proliferation in cyst expansion, as well as the inflammation-associated fibrogenesis, which characterizes progressive disease. We summarize the current progress of preclinical and clinical trials directed at inhibiting this signaling axis, and discuss potential future strategies that may be productive for controlling PKD.
Collapse
Affiliation(s)
- Mitchell I Parker
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, 19102, USA
| | - Anna S Nikonova
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA
| | - Danlin Sun
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA; Institute of Life Science, Jiangsu University, Jingkou District, Zhenjiang, Jiangsu 212013, China
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, 19111, USA.
| |
Collapse
|
4
|
Fang H, Wang Y, Xu L, Zhou S, Bai J, Wu Y, Qiao J, Jiang X, Zhu D, Ding Y. EGFR inhibitor gefitinib regulates barrier function in human epidermal keratinocytes via the modulation of the expression of claudins. Int J Mol Med 2019; 43:1522-1530. [PMID: 30628660 DOI: 10.3892/ijmm.2018.4046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has been frequently used in targeted therapy for lung cancer. However, the widespread use of gefitinib in targeted therapy for patients with lung cancer is hampered by its common skin toxicities. The present study aimed to investigate the mechanisms underlying the skin toxicities of gefitinib. Normal human epidermal keratinocytes (NHEKs) treated with gefitinib were used for a series of in vitro assays, including MTT, reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunohistochemistry and transepithelial electrical resistance and paracellular permeability detection. In the present study, it was determined that the skin toxicities of gefitinib may be due to claudin (CLDN)1 and CLDN4 downregulation and CLDN2 upregulation in NHEKs. Additionally, Src and signal transducer and activator of transcription 3 pathways were involved in gefitinib‑induced barrier function disruption in NHEKs. In conclusion, the present study may provide novel insights for improving skin toxicity of gefitinib in patients with lung cancer.
Collapse
Affiliation(s)
- Hong Fang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yina Wang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lina Xu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sha Zhou
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Juan Bai
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinhua Wu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoling Jiang
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dingxian Zhu
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingguo Ding
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
5
|
Ramirez L, Betanzos A, Raya-Sandino A, González-Mariscal L, Del Angel RM. Dengue virus enters and exits epithelial cells through both apical and basolateral surfaces and perturbs the apical junctional complex. Virus Res 2018; 258:39-49. [PMID: 30278191 DOI: 10.1016/j.virusres.2018.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Dengue is the most relevant mosquito-borne viral disease in the world. It has been estimated that 390 million infections of dengue occur each year. Dengue virus (DENV) infection can be asymptomatic or can produce a self-limited febrile illness called dengue fever (DF) or a severe form of the infection called severe dengue. In some viruses, the entry and egress from cells, occur in a specific domain of polarized endothelial and epithelial cells. In this study, we investigated whether the entry and release of DENV was polarized in epithelial cells, and evaluated the effect of DENV infection on cellular junctions of epithelial cells. We used MDCK epithelial cells, which serve as an excellent model to study a functional barrier due to the presence of an apical junctional complex (AJC), and showed that entry and release of DENV from the cells, is bipolar. Additionally, we performed paracellular flux, diffusion of membrane lipid, immunofluorescence and immunoblotting assays to evaluate the integrity of the AJC during DENV infection. We observed that at later stages of infection, DENV altered the barrier function causing a decrease in the transepithelial electrical resistance and the degradation and delocalization of TJ and AJ proteins. The present study contributes to understand how DENV traverse epithelia in order to cause a productive infection, and provides insights into the mechanism of DENV pathogenesis.
Collapse
Affiliation(s)
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Mexico; Conacyt, Mexico
| | - Arturo Raya-Sandino
- Departamento de Fisiología, Biofísicay Neurociencias. CINVESTAV-IPN, Mexico, D.F., Mexico
| | | | | |
Collapse
|
6
|
Acanthamoeba (T4) trophozoites cross the MDCK epithelium without cell damage but increase paracellular permeability and transepithelial resistance by modifying tight junction composition. Exp Parasitol 2017; 183:69-75. [DOI: 10.1016/j.exppara.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/12/2017] [Accepted: 10/29/2017] [Indexed: 01/10/2023]
|
7
|
Martínez-Rendón J, Sánchez-Guzmán E, Rueda A, González J, Gulias-Cañizo R, Aquino-Jarquín G, Castro-Muñozledo F, García-Villegas R. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium. J Cell Physiol 2016; 232:1794-1807. [PMID: 27869310 DOI: 10.1002/jcp.25698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 11/17/2016] [Indexed: 11/09/2022]
Abstract
TRPV4 (transient receptor potential vanilloid 4) is a cation channel activated by hypotonicity, moderate heat, or shear stress. We describe the expression of TRPV4 during the differentiation of a corneal epithelial cell model, RCE1(5T5) cells. TRPV4 is a late differentiation feature that is concentrated in the apical membrane of the outmost cell layer of the stratified epithelia. Ca2+ imaging experiments showed that TRPV4 activation with GSK1016790A produced an influx of calcium that was blunted by the specific TRPV4 blocker RN-1734. We analyzed the involvement of TRPV4 in RCE1(5T5) epithelial differentiation by measuring the development of transepithelial electrical resistance (TER) as an indicator of the tight junction (TJ) assembly. We showed that TRPV4 activity was necessary to establish the TJ. In differentiated epithelia, activation of TRPV4 increases the TER and the accumulation of claudin-4 in cell-cell contacts. Epidermal Growth Factor (EGF) up-regulates the TER of corneal epithelial cultures, and we show here that TRPV4 activation mimicked this EGF effect. Conversely, TRPV4 inhibition or knock down by specific shRNA prevented the increase in TER. Moreover, TRPP2, an EGF-activated channel that forms heteromeric complexes with TRPV4, is also concentrated in the outmost cell layer of differentiated RCE1(5T5) sheets. This suggests that the EGF regulation of the TJ may involve a heterotetrameric TRPV4-TRPP2 channel. These results demonstrated TRPV4 activity was necessary for the correct establishment of TJ in corneal epithelia and as well as the regulation of both the barrier function of TJ and its ability to respond to EGF. J. Cell. Physiol. 232: 1794-1807, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacqueline Martínez-Rendón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Erika Sánchez-Guzmán
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - James González
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Rosario Gulias-Cañizo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Guillermo Aquino-Jarquín
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Federico Castro-Muñozledo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
8
|
Bouhout S, Goulet F, Bolduc S. A Novel and Faster Method to Obtain a Differentiated 3-Dimensional Tissue Engineered Bladder. J Urol 2015; 194:834-41. [PMID: 25758608 DOI: 10.1016/j.juro.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE We report what is to our knowledge a novel approach that led to the rapid development of a 3-dimensional bladder model, including a differentiated urothelium reconstructed without a period of exposure to the air-liquid interface. MATERIALS AND METHODS Bilayered bladder constructs were produced using anchored mesenchymal cell seeded collagen gels to create the mesenchymal layer. Gels were coated with urine for 20 minutes before urothelial cell seeding. The 3-dimensional bladder models were cultured under submerged conditions for 15 days. RESULTS Pure urine coating of the collagen matrix surface combined with its intermittent presence during urothelial development was found to be best to maintain urothelial cell properties. Immunohistological and ultrastructural analyses showed the formation of a pseudostratified urothelium devoid of abnormal K14 expression, allowing for uroplakin trafficking and forming an asymmetrical unit membrane at the apical surface. CONCLUSIONS Such tissues could be adapted for clinical applications, including bladder repair. In the context of basic science this model could serve as a good alternative to animal use for fundamental and pharmacological studies of normal or pathological bladder tissues.
Collapse
Affiliation(s)
- Sara Bouhout
- Centre de recherche en organogénèse expérimentale de l'Université Laval/Laboratoire d'organogénèse experimentale, Faculté de médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada.
| | - Francine Goulet
- Centre de recherche en organogénèse expérimentale de l'Université Laval/Laboratoire d'organogénèse experimentale, Faculté de médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Stéphane Bolduc
- Centre de recherche en organogénèse expérimentale de l'Université Laval/Laboratoire d'organogénèse experimentale, Faculté de médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| |
Collapse
|
9
|
García-Hernández V, Flores-Maldonado C, Rincon-Heredia R, Verdejo-Torres O, Bonilla-Delgado J, Meneses-Morales I, Gariglio P, Contreras RG. EGF Regulates Claudin-2 and -4 Expression Through Src and STAT3 in MDCK Cells. J Cell Physiol 2014; 230:105-15. [DOI: 10.1002/jcp.24687] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Vicky García-Hernández
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Catalina Flores-Maldonado
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Ruth Rincon-Heredia
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
- Department of Pharmacology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Odette Verdejo-Torres
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| | - José Bonilla-Delgado
- Laboratory of Genetics and Molecular Diagnosis; Research Unit; Hospital Juárez de México; México City México
| | - Ivan Meneses-Morales
- Breast Cancer investigation program; National Autonomous University of México (UNAM); México
- Department of Molecular Biology and Biotechnology; Biomedical Research Institute; National Autonomous University of México (UNAM); México
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology; Center for Research and Advanced Studies (Cinvestav); México City México
| | - Rubén G. Contreras
- Department of Physiology; Biophysics and Neurosciences; Center for Research and Advanced Studies (Cinvestav); México City México
| |
Collapse
|
10
|
Szaszi K, Amoozadeh Y. New Insights into Functions, Regulation, and Pathological Roles of Tight Junctions in Kidney Tubular Epithelium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:205-71. [DOI: 10.1016/b978-0-12-800097-7.00006-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Ouabain induces endocytosis and degradation of tight junction proteins through ERK1/2-dependent pathways. Exp Cell Res 2014; 320:108-18. [DOI: 10.1016/j.yexcr.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 11/20/2022]
|
12
|
English DP, Santin AD. Claudins overexpression in ovarian cancer: potential targets for Clostridium Perfringens Enterotoxin (CPE) based diagnosis and therapy. Int J Mol Sci 2013; 14:10412-37. [PMID: 23685873 PMCID: PMC3676847 DOI: 10.3390/ijms140510412] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 02/06/2023] Open
Abstract
Claudins are a family of tight junction proteins regulating paracellular permeability and cell polarity with different patterns of expression in benign and malignant human tissues. There are approximately 27 members of the claudin family identified to date with varying cell and tissue-specific expression. Claudins-3, -4 and -7 represent the most highly differentially expressed claudins in ovarian cancer. While their exact role in ovarian tumors is still being elucidated, these proteins are thought to be critical for ovarian cancer cell invasion/dissemination and resistance to chemotherapy. Claudin-3 and claudin-4 are the natural receptors for the Clostridium perfringens enterotoxin (CPE), a potent cytolytic toxin. These surface proteins may therefore represent attractive targets for the detection and treatment of chemotherapy-resistant ovarian cancer and other aggressive solid tumors overexpressing claudin-3 and -4 using CPE-based theranostic agents.
Collapse
Affiliation(s)
- Diana P. English
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; E-Mail:
| | - Alessandro D. Santin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; E-Mail:
| |
Collapse
|
13
|
Membrane lipids and proteins as modulators of urothelial endocytic vesicles pathways. Histochem Cell Biol 2013; 140:507-20. [PMID: 23624723 DOI: 10.1007/s00418-013-1095-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
The increased studies on urinary bladder umbrella cells as an important factor for maintaining the permeability barrier have suggested new pathways for the discoidal/fusiform endocytic vesicles which is one of the main features of the umbrella cells. The biological role of these vesicles was defined, for many years, as a membrane reservoir for the umbrella cell apical plasma membrane which are subject to an increased tension during the filling phase of the micturition cycle and, therefore, the vesicles are fused with the apical membrane. Upon voiding, the added membrane is reinserted via a non-clathrin or caveolin-dependant endocytosis thereby restoring the vesicle cytoplasmic pool. However, in the last decade, new evidence appeared indicating alternative pathways of the endocytic vesicles different than the cycling process of exocytosis/endocytosis. The purpose of this review is to analyze the molecular modulators, such as membrane lipids and proteins, in the permeability of endocytic vesicles, the sorting of endocytosed material to lysosomal degradation pathway and recycling of both membrane and fluid phases.
Collapse
|
14
|
Elbediwy A, Zihni C, Terry SJ, Clark P, Matter K, Balda MS. Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex. J Cell Biol 2012; 198:677-93. [PMID: 22891260 PMCID: PMC3514035 DOI: 10.1083/jcb.201202094] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/11/2012] [Indexed: 12/28/2022] Open
Abstract
Epithelial cell-cell adhesion and morphogenesis require dynamic control of actin-driven membrane remodeling. The Rho guanosine triphosphatase (GTPase) Cdc42 regulates sequential molecular processes during cell-cell junction formation; hence, mechanisms must exist that inactivate Cdc42 in a temporally and spatially controlled manner. In this paper, we identify SH3BP1, a GTPase-activating protein for Cdc42 and Rac, as a regulator of junction assembly and epithelial morphogenesis using a functional small interfering ribonucleic acid screen. Depletion of SH3BP1 resulted in loss of spatial control of Cdc42 activity, stalled membrane remodeling, and enhanced growth of filopodia. SH3BP1 formed a complex with JACOP/paracingulin, a junctional adaptor, and CD2AP, a scaffolding protein; both were required for normal Cdc42 signaling and junction formation. The filamentous actin-capping protein CapZ also associated with the SH3BP1 complex and was required for control of actin remodeling. Epithelial junction formation and morphogenesis thus require a dual activity complex, containing SH3BP1 and CapZ, that is recruited to sites of active membrane remodeling to guide Cdc42 signaling and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Ceniz Zihni
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Stephen J. Terry
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Peter Clark
- National Heart and Lung Institute, Imperial
College London, South Kensington Campus, SW7 2AZ London, England,
UK
| | - Karl Matter
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| | - Maria S. Balda
- Department of Cell Biology, Institute of
Ophthalmology, University College London, EC1V 9EL London, England,
UK
| |
Collapse
|
15
|
Eadon MT, Hack BK, Xu C, Ko B, Toback FG, Cunningham PN. Endotoxemia alters tight junction gene and protein expression in the kidney. Am J Physiol Renal Physiol 2012; 303:F821-30. [PMID: 22791339 DOI: 10.1152/ajprenal.00023.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intact tight junctional (TJ) proteins are required for tubular ion transport and waste excretion. Disruption of TJs may contribute to a decreased glomerular filtration rate in acute kidney injury (AKI) via tubular backleak. The effect of LPS-mediated AKI on murine TJs has not been studied extensively. We hypothesized LPS endotoxin administration to mice would disrupt tubular TJ proteins including zonula occludens-1 (ZO-1), occludin, and claudins. ZO-1 and occludin immunofluorescence 24 h post-LPS revealed a marked change in localization from the usual circumferential fencework pattern to one with substantial fragmentation. Renal ZO-1 expression was significantly reduced 24 h after LPS (decrease of 56.1 ± 7.4%, P < 0.001), with subsequent recovery. ZO-1 mRNA expression was increased 24 h post-LPS (4.34 ± 0.87-fold, P = 0.0019), suggesting disruption of ZO-1 protein is not mediated by transcriptional regulation, but rather by degradation or changes in translation. Similarly, claudin-4 protein expression was decreased despite elevated mRNA. LPS administration resulted in dephosphorylation of occludin and fragmented tubular redistribution. Protein expression of claudin-1, and -3 was increased after LPS. ZO-1, occludin, and claudin-1, -3, and -4 gene expression were increased 48 h after LPS, suggesting a renal response to strengthen TJs following injury. Interestingly, reduced mRNA expression was found only for claudin-8. This study provides further support that LPS-induced AKI is associated with structural injury and is not merely due to hemodynamic changes.
Collapse
Affiliation(s)
- Michael T Eadon
- Section of Nephrology, The University of Chicago, Illinois, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Ogawa M, Kojima T, Someya M, Nomura K, Takasawa A, Murata M, Tanaka S, Saito T, Sawada N. Epidermal growth factor modulates claudins and tight junctional functions in ovarian cancer cell lines. Histochem Cell Biol 2012; 138:323-38. [DOI: 10.1007/s00418-012-0956-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2012] [Indexed: 12/14/2022]
|
17
|
Burnham EL, McCord JM, Bose S, Brown LAS, House R, Moss M, Gaydos J. Protandim does not influence alveolar epithelial permeability or intrapulmonary oxidative stress in human subjects with alcohol use disorders. Am J Physiol Lung Cell Mol Physiol 2012; 302:L688-99. [PMID: 22268125 DOI: 10.1152/ajplung.00171.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcohol use disorders (AUDs), including alcohol abuse and dependence, have been linked to the development of acute lung injury (ALI). Prior clinical investigations suggested an association between AUDs and abnormal alveolar epithelial permeability mediated through pulmonary oxidative stress that may partially explain this relationship. We sought to determine if correcting pulmonary oxidative stress in the setting of AUDs would normalize alveolar epithelial permeability in a double-blinded, randomized, placebo-controlled trial of Protandim, a nutraceutical reported to enhance antioxidant activity. We randomized 30 otherwise healthy AUD subjects to receive directly observed inpatient oral therapy with either Protandim (1,350 mg/day) or placebo. Subjects underwent bronchoalveolar lavage (BAL) and blood sampling before study drug administration and after 7 days of therapy; all AUD subjects completed the study protocol without adverse events. BAL total protein was measured at each timepoint as an indicator of alveolar epithelial permeability. In subjects with AUDs, before study drug initiation, BAL total protein values were not significantly higher than in 11 concurrently enrolled controls (P = 0.07). Over the 7-day study period, AUD subjects did not exhibit a significant change in BAL total protein, regardless of their randomization to Protandim {n = 14, -2% [intraquartile range (IQR), -56-146%]} or to placebo [n = 16, 77% (IQR -20-290%); P = 0.19]. Additionally, among those with AUDs, no significant changes in BAL oxidative stress indexes, epithelial growth factor, fibroblast growth factor, interleukin-1β, or interleukin-10 were observed regardless of drug type received. Plasma thiobarbituric acid reactive substances, a marker of lipid peroxidation, decreased significantly over time among AUD subjects randomized to placebo (P < 0.01). These results suggest that Protandim for 7 days in individuals with AUDs who are newly abstinent does not alter alveolar epithelial permeability. However, our work demonstrates the feasibility of safely conducting clinical trials that include serial bronchoscopies in a vulnerable population at risk for acute lung injury.
Collapse
Affiliation(s)
- Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Univ. of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Engelund MB, Yu ASL, Li J, Madsen SS, Færgeman NJ, Tipsmark CK. Functional characterization and localization of a gill-specific claudin isoform in Atlantic salmon. Am J Physiol Regul Integr Comp Physiol 2012; 302:R300-11. [PMID: 21975646 PMCID: PMC3349389 DOI: 10.1152/ajpregu.00286.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/05/2011] [Indexed: 11/22/2022]
Abstract
Claudins are the major determinants of paracellular epithelial permeability in multicellular organisms. In Atlantic salmon (Salmo salar L.), we previously found that mRNA expression of the abundant gill-specific claudin 30 decreases during seawater (SW) acclimation, suggesting that this claudin is associated with remodeling of the epithelium during salinity change. This study investigated localization, protein expression, and function of claudin 30. Confocal microscopy showed that claudin 30 protein was located at cell-cell interfaces in the gill filament in SW- and fresh water (FW)-acclimated salmon, with the same distribution, overall, as the tight junction protein ZO-1. Claudin 30 was located at the apical tight junction interface and in cell membranes deeper in the epithelia. Colocalization with the α-subunit of the Na(+)-K(+)-ATPase was negligible, suggesting limited association with mitochondria-rich cells. Immunoblotting of gill samples showed lower claudin 30 protein expression in SW than FW fish. Retroviral transduction of claudin 30 into Madin-Darby canine kidney cells resulted in a decreased conductance of 19%. The decreased conductance correlated with a decreased permeability of the cell monolayer to monovalent cations, whereas permeability to chloride was unaffected. Confocal microscopy revealed that claudin 30 was expressed in the lateral membrane, as well as in tight junctions of Madin-Darby canine kidney cells, thereby paralleling the findings in the native gill. This study suggests that claudin 30 functions as a cation barrier between pavement cells in the gill and also has a general role in cell-cell adhesion in deeper layers of the epithelium.
Collapse
Affiliation(s)
- M. B. Engelund
- Institutes of Biology and
- Division of Nephrology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - A. S. L. Yu
- Division of Nephrology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - J. Li
- Division of Nephrology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | | | - N. J. Færgeman
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - C. K. Tipsmark
- Institutes of Biology and
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
19
|
Ikari A, Takiguchi A, Atomi K, Sugatani J. Epidermal growth factor increases clathrin-dependent endocytosis and degradation of claudin-2 protein in MDCK II cells. J Cell Physiol 2011; 226:2448-56. [PMID: 21660968 DOI: 10.1002/jcp.22590] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epidermal growth factor (EGF) decreases the mRNA and protein levels of claudin-2 (CLDN2) in Madin-Darby canine kidney (MDCK) II cells. Here we examined whether EGF affects the stability and intracellular distribution of CLDN2 protein. EGF decreased surface and total levels of CLDN2, which was inhibited by U0126, a MEK inhibitor. CLDN2 was co-localized at the tight junctions (TJs) with ZO-1, a scaffolding protein. The fluorescence signal for CLDN2 disappeared on treatment with EGF, which was inhibited by U0126. EGF accelerated the decrease in CLDN2 in the presence of cycloheximide, a translation inhibitor, indicating that EGF reduces the stability of the protein. Chloroquine, a lysosomal protease inhibitor, blocked the EGF-induced decrease in CLDN2 protein and caused the co-localization of CLDN2 with Lamp-1, a marker of lysosome. Monodancylcadaverine, an inhibitor of endocytosis, and clathrin siRNA blocked the EGF-induced decrease in CLDN2 and the translocation of CLDN2 from the TJs to the lysosome. EGF increased the association of CLDN2 with clathrin and adaptin α which was inhibited by U0126. These results suggest that EGF accelerates clathrin-dependent endocytosis and lysosomal degradation of CLDN2 protein mediated by the activation of a MEK/ERK pathway.
Collapse
Affiliation(s)
- Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | |
Collapse
|
20
|
Ikari A, Takiguchi A, Atomi K, Sato T, Sugatani J. Decrease in claudin-2 expression enhances cell migration in renal epithelial Madin-Darby canine kidney cells. J Cell Physiol 2011; 226:1471-8. [PMID: 20717932 DOI: 10.1002/jcp.22386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Migration of renal epithelial cells increases after renal tubular damage, but its mechanism has not been clarified in detail. Hyperosmotic stress increased a cellular injury concomitant with a decrease in mRNA and protein expression of claudin-2 in renal tubular epithelial Madin-Darby canine kidney cells. We hypothesized that claudin-2 is involved in the regulation of cell migration. To knockdown claudin-2 expression, we made the cells expressing doxycycline-inducible claudin-2 shRNA vector. Claudin-2 knockdown affected neither the endogenous expression levels of claudin-1, -3, -4, and -7 nor the Triton X-100 solubility of these claudins. Transepithelial electrical resistance was increased by claudin-2 knockdown without affecting permeability to FITC-dextran (4,000 Da). BrdU incorporation assay and cell counting revealed that cell proliferation and viability are unaffected by claudin-2 knockdown. In the wound-healing assay, the recovery rate of wound area was increased by claudin-2 knockdown. The mRNA expression and activity of matrix metalloproteinase-9 (MMP-9) were increased by claudin-2 knockdown. A selective MMP-9 inhibitor suppressed cell migration in the claudin-2 knockdown cells. Hyperosmotic stress increased the expression and activity of MMP-9, which were inhibited by claudin-2 overexpression. These results suggest that the decrease in claudin-2 expression enhances cell migration mediated by the increase in the expression and activity of MMP-9.
Collapse
Affiliation(s)
- Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
21
|
Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene 2011; 30:3234-47. [PMID: 21383692 PMCID: PMC3591522 DOI: 10.1038/onc.2011.43] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Claudin-2 is a unique member of the claudin family of transmembrane proteins as its expression is restricted to the leaky epithelium in vivo and correlates with epithelial leakiness in vitro. However, recent evidence suggests potential functions of claudin-2 that are relevant to neoplastic transformation and growth. In accordance here we report, based upon analysis of mRNA and protein expression using a total of 309 patient samples, that claudin-2 expression is significantly increased in colorectal cancer and correlates with cancer progression. We also report similar increases in claudin-2 expression in inflammatory bowel disease (IBD)-associated colorectal cancer. Most importantly, we demonstrate that the increased claudin-2 expression in colorectal cancer is causally associated with tumor growth as forced claudin-2 expression in colon cancer cells that do not express claudin-2 resulted in significant increases in cell proliferation, anchorage-independent growth, and tumor growth in vivo. We further show that the colonic microenvironment regulates claudin-2 expression in a manner dependent on signaling through the EGF receptor (EGFR), a key regulator of colon tumorigenesis. In addition, claudin-2 expression is specifically decreased in the colon of waved-2 mice, naturally deficient in EGFR activation. Furthermore, genetic silencing of claudin-2 expression in Caco-2 , a colon cancer cell line, prevents the EGF-induced increase in cell proliferation. Taken together, these results uncover a novel role for claudin-2 in promoting colon cancer, potentially via EGFR transactivation.
Collapse
|
22
|
Abstract
Ouabain, a toxic of vegetal origin used for centuries to treat heart failure, has recently been demonstrated to have an endogenous counterpart, most probably ouabain itself, which behaves as a hormone. Therefore, the challenge now is to discover the physiological role of hormone ouabain. We have recently shown that it modulates cell contacts such as gap junctions, which communicate neighboring cells, as well as tight junctions (TJs), which are one of the two differentiated features of epithelial cells, the other being apical/basolateral polarity. The importance of cell contacts can be hardly overestimated, since the most complex object in the universe, the brain, assembles itself depending on what cells contacts what other(s) how, when, and how is the molecular composition and special arrangement of the contacts involved. In the present chapter, we detail the protocols used to demonstrate the effect of ouabain on the molecular structure and functional properties of one of those cell-cell contacts: the TJ.
Collapse
|
23
|
Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1301-13. [PMID: 20959142 DOI: 10.1016/j.bbadis.2010.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 02/07/2023]
Abstract
Members of the epidermal growth factor (EGF) family bind to ErbB (EGFR) family receptors which play an important role in the regulation of various fundamental cell processes including cell proliferation and differentiation. The normal rodent kidney has been shown to express at least three members of the ErbB receptor family and is a major site of EGF ligand synthesis. Polycystic kidney disease (PKD) is a group of diseases caused by mutations in single genes and is characterized by enlarged kidneys due to the formation of multiple cysts in both kidneys. Tubule cells proliferate, causing segmental dilation, in association with the abnormal deposition of several proteins. One of the first abnormalities described in cell biological studies of PKD pathogenesis was the abnormal mislocalization of the EGFR in cyst lining epithelial cells. The kidney collecting duct (CD) is predominantly an absorptive epithelium where electrogenic Na(+) entry is mediated by the epithelial Na(+) channel (ENaC). ENaC-mediated sodium absorption represents an important ion transport pathway in the CD that might be involved in the development of PKD. A role for EGF in the regulation of ENaC-mediated sodium absorption has been proposed. However, several investigations have reported contradictory results indicating opposite effects of EGF and its related factors on ENaC activity and sodium transport. Recent advances in understanding how proteins in the EGF family regulate the proliferation and sodium transport in normal and PKD epithelial cells are discussed here. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
24
|
Kreft ME, Hudoklin S, Jezernik K, Romih R. Formation and maintenance of blood-urine barrier in urothelium. PROTOPLASMA 2010; 246:3-14. [PMID: 20521071 DOI: 10.1007/s00709-010-0112-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/15/2010] [Indexed: 05/29/2023]
Abstract
Blood-urine barrier, which is formed during differentiation of superficial urothelial cells, is the tightest and most impermeable barrier in the body. In the urinary bladder, the barrier must accommodate large changes in the surface area during distensions and contractions of the organ. Tight junctions and unique apical plasma membrane of superficial urothelial cells play a critical role in the barrier maintenance. Alterations in the blood-urine barrier function accompany most of the urinary tract diseases. In this review, we discuss recent discoveries on the role of tight junctions, dynamics of Golgi apparatus and post-Golgi compartments, and intracellular membrane traffic during the biogenesis and maintenance of blood-urine barrier.
Collapse
Affiliation(s)
- Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Lipiceva 2, SI-1000, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
25
|
McCrea PD, Gu D, Balda MS. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb Perspect Biol 2010; 1:a002923. [PMID: 20066098 DOI: 10.1101/cshperspect.a002923] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-cell junctions continue to capture the interest of cell and developmental biologists, with an emerging area being the molecular means by which junctional signals relate to gene activity in the nucleus. Although complexities often arise in determining the direct versus indirect nature of such signal transduction, it is clear that such pathways are essential for the function of tissues and that alterations may contribute to many pathological outcomes. This review assesses a variety of cell-cell junction-to-nuclear signaling pathways, and outlines interesting areas for further study.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Program in Genes and Development, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
26
|
Poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) micelles for brain-targeting drug delivery: in vitro and in vivo valuation. Pharm Res 2010; 27:2657-69. [PMID: 20848303 DOI: 10.1007/s11095-010-0265-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/30/2010] [Indexed: 12/15/2022]
Abstract
PURPOSE The purpose of this work was to investigate the potential of poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) (PCL-PEEP) micelles for brain-targeting drug delivery. METHOD The coumarin-6-loaded PCL-PEEP micelles (CMs) were prepared and characterized. The cellular uptake of CMs was evaluated on in vitro model of brain-blood barrier (BBB), and the brain biodistribution of CMs in ICR mice was investigated. RESULTS PCL-PEEP could self-assemble into 20 nm micelles in water with the critical micelle concentration (CMC) 0.51 μg/ml and high coumarin-6 encapsulation efficiency (92.5 ± 0.7%), and the micelles were stable in 10% FBS with less than 25% leakage of incorporated coumarin-6 during 24 h incubation at 37°C. The cellular uptake of CMs by BBB model was significantly higher and more efficient than coumarin-6 solution (CS) at 50 ng/ml. Compared with CS, 2.6-fold of coumarin-6 was found in the brains of CM-treated mice, and C(max) of CMs was 4.74% of injected dose/g brain. The qualitative investigation on the brain distribution of CMs indicated that CMs were prone to accumulate in hippocampus and striatum. CONCLUSION These results suggest that PCL-PEEP micelles could be a promising brain-targeting drug delivery system with low toxicity.
Collapse
|
27
|
Juuti-Uusitalo K, Lindfors K, Mäki M, Patrikainen M, Isola J, Kaukinen K. Inhibition of epithelial growth factor receptor signalling does not preserve epithelial barrier function after in vitro gliadin insult. Scand J Gastroenterol 2010; 44:820-5. [PMID: 19370450 DOI: 10.1080/00365520902898119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In coeliac disease, small-bowel mucosal permeability is increased in response to gluten consumption. However, the signalling routes leading to such a barrier defect remain obscure. As the epidermal growth factor receptor (EGFR) pathway is up-regulated in untreated coeliac disease, and since this cascade has been related to epithelial hyperpermeability, the aim of this study was to establish whether blocking the EGFR route would restore the barrier after gliadin insult in vitro. MATERIAL AND METHODS Epithelial barrier function was assessed by measuring transepithelial electrical resistance (TER) in Caco-2 epithelial monolayers treated with pepsin trypsin (PT)-digested gliadin with or without monoclonal antibodies against EGFR family members or by inhibitors of the EGFR pathway signalling molecules. Furthermore, tight-junctional integrity was determined by Western blotting and immunofluorescence staining of the tight-junctional protein occludin. RESULTS PT-gliadin significantly reduced TER and the expression of occludin protein. Blocking of the EGFR signalling pathway could not prevent gliadin-triggered damage. In fact, a function-blocking monoclonal antibody against EGFR (ErbB1) actually potentiated the harmful effects of gliadin on TER. CONCLUSIONS The epithelial barrier-disrupting properties of gliadin are independent of the EGFR signalling cascade. However, our results suggest that activation of the EGFR pathway might actually be protective against gliadin-triggered hyperpermeability. Further studies are needed to elucidate the specific gliadin-triggered signalling cascades which lead to increased epithelial permeability in coeliac disease.
Collapse
|
28
|
González-Mariscal L, Garay E, Quirós M. Regulation of Claudins by Posttranslational Modifications and Cell-Signaling Cascades. CURRENT TOPICS IN MEMBRANES 2010. [DOI: 10.1016/s1063-5823(10)65006-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Flores-Benitez D, Rincon-Heredia R, Razgado LF, Larre I, Cereijido M, Contreras RG. Control of tight junctional sealing: roles of epidermal growth factor and prostaglandin E2. Am J Physiol Cell Physiol 2009; 297:C611-20. [PMID: 19570890 DOI: 10.1152/ajpcell.00622.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelia can adjust the permeability of the paracellular permeation route by regulating the degree of sealing of the tight junction. This is reflected by a transepithelial electrical resistance (TER) ranging from a few tenths to several thousand ohms times square centimeters, depending on the difference in composition between the fluid in the lumen and the interstitial fluid. Although teleologically sound, such correlation requires a physiological explanation. We have previously shown that urine extracts from different animal species increase the TER of Madin-Darby canine kidney (MDCK) monolayers and that these effects are mediated by epidermal growth factor (EGF) contained in the flowing intratubular fluid that eventually reaches the urine. This increase in TER is accompanied by an enhanced expression of claudin-4 (cln-4) and a decrement of cln-2. These changes are transient, peaking at approximately 16 h and returning to control values in approximately 24 h. In the present work we investigated how EGF provokes this transient response, and we found that the activation of extracellular-regulated kinases 1/2 (ERK1/2) by EGF is essential to increase TER and cln-4 content, but it does not appear to participate in cln-2 downregulation. On the other hand, prostaglandin synthesis, stimulated by EGF, functions as a negative feedback, turning off the signal initiated by EGF. Thus, PGE(2) blocks ERK1/2 by a mechanism that involves the G alpha(s) protein, adenylyl cyclase as well as protein kinase A in MDCK cells. In summary, the permeability of a given segment of the nephron depends on the expression of different claudin types, which may be modulated by EGF and prostaglandins.
Collapse
Affiliation(s)
- D Flores-Benitez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
30
|
Peter Y, Comellas A, Levantini E, Ingenito EP, Shapiro SD. Epidermal growth factor receptor and claudin-2 participate in A549 permeability and remodeling: implications for non-small cell lung cancer tumor colonization. Mol Carcinog 2009; 48:488-97. [PMID: 18942115 DOI: 10.1002/mc.20485] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tumor colonization involves changes in cell permeability and remodeling. Paracellular permeability is regulated by claudins, integrated tight junction (TJ) proteins, located on the apicolateral portion of epithelial cells. Epidermal growth factor (EGF) was reported to modify cellular claudin levels and induce remodeling. To investigate a role for EGF receptor (EGFR) activation in tumor colonization we studied the effect of EGF and claudin-2 overexpression on permeability and cell reorganization in the human A549 non-small cell lung cancer (NSCLC) cell line. Our data demonstrated that A549 cells possess functional TJs and that EGF treatment increased levels of claudin-2 expression by 46%. Furthermore, EGFR signaling reduced monolayer permeability to choline and triggered cellular remodeling. The mitogen-activated protein kinase inhibitor PD98059 blocked the effect on A549 permeability and remodeling. EGF stimulation also exacerbated a fourfold increase in cell colonization elicited by claudin-2 upregulation. Our findings are consistent with the hypothesis that EGFR signaling plays an important role in A549 cell physiology and acts synergistically with claudin-2 to accelerate tumor colonization. Understanding the influence of EGF on A549 cell permeability and reorganization will help shed light on NSCLC tumor colonization and contribute to the development of novel anti-cancer treatments.
Collapse
Affiliation(s)
- Yakov Peter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
31
|
Ikari A, Atomi K, Takiguchi A, Yamazaki Y, Miwa M, Sugatani J. Epidermal growth factor increases claudin-4 expression mediated by Sp1 elevation in MDCK cells. Biochem Biophys Res Commun 2009; 384:306-10. [PMID: 19409881 DOI: 10.1016/j.bbrc.2009.04.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 11/26/2022]
Abstract
Epidermal growth factor (EGF) increases claudin-4 expression in Madin-Darby canine kidney (MDCK) cells. Here we examined what regulatory mechanisms are involved in the EGF-induced claudin-4 elevation. EGF transiently increased claudin-4 mRNA at 3h and persistently increased its protein for 24h without affecting claudin-1 expression. EGF increased p-ERK1/2 levels, which were inhibited by U0126, a MEK inhibitor. The exogenous expression of constitutively activated MEK increased claudin-4 expression. These results indicate that the activation of ERK1/2 is involved in the EGF-induced claudin-4 elevation. EGF increased Sp1 expression within 1h, which was inhibited by U0126. In immunocytochemistry, Sp1 was distributed in nucleus in control and the EGF-treated cells. The EGF-induced claudin-4 elevation was inhibited by mithramycin, a Sp1 inhibitor, and Sp1 small interfering RNA. We suggest that EGF activates a MEK/ERK pathway and increases Sp1 expression, resulting in an elevation of claudin-4 expression.
Collapse
Affiliation(s)
- Akira Ikari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Lanigan F, McKiernan E, Brennan DJ, Hegarty S, Millikan RC, McBryan J, Jirstrom K, Landberg G, Martin F, Duffy MJ, Gallagher WM. Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 2009; 124:2088-97. [PMID: 19142967 DOI: 10.1002/ijc.24159] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of intercellular tight junctions in breast epithelial cells is traditionally thought to be in maintaining polarity and barrier function. However, claudin-4, a tight junction protein, is overexpressed in breast tumour cells compared to normal epithelial cells, which generally corresponds to a loss in polarity. The aim of this study was to investigate the distribution and potential clinical value of claudin-4 in breast cancer, and to evaluate its usefulness as a prognostic and predictive biomarker. Expression of claudin-4 was initially examined by Western blot analysis in a cohort of 88 breast tumours, and was found to correlate positively with tumour grade and negatively with ER. Claudin-4 expression was then evaluated by immunohistochemistry in a larger cohort of 299 tumours represented on a tissue microarray. Claudin-4 expression correlated positively with tumour grade and Her2, and negatively with ER. High claudin-4 expression was also associated with worse breast cancer-specific survival (p = 0.003), recurrence-free survival (p = 0.025) and overall survival (p = 0.034). Multivariate analysis revealed that claudin-4 independently predicted survival in the entire cohort (HR 1.95; 95%CI 1.01-3.79; p = 0.047) and in the ER positive subgroup treated with adjuvant tamoxifen (HR 4.34; 95%CI 1.14-16.53; p = 0.032). This relationship between increased claudin-4 expression and adverse outcome was validated at the mRNA level in a DNA microarray dataset of 295 breast tumours. We conclude that high levels of claudin-4 protein are associated with adverse outcome in breast cancer patients, including the subgroup of patients treated with adjuvant tamoxifen.
Collapse
Affiliation(s)
- Fiona Lanigan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gu L, Li N, Li Q, Zhang Q, Wang C, Zhu W, Li J. The effect of berberine in vitro on tight junctions in human Caco-2 intestinal epithelial cells. Fitoterapia 2009; 80:241-8. [PMID: 19243699 DOI: 10.1016/j.fitote.2009.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/11/2022]
Abstract
Berberine is one of the main alkaloids of Rhizoma coptidis which has been used for patients with gastrointestinal disorders. The major aim of this study was to investigate the effect of berberine on tight junction. Caco-2 cells were treated with various concentration of berberine. We observed the integrity of tight junction by measuring the transepithelial electrical resistance (TEER), and also studied the effect of berberine on morphology of tight junction and tight junction protein. These findings showed the first time that berberine could reduce epithelial gut permeability, and might help explain the possible mechanisms of anti-diarrhea activity of berberine.
Collapse
Affiliation(s)
- Lili Gu
- Research Institute of General Surgery, Nanjing JingLing Hospital, Second Military Medical University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Zeng F, Singh AB, Harris RC. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 2008; 315:602-10. [PMID: 18761338 DOI: 10.1016/j.yexcr.2008.08.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 08/11/2008] [Indexed: 11/17/2022]
Abstract
Mammalian kidney expresses all of the members of the ErbB family of receptors and their respective ligands. Studies support a role for ErbB family receptor activation in kidney development and differentiation. Under physiologic conditions, EGFR activation appears to play an important role in the regulation of renal hemodynamics and electrolyte handling by the kidney, while in different pathophysiologic states, EGFR activation may mediate either beneficial or detrimental effects to the kidney. This article provides an overview of the expression profile of the ErbB family of ligands and receptors in the mammalian kidney and summarizes known physiological and pathophysiological roles of EGFR activation in the organ.
Collapse
Affiliation(s)
- Fenghua Zeng
- Department of Medicine, C-3121 Medical Center North, Vanderbilt University, Nashville, Tennessee 37232-4794, USA
| | | | | |
Collapse
|
35
|
Johnson PH, Frank D, Costantino HR. Discovery of tight junction modulators: significance for drug development and delivery. Drug Discov Today 2008; 13:261-7. [DOI: 10.1016/j.drudis.2007.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/25/2007] [Accepted: 10/29/2007] [Indexed: 11/28/2022]
|
36
|
Lechner J, Malloth NA, Jennings P, Heckl D, Pfaller W, Seppi T. Opposing roles of EGF in IFN-α-induced epithelial barrier destabilization and tissue repair. Am J Physiol Cell Physiol 2007; 293:C1843-50. [PMID: 17913840 DOI: 10.1152/ajpcell.00370.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Balance between damaging influences and repair mechanisms determines the degree of tissue deterioration by inflammatory and other injury processes. Destabilization of the proximal tubular barrier has been previously shown to be induced by IFN-α, a cytokine crucial for linking innate and adaptive immune responses. EGF was implicated in rescue mechanisms from renal injury. To study the interplay between the two processes, we determined if EGF can prevent IFN-α-induced barrier permeabilization. EGF did not counteract but even exacerbated the IFN-α-induced decrease of transepithelial electrical resistance in LLC-PK1 monolayers. For this effect Erk1/2 activation was necessary, linking barrier regulation to EGF-induced cell cycle progression. In contrast to its damage-intensifying effect, EGF also facilitated the regeneration of epithelial barrier function after the termination of IFN-α treatment. This effect was not mediated by Erk1/2 activation or cell proliferation since U0126, an Erk1/2 inhibitor, did not prevent but ameliorated recovery. However, EGF accelerated the downregulation of caspase-3 in recovering cells. Similarly, a pan-caspase inhibitor was able to block caspase activity and, concomitantly, promote restoration of barrier function. Thus, barrier repair might be linked to an EGF-mediated antiapoptotic mechanism. EGF appears to sensitize epithelial cells to the detrimental effects of IFN-α but also helps to restore barrier function in the healing phase. The observed dual effect of EGF might be explained by the different impact of proproliferative and antiapoptotic signaling pathways during and after cytokine treatment. The timing of epithelial exposure to damaging agents and repair factors was identified as a crucial parameter determining tissue fate.
Collapse
Affiliation(s)
- Judith Lechner
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Fritz-Pregl-Strasse 3, Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
37
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
38
|
Singh AB, Sugimoto K, Dhawan P, Harris RC. Juxtacrine activation of EGFR regulates claudin expression and increases transepithelial resistance. Am J Physiol Cell Physiol 2007; 293:C1660-8. [PMID: 17855771 DOI: 10.1152/ajpcell.00274.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heparin-binding (HB)-EGF, a ligand for EGF receptors, is synthesized as a membrane-anchored precursor that is potentially capable of juxtacrine activation of EGF receptors. However, the physiological importance of such juxtacrine signaling remains poorly described, due to frequent inability to distinguish effects mediated by membrane-anchored HB-EGF vs. mature "secreted HB-EGF." In our studies, using stable expression of a noncleavable, membrane-anchored rat HB-EGF isoform (MDCK(rat5aa) cells) in Madin-Darby canine kidney (MDCK) II cells, we observed a significant increase in transepithelial resistance (TER). Similar significant increases in TER were observed on stable expression of an analogous, noncleavable, membrane-anchored human HB-EGF construct (MDCK(human5aa) cells). The presence of noncleavable, membrane-anchored HB-EGF led to alterations in the expression of selected claudin family members, including a marked decrease in claudin-2 in MDCK(rat5aa) cells compared with the control MDCK cells. Reexpression of claudin-2 in MDCK(rat5aa) cells largely prevented the increases in TER. Ion substitution studies indicated decreased paracellular ionic permeability of Na(+) in MDCK(rat5aa) cells, further indicating that the altered claudin-2 expression mediated the increased TER seen in these cells. In a Ca(2+)-switch model, increased phosphorylation of EGF receptor and Akt was observed in MDCK(rat5aa) cells compared with the control MDCK cells, and inhibition of these pathways inhibited TER changes specifically in MDCK(rat5aa) cells. Therefore, we hypothesize that juxtacrine activation of EGFR by membrane-anchored HB-EGF may play an important role in the regulation of tight junction proteins and TER.
Collapse
Affiliation(s)
- Amar B Singh
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-4794, USA.
| | | | | | | |
Collapse
|
39
|
Tétreault MP, Chailler P, Beaulieu JF, Rivard N, Ménard D. Epidermal growth factor receptor-dependent PI3K-activation promotes restitution of wounded human gastric epithelial monolayers. J Cell Physiol 2007; 214:545-57. [PMID: 17708540 DOI: 10.1002/jcp.21239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Restitution is a crucial event during the healing of superficial injury of the gastric mucosa involving epithelial cell sheet movement into the damaged area. We demonstrated that growth factors promote the restitution of human gastric epithelial cells. However, the intracellular signaling pathways that transmit extracellular cues as well as regulate basal and growth factor-stimulated gastric epithelial cell migration are still unclear. Herein, confluent human gastric epithelial cell monolayers (HGE-17) or primary cultures of gastric epithelial cells were wounded with a razor blade and the migration response was analyzed in presence or absence of TGFalpha or of pharmacological inhibitors of signaling proteins. Kinase activation profile analysis and phase-contrast microscopy were also performed in parallel. We report that ERK1/2 and Akt activities are rapidly stimulated following wounding of HGE-17 cells. Treatment of confluent HGE-17 cells or primary cultures of gastric epithelial cells with the phosphatidylinositol 3-kinase inhibitor LY294002, but not the MEK1 inhibitor, PD98059, significantly inhibits basal and TGFalpha-induced migration following wounding. Conversely, treatment of wounded HGE-17 cells with phosphatidylinositol(3,4,5)-triphosphate is sufficient to stimulate basal cell migration by 235%. In addition, pp60c-src kinase activity and tyrosine phosphorylation of epidermal growth factor receptors (EGFR) are also rapidly enhanced after wounding and pharmacological inhibition of both these activities strongly attenuates basal and TGFalpha-induced migration as well as Akt phosphorylation levels. In conclusion, the present results indicate that EGFR-dependent PI3K activation promotes restitution of wounded human gastric epithelial monolayers.
Collapse
Affiliation(s)
- Marie-Pier Tétreault
- Department of Anatomy and Cellular Biology, CIHR Team on Digestive Epithelium, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke (Québec), Canada
| | | | | | | | | |
Collapse
|