1
|
Mukherjee S, Bhaduri S, Harwood R, Murray P, Wilm B, Bearon R, Poptani H. Multiparametric MRI based assessment of kidney injury in a mouse model of ischemia reperfusion injury. Sci Rep 2024; 14:19922. [PMID: 39198525 PMCID: PMC11358484 DOI: 10.1038/s41598-024-70401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Kidney diseases pose a global healthcare burden, with millions requiring renal replacement therapy. Ischemia/reperfusion injury (IRI) is a common pathology of acute kidney injury, causing hypoxia and subsequent inflammation-induced kidney damage. Accurate detection of acute kidney injury due to IRI is crucial for timely intervention. We used longitudinal, multi-parametric magnetic resonance imaging (MRI) employing arterial spin labelling (ASL), diffusion weighted imaging (DWI), and dynamic contrast enhanced (DCE)-MRI to assess IRI induced changes in both the injured and healthy contralateral kidney, in a unilateral IRI mouse model (n = 9). Multi-parametric MRI demonstrated significant differences in kidney volume (p = 0.001), blood flow (p = 0.002), filtration coefficient (p = 0.038), glomerular filtration rate (p = 0.005) and apparent diffusion coefficient (p = 0.048) between the injured kidney and contralateral kidney on day 1 post-IRI surgery. Identification of the injured kidney using principal component analysis including most of the imaging parameters demonstrated an area under the curve (AUC) of 0.97. These results point to the utility of multi-parametric MRI in early detection of IRI-induced kidney damage suggesting that the combination of various MRI parameters may be suitable for monitoring the extent of injury in this model.
Collapse
Affiliation(s)
- Soham Mukherjee
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Sourav Bhaduri
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
| | - Rachel Harwood
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Patricia Murray
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rachel Bearon
- Department of Mathematical Science, University of Liverpool, Liverpool, UK
- Department of Mathematics, Kings College, London, UK
| | - Harish Poptani
- Centre for Pre-Clinical Imaging, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK.
| |
Collapse
|
2
|
Selby NM, Francis ST. Assessment of Acute Kidney Injury using MRI. J Magn Reson Imaging 2024. [PMID: 38334370 DOI: 10.1002/jmri.29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
There has been growing interest in using quantitative magnetic resonance imaging (MRI) to describe and understand the pathophysiology of acute kidney injury (AKI). The ability to assess kidney blood flow, perfusion, oxygenation, and changes in tissue microstructure at repeated timepoints is hugely appealing, as this offers new possibilities to describe nature and severity of AKI, track the time-course to recovery or progression to chronic kidney disease (CKD), and may ultimately provide a method to noninvasively assess response to new therapies. This could have significant clinical implications considering that AKI is common (affecting more than 13 million people globally every year), harmful (associated with short and long-term morbidity and mortality), and currently lacks specific treatments. However, this is also a challenging area to study. After the kidney has been affected by an initial insult that leads to AKI, complex coexisting processes ensue, which may recover or can progress to CKD. There are various preclinical models of AKI (from which most of our current understanding derives), and these differ from each other but more importantly from clinical AKI. These aspects are fundamental to interpreting the results of the different AKI studies in which renal MRI has been used, which encompass different settings of AKI and a variety of MRI measures acquired at different timepoints. This review aims to provide a comprehensive description and interpretation of current studies (both preclinical and clinical) in which MRI has been used to assess AKI, and discuss future directions in the field. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Renal Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Greite R, Schott S, Wang L, Gohlke L, Kreimann K, Derlin K, Gutberlet M, Schmidbauer M, Leffler A, Tudorache I, Salman J, Ius F, Natanov R, Fegbeutel C, Haverich A, Lichtinghagen R, Hüsing AM, von Vietinghoff S, Schmitt R, Shushakova N, Rong S, Haller H, Schmidt‐Ott KM, Gram M, Vijayan V, Scheffner I, Gwinner W, Immenschuh S. Free heme and hemopexin in acute kidney injury after cardiopulmonary bypass and transient renal ischemia. Clin Transl Sci 2023; 16:2729-2743. [PMID: 37899696 PMCID: PMC10719480 DOI: 10.1111/cts.13667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Free heme is released from hemoproteins during hemolysis or ischemia reperfusion injury and can be pro-inflammatory. Most studies on nephrotoxicity of hemolysis-derived proteins focus on free hemoglobin (fHb) with heme as a prosthetic group. Measurement of heme in its free, non-protein bound, form is challenging and not commonly used in clinical routine diagnostics. In contrast to fHb, the role of free heme in acute kidney injury (AKI) after cardiopulmonary bypass (CPB) surgery is unknown. Using an apo-horseradish peroxidase-based assay, we identified free heme during CPB surgery as predictor of AKI in patients undergoing cardiac valve replacement (n = 37). Free heme levels during CPB surgery correlated with depletion of hemopexin (Hx), a heme scavenger-protein. In mice, the impact of high levels of circulating free heme on the development of AKI following transient renal ischemia and the therapeutic potential of Hx were investigated. C57BL/6 mice were subjected to bilateral renal ischemia/reperfusion injury for 15 min which did not cause AKI. However, additional administration of free heme in this model promoted overt AKI with reduced renal function, increased renal inflammation, and reduced renal perfusion on functional magnetic resonance imaging. Hx treatment attenuated AKI. Free heme administration to sham operated control mice did not cause AKI. In conclusion, free heme is a predictor of AKI in CPB surgery patients and promotes AKI in transient renal ischemia. Depletion of Hx in CPB surgery patients and attenuation of AKI by Hx in the in vivo model encourage further research on Hx therapy in patients with increased free heme levels during CPB surgery.
Collapse
Affiliation(s)
- Robert Greite
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Sebastian Schott
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Li Wang
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Lukas Gohlke
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Kirill Kreimann
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Katja Derlin
- Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
| | - Martina Schmidbauer
- Institute for Diagnostic and Interventional RadiologyHannover Medical SchoolHannoverGermany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care MedicineHannover Medical SchoolHannoverGermany
| | - Igor Tudorache
- Department of Cardiac SurgeryUniversity Hospital DusseldorfDusseldorfGermany
| | - Jawad Salman
- Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
| | - Ruslan Natanov
- Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
| | - Christine Fegbeutel
- Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
| | | | - Anne M. Hüsing
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Sibylle von Vietinghoff
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
- Nephrology Section, Medical Clinic 1University Hospital BonnBonnGermany
| | - Roland Schmitt
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Nelli Shushakova
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Song Rong
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Hermann Haller
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Kai M. Schmidt‐Ott
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Magnus Gram
- Pediatrics, Department of Clinical Sciences LundSkane University Hospital, Lund UniversityLundSweden
| | - Vijith Vijayan
- Institute for Transfusion Medicine and Transplant EngineeringHannover Medical SchoolHannoverGermany
- Division of Critical Care Medicine, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Irina Scheffner
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Wilfried Gwinner
- Department of Nephrology and HypertensionHannover Medical SchoolHannoverGermany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine and Transplant EngineeringHannover Medical SchoolHannoverGermany
| |
Collapse
|
4
|
Anaeigoudari F, Anaeigoudari A, Kheirkhah‐Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11:e15785. [PMID: 37537722 PMCID: PMC10400758 DOI: 10.14814/phy2.15785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Application of herbal medicines in the treatment of diseases is in the center of attention of medical scientific societies. Saffron (Cricus sativus L.) is a medicinal plant belonging to the Iridaceae family with different therapeutic properties. The outcomes of human and animal experiments indicate that therapeutic impacts of saffron and its constituents, crocin, crocetin, and safranal, mainly are mediated via inhibiting the inflammatory reactions and scavenging free radicals. It has been suggested that saffron and crocin extracted from it also up-regulate the expression of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2), down-regulate nuclear factor kappa B (NF-κB) signaling pathway and untimely improve the body organs dysfunction. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 (COX2) also is attributed to crocin. The current review narrates the therapeutic effects of saffron and its constituents on various body systems through looking for the scientific databases including Web of Science, PubMed, Scopus, and Google Scholar from the beginning of 2010 until the end of 2022.
Collapse
Affiliation(s)
- Fatemeh Anaeigoudari
- Student Research Committee, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | | |
Collapse
|
5
|
Luo MN, Yin Y, Li S, Hao J, Yao C, Xu YZ, Liu HF, Yang L. Podocytes are likely the therapeutic target of IgA nephropathy with isolated hematuria: Evidence from repeat renal biopsy. Front Pharmacol 2023; 14:1148553. [PMID: 37089927 PMCID: PMC10119397 DOI: 10.3389/fphar.2023.1148553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Background: The present study aimed to prove the progression of immunoglobulin A nephropathy (IgAN) patients with isolated hematuria based on repeat renal biopsy data for the first time. Methods: 29 IgAN patients with isolated hematuria who received repeat renal biopsies were analyzed retrospectively, while 29 non-isolated hematuria IgAN patients with similar age and background were randomly selected as the control group. Clinical parameters were collected at the time of biopsy. The treatment strategies (conservative treatment with RASS blocker or immunosuppressive treatment) were choosen according to the pathological results at the first renal biopsy. The activity and chronicity indexes of renal lesions were evaluated. Markers of cell inflammation and proliferation were tseted by immunochemistry. The ultrastructure of podocytes was observed by transmission electron microscopy (TEM). Podocyte and oxidative stress marker (NPHS2 and 4-HNE) were detected by immunofluorescence. Results: The IgAN patients with isolated hematuria had better clinical indicators than those with no-isolated hematuria, such as better renal function, higher albumin and lower uric acid. The interval between two biopsies in IgAN patients with isolated hematuria was 630 (interquartile range, 409.5-1,171) days. The hematuria of the patients decreased significantly from 30 (IQR, 4.00-35.00) RBC/ul in the first biopsy to 11 (IQR, 2.50-30.00) RBC/ul in the repeated biopsy (p < 0.05). The level of triglyceride decreased significantly (p < 0.05). The other clinical indicators were not statistically significant (p > 0.05). Deposits of IgA and C3 in the glomerulus were persistent. The activity index decreased, especially cellular crescent formation, while the chronicity index increased. The ultrastructure of podocytes was improved after treatment. The oxidative stress products of podocytes reduced after treatment. Conclusion: Although the clinical indicators of the IgAN patients with isolated hematuria were in the normal range, various acute and chronic pathological changes have occurred, and irreversible chronic changes have been progressing. Cell inflammation and proliferation persisted. Oxidative stress of podocytes was likely to be the therapeutic target. This study provided a strong basis for the progress of IgAN with isolated hematuria through pathological changes before and after treatment. This study will help clinicians recognize the harm of hematuria, change the traditional treatment concept, and help such patients get early treatment.
Collapse
Affiliation(s)
- Mian-Na Luo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanqing Yin
- Department of the First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Shangmei Li
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junfeng Hao
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cuiwei Yao
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yong-Zhi Xu
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Yong-Zhi Xu, ; Lawei Yang,
| | - Hua-feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Yong-Zhi Xu, ; Lawei Yang,
| |
Collapse
|
6
|
Dominguez JH, Xie D, Dominguez JM, Kelly KJ. Role of coagulation in persistent renal ischemia following reperfusion in an animal model. Am J Physiol Renal Physiol 2022; 323:F590-F601. [PMID: 36007891 PMCID: PMC9602917 DOI: 10.1152/ajprenal.00162.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic acute kidney injury is common, deadly, and accelerates the progression of chronic kidney disease, yet has no specific therapy. After ischemia, reperfusion is patchy with early and persistent impairment in regional renal blood flow and cellular injury. We tested the hypothesis that intrarenal coagulation results in sustained renal ischemia following reperfusion, using a well-characterized model. Markedly decreased, but heterogeneous, microvascular plasma flow with microthrombi was found postischemia by intravital microscopy. Widespread tissue factor expression and fibrin deposition were also apparent. Clotting was accompanied by complement activation and inflammation. Treatment with exosomes derived from renal tubular cells or with the fibrinolytic urokinase, given 24 h postischemia when renal failure was established, significantly improved microvascular flow, coagulation, serum creatinine, and histological evidence of injury. These data support the hypothesis that intrarenal clotting occurs early and the resultant sustained ischemia is a critical determinant of renal failure following ischemia; they demonstrate that the coagulation abnormalities are amenable to therapy and that therapy results in improvement in both function and postischemic inflammation.NEW & NOTEWORTHY Ischemic renal injury carries very high morbidity and mortality, yet has no specific therapy. We found markedly decreased, heterogeneous microvascular plasma flow, tissue factor induction, fibrin deposition, and microthrombi after renal ischemia-reperfusion using a well-characterized model. Renal exosomes or the fibrinolytic urokinase, administered after renal failure was established, improved microvascular flow, coagulation, renal function, and histology. Data demonstrate that intrarenal clotting results in sustained ischemia amenable to therapy that improves both function and postischemic inflammation.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| | - Danhui Xie
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K. J. Kelly
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| |
Collapse
|
7
|
Greite R, Wang L, Gohlke L, Schott S, Kreimann K, Doricic J, Leffler A, Tudorache I, Salman J, Natanov R, Ius F, Fegbeutel C, Haverich A, Lichtinghagen R, Chen R, Rong S, Haller H, Vijayan V, Gram M, Scheffner I, Gueler F, Gwinner W, Immenschuh S. Cell-Free Hemoglobin in Acute Kidney Injury after Lung Transplantation and Experimental Renal Ischemia/Reperfusion. Int J Mol Sci 2022; 23:ijms232113272. [PMID: 36362059 PMCID: PMC9657083 DOI: 10.3390/ijms232113272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20) with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h. Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury, and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion, CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to prevent AKI after LuTx.
Collapse
Affiliation(s)
- Robert Greite
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
- Correspondence:
| | - Li Wang
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Lukas Gohlke
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian Schott
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Kirill Kreimann
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Julian Doricic
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Leffler
- Anaesthesiology, Hannover Medical School, 30625 Hannover, Germany
| | - Igor Tudorache
- Cardiac Surgery, University of Dusseldorf, 40225 Dusseldorf, Germany
| | - Jawad Salman
- Cardiac Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Ruslan Natanov
- Cardiac Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Fabio Ius
- Cardiac Surgery, Hannover Medical School, 30625 Hannover, Germany
- German Center for Lung Research (DZL), 35392 Giessen, Germany
| | | | - Axel Haverich
- Cardiac Surgery, Hannover Medical School, 30625 Hannover, Germany
| | | | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Vijith Vijayan
- Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Magnus Gram
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22220 Lund, Sweden
| | - Irina Scheffner
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Wilfried Gwinner
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
8
|
Zhu Z, Hu J, Chen Z, Feng J, Yang X, Liang W, Ding G. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming. Metabolism 2022; 131:155194. [PMID: 35346693 DOI: 10.1016/j.metabol.2022.155194] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a global public health concern associated with high morbidity and mortality. Although advances in medical management have improved the in-hospital mortality of severe AKI patients, the renal prognosis for AKI patients in the later period is not encouraging. Recent epidemiological investigations have indicated that AKI significantly increases the risk for the development of chronic kidney disease (CKD) and end-stage renal disease (ESRD) in the future, further contributing to the economic burden on health care systems. The transition of AKI to CKD is complex and often involves multiple mechanisms. Recent studies have suggested that renal tubular epithelial cells (TECs) are more prone to metabolic reprogramming during AKI, in which the metabolic process in the TECs shifts from fatty acid β-oxidation (FAO) to glycolysis due to hypoxia, mitochondrial dysfunction, and disordered nutrient-sensing pathways. This change is a double-edged role. On the one hand, enhanced glycolysis acts as a compensation pathway for ATP production; on the other hand, long-term shut down of FAO and enhanced glycolysis lead to inflammation, lipid accumulation, and fibrosis, contributing to the transition of AKI to CKD. This review discusses developments and therapies focused on the metabolic reprogramming of TECs during AKI, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 430060 Wuhan, China; Nephrology and Urology Research Institute of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
9
|
A Single Oral Dose of Diclofenac Causes Transition of Experimental Subclinical Acute Kidney Injury to Chronic Kidney Disease. Biomedicines 2022; 10:biomedicines10051198. [PMID: 35625934 PMCID: PMC9138744 DOI: 10.3390/biomedicines10051198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Nephrotoxic drugs can cause acute kidney injury (AKI) and analgesic nephropathy. Diclofenac is potentially nephrotoxic and frequently prescribed for pain control. In this study, we investigated the effects of single and repetitive oral doses of diclofenac in the setting of pre-existing subclinical AKI on the further course of AKI and on long-term renal consequences. Unilateral renal ischemia–reperfusion injury (IRI) for 15 min was performed in male CD1 mice to induce subclinical AKI. Immediately after surgery, single oral doses (100 mg or 200 mg) of diclofenac were administered. In a separate experimental series, repetitive treatment with 100 mg diclofenac over three days was performed after IRI and sham surgery. Renal morphology and pro-fibrotic markers were investigated 24 h and two weeks after the single dose and three days after the repetitive dose of diclofenac treatment using histology, immunofluorescence, and qPCR. Renal function was studied in a bilateral renal IRI model. A single oral dose of 200 mg, but not 100 mg, of diclofenac after IRI aggravated acute tubular injury after 24 h and caused interstitial fibrosis and tubular atrophy two weeks later. Repetitive treatment with 100 mg diclofenac over three days aggravated renal injury and caused upregulation of the pro-fibrotic marker fibronectin in the setting of subclinical AKI, but not in sham control kidneys. In conclusion, diclofenac aggravated renal injury in pre-existing subclinical AKI in a dose and time-dependent manner and already a single dose can cause progression to chronic kidney disease (CKD) in this model.
Collapse
|
10
|
Wang CT, Tezuka T, Takeda N, Araki K, Arai S, Miyazaki T. High salt exacerbates acute kidney injury by disturbing the activation of CD5L/apoptosis inhibitor of macrophage (AIM) protein. PLoS One 2021; 16:e0260449. [PMID: 34843572 PMCID: PMC8629239 DOI: 10.1371/journal.pone.0260449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
The influence of excess salt intake on acute kidney injury (AKI) has not been examined precisely except for some clinical data, unlike in chronic kidney disease. Here, we addressed the influence of high salt (HS) on AKI and its underlying mechanisms in terms of the activity of circulating apoptosis inhibitor of macrophage (AIM, also called CD5L) protein, a facilitator of AKI repair. HS loading in mice subjected to ischemia/reperfusion (IR) resulted in high mortality with advanced renal tubular obstruction and marked exacerbation in biomarkers of proximal renal tubular damage. This AKI exacerbation appeared to be caused mainly by the reduced AIM dissociation from IgM pentamer in serum, as IgM-free AIM is indispensable for the removal of intratubular debris to facilitate AKI repair. Injection of recombinant AIM (rAIM) ameliorated the AKI induced by IR/HS, dramatically improving the tubular damage and mouse survival. The repair of lethal AKI by AIM was dependent on AIM/ kidney injury molecule-1 (KIM-1) axis, as rAIM injection was not effective in KIM-1 deficient mice. Our results demonstrate that the inhibition of AIM dissociation from IgM is an important reason for the exacerbation of AKI by HS, that AIM is a strong therapeutic tool for severe AKI.
Collapse
Affiliation(s)
- Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Tezuka
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Division of Developmental Genetics, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Division of Developmental Genetics, Kumamoto University, Kumamoto, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Azzam P, Francis M, Youssef T, Mroueh M, Daher AA, Eid AA, Fornoni A, Marples B, Zeidan YH. Crosstalk Between SMPDL3b and NADPH Oxidases Mediates Radiation-Induced Damage of Renal Podocytes. Front Med (Lausanne) 2021; 8:732528. [PMID: 34660640 PMCID: PMC8511442 DOI: 10.3389/fmed.2021.732528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Patients undergoing radiotherapy (RT) for various tumors localized in the abdomen or pelvis often suffer from radiation nephrotoxicity as collateral damage. Renal podocytes are vulnerable targets for ionizing radiation and contribute to radiation-induced nephropathies. Our prior work previously highlighted the importance of the lipid-modifying enzyme sphingomyelinase acid phosphodiesterase like 3b (SMPDL3b) in modulating the radiation response in podocytes and glomerular endothelial cells. Hereby, we investigated the interplay between SMPDL3b and oxidative stress in mediating radiation injury in podocytes. We demonstrated that the overexpression of SMPDL3b in cultured podocytes (OE) reduced superoxide anion generation and NADPH oxidase activity compared to wild-type cells (WT) post-irradiation. Furthermore, OE podocytes showed downregulated levels of NOX1 and NOX4 after RT. On the other hand, treatment with the NOX inhibitor GKT improved WTs' survival post-RT and restored SMPDL3b to basal levels. in vivo, the administration of GKT restored glomerular morphology and decreased proteinuria in 26-weeks irradiated mice. Taken together, these results suggest a novel role for NOX-derived reactive oxygen species (ROS) upstream of SMPDL3b in modulating the response of renal podocytes to radiation.
Collapse
Affiliation(s)
- Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manal Mroueh
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Youssef H Zeidan
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon.,Baptist Health, Lynn Cancer Institute, Boca Raton, FL, United States
| |
Collapse
|
12
|
Diffusion Weighted Imaging and T2 Mapping Detect Inflammatory Response in the Renal Tissue during Ischemia Induced Acute Kidney Injury in Different Mouse Strains and Predict Renal Outcome. Biomedicines 2021; 9:biomedicines9081071. [PMID: 34440275 PMCID: PMC8393575 DOI: 10.3390/biomedicines9081071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
To characterize ischemia reperfusion injury (IRI)-induced acute kidney injury (AKI) in C57BL/6 (B6) and CD1-mice by longitudinal functional MRI-measurement of edema formation (T2-mapping) and inflammation (diffusion weighted imaging (DWI)). IRI was induced with unilateral right renal pedicle clamping for 35min. 7T-MRI was performed 1 and 14 days after surgery. DWI (7 b-values) and multiecho TSE sequences (7 TE) were acquired. Parameters were quantified in relation to the contralateral kidney on day 1 (d1). Renal MCP-1 and IL-6-levels were measured by qPCR and serum-CXCL13 by ELISA. Immunohistochemistry for fibronectin and collagen-4 was performed. T2-increase on d1 was higher in the renal cortex (127 ± 5% vs. 94 ± 6%, p < 0.01) and the outer stripe of the outer medulla (141 ± 9% vs. 111 ± 9%, p < 0.05) in CD1, indicating tissue edema. Medullary diffusivity was more restricted in CD1 than B6 (d1: 73 ± 3% vs. 90 ± 2%, p < 0.01 and d14: 77 ± 5% vs. 98 ± 3%, p < 0.01). Renal MCP-1 and IL-6-expression as well as systemic CXCL13-release were pronounced in CD1 on d1 after IRI. Renal fibrosis was detected in CD1 on d14. T2-increase and ADC-reduction on d1 correlated with kidney volume loss on d14 (r = 0.7, p < 0.05; r = 0.6, p < 0.05) and could serve as predictive markers. T2-mapping and DWI evidenced higher susceptibility to ischemic AKI in CD1 compared to B6.
Collapse
|
13
|
Karimi F, Nematbakhsh M. Mas Receptor Blockade Promotes Renal Vascular Response to Ang II after Partial Kidney Ischemia/Reperfusion in a Two-Kidney-One-Clip Hypertensive Rats Model. Int J Nephrol 2021; 2021:6618061. [PMID: 33986960 PMCID: PMC8079216 DOI: 10.1155/2021/6618061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Partial kidney ischemia-reperfusion (IR) injury is the principal cause of acute kidney injury. The renin-angiotensin system (RAS) and hypertension also may be influenced by renal IR injury. In two models of partial renal IR with and without ischemia preconditioning (IPC) and using Mas receptor (MasR) blockade, A779 or its vehicle, the renal vascular responses to angiotensin II (Ang II) administration in two-kidney-one-clip (2K1C) hypertensive rats were determined. METHODS Thirty-seven 2K1C male Wistar rats with systolic blood pressure ≥150 mmHg were randomly divided into three groups; sham, IR, and IPC + IR. The animals in the sham group underwent surgical procedures except partial IR. The rats in the IR group underwent 45 min partial kidney ischemia, and the animals in the IPC + IR group underwent two 5 min cycles of partial kidney ischemia followed by 10 min reperfusion and partial kidney ischemia for 45 min. The renal vascular responses to graded Ang II (30, 100, 300, and 1000 ng kg-1.min-1) infusion using A779 or its vehicle were measured at constant renal perfusion pressure. RESULTS Four weeks after 2K1C implementation, the intravenous infusion of graded Ang II resulted in dose-related increases in mean arterial pressure (MAP) (P dose < 0.0001) that was not different significantly between the groups. No significant differences were detected between the groups in renal blood flow (RBF) or renal vascular resistance (RVR) responses to Ang II infusion when MasR was not blocked. However, by MasR blockade, these responses were increased in IR and IPC + IR groups that were significantly different from the sham group (P < 0.05). For example, infusion of Ang II at dose 1000 ng kg-1.min-1 resulted in decreased RBF percentage change (RBF%) from the baseline to 17.5 ± 1.9%, 39.7 ± 3.8%, and 31.0 ± 3.4% in sham, IR, and IPC + IR, respectively. CONCLUSION These data revealed the important role of MasR after partial kidney IR in the responses of RBF and RVR to Ang II administration in 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Farzaneh Karimi
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
| |
Collapse
|
14
|
Islam A, Kim SE, Yoon JC, Jawad A, Tian W, Yoo YJ, Kim IS, Ahn D, Park BY, Hwang Y, Lee JH, Tae HJ, Cho JH, Kim K. Protective effects of therapeutic hypothermia on renal injury in an asphyxial cardiac arrest rat model. J Therm Biol 2020; 94:102761. [PMID: 33293002 DOI: 10.1016/j.jtherbio.2020.102761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022]
Abstract
Cardiac arrest (CA) is a leading cause of mortality worldwide. Most of post-resuscitation related deaths are due to post-cardiac arrest syndrome (PCAS). After cardiopulmonary resuscitation (CPR), return of spontaneous circulation (ROSC) leads to renal ischemia-reperfusion injury, also known as PCAS. Many studies have focused on brain and heart injuries after ROSC, but renal failure has largely been ignored. Therefore, we investigated the protective effects of therapeutic hypothermia (TH) on asphyxial CA-induced renal injury in rats. Thirty rats were randomly divided into five groups: 1) the control group (sham); 2) the normothermic CA (nor.); 3) a normothermic CA group that received TH immediately within 2 h after CPR (Hypo. 2 hrs); 4) a normothermic CA group that received TH within 4 h after CPR (Hypo. 4 hrs); and 5) a normothermia CA group that received TH within 6 h after CPR (Hypo. 6 h). One day after CPR, all rats were sacrificed. Compared with the normothermic CA group, the TH groups demonstrated significantly increased survival rate (P < 0.05); decreased serum blood urea nitrogen, creatinine, and lactate dehydrogenase levels; and lower histological damage degree and malondialdehyde concentration in their renal tissue. Terminal deoxynucleotidyl transferase dUTP nick end labeling stain revealed that the number of apoptotic cells significantly decreased after 4 h and 6 h of TH compared to the results seen in the normothermic CA group. Moreover, TH downregulated the expression of cyclooxygenase-2 in the renal cortex compared to the normothermic CA group one day after CPR. These results suggest that TH exerts anti-apoptotic, anti-inflammatory, and anti-oxidative effects immediately after ROSC that protect against renal injury.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - So Eun Kim
- Department of Emergency Medicine of Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju, 54907, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, South Korea.
| | - Jae Chol Yoon
- Department of Emergency Medicine of Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju, 54907, South Korea; Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, South Korea.
| | - Ali Jawad
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Weishun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - In-Shik Kim
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Dongchoon Ahn
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Yong Hwang
- Department of Emergency Medicine, School of Medicine, Wonkwang University, Iksan, 54538, South Korea.
| | - Jeong Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunghang-gun, 56015, South Korea.
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Jeong-Hwi Cho
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| | - Kyunghwa Kim
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, South Korea; Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School, Jeonbuk National University Hospital, Jeonju, 54907, South Korea.
| |
Collapse
|
15
|
Greite R, Derlin K, Hensen B, Thorenz A, Rong S, Chen R, Hellms S, Jang MS, Bräsen JH, Meier M, Willenberg I, Immenschuh S, Haller H, Luft FC, Panigrahy D, Hwang SH, Hammock BD, Schebb NH, Gueler F. Early antihypertensive treatment and ischemia-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F563-F570. [PMID: 32799675 DOI: 10.1152/ajprenal.00078.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) frequently complicates major surgery and can be associated with hypertension and progress to chronic kidney disease, but reports on blood pressure normalization in AKI are conflicting. In the present study, we investigated the effects of an angiotensin-converting enzyme inhibitor, enalapril, and a soluble epoxide hydrolase inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), on renal inflammation, fibrosis, and glomerulosclerosis in a mouse model of ischemia-reperfusion injury (IRI)-induced AKI. Male CD1 mice underwent unilateral IRI for 35 min. Blood pressure was measured by tail cuff, and mesangial matrix expansion was quantified on methenamine silver-stained sections. Renal perfusion was assessed by functional MRI in vehicle- and TPPU-treated mice. Immunohistochemistry was performed to study the severity of AKI and inflammation. Leukocyte subsets were analyzed by flow cytometry, and proinflammatory cytokines were analyzed by quantitative PCR. Plasma and tissue levels of TPPU and lipid mediators were analyzed by liquid chromatography mass spectrometry. IRI resulted in a blood pressure increase of 20 mmHg in the vehicle-treated group. TPPU and enalapril normalized blood pressure and reduced mesangial matrix expansion. However, inflammation and progressive renal fibrosis were severe in all groups. TPPU further reduced renal perfusion on days 1 and 14. In conclusion, early antihypertensive treatment worsened renal outcome after AKI by further reducing renal perfusion despite reduced glomerulosclerosis.
Collapse
Affiliation(s)
- Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bennet Hensen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Susanne Hellms
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | - Ina Willenberg
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | | | - Friedrich C Luft
- Experimental and Clinical Research Center, Max-Delbrück Center/Charité, Berlin, Germany
| | - Dipak Panigrahy
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California
| | - Nils Helge Schebb
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Polichnowski AJ, Griffin KA, Licea-Vargas H, Lan R, Picken MM, Long J, Williamson GA, Rosenberger C, Mathia S, Venkatachalam MA, Bidani AK. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition. Am J Physiol Renal Physiol 2020; 318:F1086-F1099. [PMID: 32174143 DOI: 10.1152/ajprenal.00590.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unilateral ischemia-reperfusion (UIR) injury leads to progressive renal atrophy and tubulointerstitial fibrosis (TIF) and is commonly used to investigate the pathogenesis of the acute kidney injury-chronic kidney disease transition. Although it is well known that contralateral nephrectomy (CNX), even 2 wk post-UIR injury, can improve recovery, the physiological mechanisms and tubular signaling pathways mediating such improved recovery remain poorly defined. Here, we examined the renal hemodynamic and tubular signaling pathways associated with UIR injury and its reversal by CNX. Male Sprague-Dawley rats underwent left UIR or sham UIR and 2 wk later CNX or sham CNX. Blood pressure, left renal blood flow (RBF), and total glomerular filtration rate were assessed in conscious rats for 3 days before and over 2 wk after CNX or sham CNX. In the presence of a contralateral uninjured kidney, left RBF was lower (P < 0.05) from 2 to 4 wk following UIR (3.6 ± 0.3 mL/min) versus sham UIR (9.6 ± 0.3 mL/min). Without CNX, extensive renal atrophy, TIF, and tubule dedifferentiation, but minimal pimonidazole and hypoxia-inducible factor-1α positivity in tubules, were present at 4 wk post-UIR injury. Conversely, CNX led (P < 0.05) to sustained increases in left RBF (6.2 ± 0.6 mL/min) that preceded the increases in glomerular filtration rate. The CNX-induced improvement in renal function was associated with renal hypertrophy, more redifferentiated tubules, less TIF, and robust pimonidazole and hypoxia-inducible factor-1α staining in UIR injured kidneys. Thus, contrary to expectations, indexes of hypoxia are not observed with the extensive TIF at 4 wk post-UIR injury in the absence of CNX but are rather associated with the improved recovery of renal function and structure following CNX.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Karen A Griffin
- Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Hector Licea-Vargas
- Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - Rongpei Lan
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Jainrui Long
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Christian Rosenberger
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin, Berlin, Germany
| | - Susanne Mathia
- Department of Nephrology and Medical Intensive Care, Charité Universitaetsmedizin, Berlin, Germany
| | | | - Anil K Bidani
- Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Hines, Illinois.,Division of Nephrology, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| |
Collapse
|
17
|
Katsumi H, Takashima R, Suzuki H, Hirai N, Matsuura S, Kimura H, Morishita M, Yamamoto A. S-nitrosylated l-serine-modified dendrimer as a kidney-targeting nitric oxide donor for prevention of renal ischaemia/reperfusion injury. Free Radic Res 2019; 54:841-847. [DOI: 10.1080/10715762.2019.1697437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Rie Takashima
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroe Suzuki
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Natsuko Hirai
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Satoru Matsuura
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masaki Morishita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
18
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Polichnowski AJ. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states. Am J Physiol Renal Physiol 2018; 315:F1513-F1518. [PMID: 30256130 DOI: 10.1152/ajprenal.00419.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major complication in hospitalized patients and is associated with elevated mortality rates. Numerous recent studies indicate that AKI also significantly increases the risk of chronic kidney disease (CKD), end-stage renal disease (ESRD), hypertension, cardiovascular disease, and mortality in those patients who survive AKI. Moreover, the risk of ESRD and mortality after AKI is substantially higher in patients with preexisting CKD. However, the underlying mechanisms by which AKI and CKD interact to promote ESRD remain poorly understood. The recently developed models that superimpose AKI on rodents with preexisting CKD have provided new insights into the pathogenic mechanisms mediating the deleterious interactions between AKI and CKD. These studies show that preexisting CKD impairs recovery from AKI and promotes the development of mechanisms of CKD progression. Specifically, preexisting CKD exacerbates microvascular rarefaction, failed tubular redifferentiation, disruption of cell cycle regulation, hypertension, and proteinuria after AKI. The purpose of this review is to discuss the potential mechanisms by which microvascular rarefaction and hypertension contribute to impaired recovery from AKI and the subsequent progression of renal disease in preexisting CKD states.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|