1
|
Matias SL, Anderson CE, Koleilat M. Breastfeeding moderates childhood obesity risk associated with prenatal exposure to excessive gestational weight gain. MATERNAL & CHILD NUTRITION 2023; 19:e13545. [PMID: 37357364 PMCID: PMC10483944 DOI: 10.1111/mcn.13545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Gaining excessive gestational weight may increase obesity risk in the offspring, while breastfeeding lowers that risk. Using data from the Special Supplemental Nutrition Programme for Women, Infants and Children (WIC) in Southern California, we examined the associations between gestational weight gain (GWG), breastfeeding during infancy and childhood obesity at 2-4 years, and determined whether breastfeeding moderated the association between GWG and childhood obesity. GWG was based on weight measurements collected during the first trimester and within a month before delivery. GWG values were standardized by gestational age (GWG z-scores), per maternal prepregnancy body mass index (BMI) and categorized into tertiles. Fully breastfeeding duration was determined by WIC infant package data indicating the amount of infant formula received monthly. Children's length (or height) and weight measurements were used to calculate BMI-for-age z-scores and identify obesity (z-score ≥ 95th percentile). Multivariable linear and modified Poisson regression analyses were conducted. Fully breastfeeding moderated the association between GWG z-scores tertile and obesity in the offspring. Each additional month of fully breastfeeding was associated with 3%-5% obesity risk reduction for each age group and GWG z-scores tertile, except at age 4 years for children whose mothers had low GWG z-scores (tertile 1). Shorter fully breastfeeding duration was associated with greater obesity risk among children of mothers with high GWG z-scores (tertile 3), but not for those whose mothers had low GWG z-scores. Longer fully breastfeeding duration may provide greater protection against obesity among children at higher risk due to intrauterine exposure to high gestational weight gain.
Collapse
Affiliation(s)
- Susana L. Matias
- Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | | | - Maria Koleilat
- Department of Public HealthCalifornia State UniversityFullertonCaliforniaUSA
| |
Collapse
|
2
|
Cardiovascular and renal profiles in rat offspring that do not undergo catch-up growth after exposure to maternal protein restriction. J Dev Orig Health Dis 2023; 14:426-436. [PMID: 36647740 DOI: 10.1017/s2040174422000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Maternal protein restriction is often associated with structural and functional sequelae in offspring, particularly affecting growth and renal-cardiovascular function. However, there is little understanding as to whether hypertension and kidney disease occur because of a primary nephron deficit or whether controlling postnatal growth can result in normal renal-cardiovascular phenotypes. To investigate this, female Sprague-Dawley rats were fed either a low-protein (LP, 8.4% protein) or normal-protein (NP, 19.4% protein) diet prior to mating and until offspring were weaned at postnatal day (PN) 21. Offspring were then fed a non 'growth' (4.6% fat) which ensured that catch-up growth did not occur. Offspring growth was determined by weight and dual energy X-ray absorptiometry. Nephron number was determined at PN21 using the disector-fractionator method. Kidney function was measured at PN180 and PN360 using clearance methods. Blood pressure was measured at PN360 using radio-telemetry. Body weight was similar at PN1, but by PN21 LP offspring were 39% smaller than controls (Pdiet < 0.001). This difference was due to proportional changes in lean muscle, fat, and bone content. LP offspring remained smaller than NP offspring until PN360. In LP offspring, nephron number was 26% less in males and 17% less in females, than NP controls (Pdiet < 0.0004). Kidney function was similar across dietary groups and sexes at PN180 and PN360. Blood pressure was similar in LP and NP offspring at PN360. These findings suggest that remaining on a slow growth trajectory after exposure to a suboptimal intrauterine environment does not lead to the development of kidney dysfunction and hypertension.
Collapse
|
3
|
South AM, Allen NB. Antenatal Programming of Hypertension: Paradigms, Paradoxes, and How We Move Forward. Curr Hypertens Rep 2022; 24:655-667. [PMID: 36227517 PMCID: PMC9712278 DOI: 10.1007/s11906-022-01227-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Synthesize the clinical, epidemiological, and preclinical evidence for antenatal programming of hypertension and critically appraise paradigms and paradoxes to improve translation. RECENT FINDINGS Clinical and epidemiological studies persistently demonstrate that antenatal factors contribute to programmed hypertension under the developmental origins of health and disease framework, including lower birth weight, preterm birth, and fetal growth restriction. Preclinical mechanisms include preeclampsia, maternal diabetes, maternal undernutrition, and antenatal corticosteroid exposure. However, clinical and epidemiological studies to date have largely failed to adequately identify, discuss, and mitigate many sources and types of bias in part due to heterogeneous study designs and incomplete adherence to scientific rigor. These limitations have led to incomplete and biased paradigms as well as persistent paradoxes that have significantly limited translation into clinical and population health interventions. Improved understanding of these paradigms and paradoxes will allow us to substantially move the field forward.
Collapse
Affiliation(s)
- Andrew M South
- Department of Pediatrics, Section of Nephrology, Brenner Children's, Wake Forest University School of Medicine, One Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Surgery-Hypertension and Vascular Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Norrina B Allen
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Masiero BC, Calsa B, Oliveira CA, Moretti de Andrade TA, Esquisatto MAM, Catisti R. Morphofunctional and immunological cardiac evaluation of protein restriction on rat offspring. Ann Anat 2022; 241:151889. [DOI: 10.1016/j.aanat.2022.151889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
|
5
|
Nüsken E, Voggel J, Fink G, Dötsch J, Nüsken KD. Impact of early-life diet on long-term renal health. Mol Cell Pediatr 2020; 7:17. [PMID: 33269431 PMCID: PMC7710776 DOI: 10.1186/s40348-020-00109-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
In the last years, great advances have been made in the effort to understand how nutritional influences can affect long-term renal health. Evidence has accumulated that maternal nutrition before and during pregnancy and lactation as well as early postnatal nutrition is of special significance. In this review, we summarize epidemiologic and experimental data on the renal effects of perinatal exposure to energy restriction, low-protein diet, high-fat diet, high-fructose diet, and high- and low-salt diet as well as micronutrient deficiencies. Interestingly, different modifications during early-life diet may end up with similar sequelae for the offspring. On the other hand, molecular pathways can be influenced in opposite directions by different dietary interventions during early life. Importantly, postnatal nutrition significantly modifies the phenotype induced by maternal diet. Sequelae of altered macro- or micronutrient intakes include altered nephron count, blood pressure dysregulation, altered sodium handling, endothelial dysfunction, inflammation, mitochondrial dysfunction, and oxidative stress. In addition, renal prostaglandin metabolism as well as renal AMPK, mTOR, and PPAR signaling can be affected and the renin-angiotensin-aldosterone system may be dysregulated. Lately, the influence of early-life diet on gut microbiota leading to altered short chain fatty acid profiles has been discussed in the etiology of arterial hypertension. Against this background, the preventive and therapeutic potential of perinatal nutritional interventions regarding kidney disease is an emerging field of research. Especially individuals at risk (e.g., newborns from mothers who suffered from malnutrition during gestation) could disproportionately benefit from well-targeted dietary interventions.
Collapse
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Jenny Voggel
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Gregor Fink
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics and Adolescent Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
6
|
Jain J, Legan SK, Alhamoud I, Gattineni J, Baum M. Effect of sex on glomerular filtration rate in programmed rats by prenatal dexamethasone. Physiol Rep 2020; 7:e14154. [PMID: 31243892 PMCID: PMC6594923 DOI: 10.14814/phy2.14154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
We have previously demonstrated that dexamethasone administered to pregnant rats during specific times during gestation results in a reduction in glomerular number and hypertension in offspring at 2 and 6 months of age. In this study, we examined the effect of prenatal dexamethasone administered daily on days 15 and 16 of gestation in male and female offspring after 1 year of age on glomerular filtration rate. The prenatal dexamethasone male group had a higher systolic blood pressure than the vehicle male group. Females had lower systolic blood pressures than the males and prenatal dexamethasone did not affect blood pressure in female offspring. Prenatal dexamethasone resulted in a reduction in glomerular filtration rate in male but not in female rats. When corrected for body weight, the control male rats had a lower glomerular filtration rate than the control female rats. Males had greater protein excretion than females and prenatal dexamethasone increased the protein excretion only in male rats. Glomerulosclerosis was also greater in male rats than females but was not affected by prenatal dexamethasone. In summary, male rats appear to have evidence of a decline in glomerular filtration rate after 1 year of age and prenatal dexamethasone programs an accelerated decline in glomerular filtration rate in male but not in female offspring.
Collapse
Affiliation(s)
- Jyoti Jain
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas.,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
7
|
Briffa JF, O'Dowd R, Romano T, Muhlhausler BS, Moritz KM, Wlodek ME. Reducing Pup Litter Size Alters Early Postnatal Calcium Homeostasis and Programs Adverse Adult Cardiovascular and Bone Health in Male Rats. Nutrients 2019; 11:nu11010118. [PMID: 30626125 PMCID: PMC6356436 DOI: 10.3390/nu11010118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
The in utero and early postnatal environments play essential roles in offspring growth and development. Standardizing or reducing pup litter size can independently compromise long-term health likely due to altered milk quality, thus limiting translational potential. This study investigated the effect reducing litter size has on milk quality and offspring outcomes. On gestation day 18, dams underwent sham or bilateral uterine vessel ligation surgery to generate dams with normal (Control) and altered (Restricted) milk quality/composition. At birth, pups were cross-fostered onto separate dams with either an unadjusted or reduced litter size. Plasma parathyroid hormone-related protein was increased in Reduced litter pups, whereas ionic calcium and total body calcium were decreased. These data suggest Reduced litter pups have dysregulated calcium homeostasis in early postnatal life, which may impair bone mineralization decreasing adult bone bending strength. Dams suckling Reduced litter pups had increased milk long-chain monounsaturated fatty acid and omega-3 docosahexaenoic acid. Reduced litter pups suckled by Normal milk quality/composition dams had increased milk omega-6 linoleic and arachidonic acids. Reduced litter male adult offspring had elevated blood pressure. This study highlights care must be taken when interpreting data from research that alters litter size as it may mask subtle cardiometabolic health effects.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
| | - Rachael O'Dowd
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
| | - Tania Romano
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
- Department of Physiology, Anatomy and Microbiology, LaTrobe University, Bundoora 3083, Australia.
| | - Beverly S Muhlhausler
- Department of Food and Wine Science, School of Agriculture, Food and Wine, FOODplus Research Centre, The University of Adelaide, Adelaide 5064, Australia.
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, St. Lucia 4101, Australia.
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
8
|
The exaggerated salt-sensitive response in hypertensive transgenic rats (TGR mRen-2) fostered by a normotensive female. Hypertens Res 2018; 42:459-468. [DOI: 10.1038/s41440-018-0157-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022]
|
9
|
Baum M. Role of renal sympathetic nerve activity in prenatal programming of hypertension. Pediatr Nephrol 2018; 33:409-419. [PMID: 27001053 DOI: 10.1007/s00467-016-3359-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/30/2022]
Abstract
Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.
Collapse
Affiliation(s)
- Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Building, Dallas, TX, 75390-9063, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
10
|
Mansuri A, Elmaghrabi A, Alhamoud I, Legan SK, Gattineni J, Baum M. Transient enalapril attenuates the reduction in glomerular filtration rate in prenatally programmed rats. Physiol Rep 2018; 5:5/8/e13266. [PMID: 28438986 PMCID: PMC5408291 DOI: 10.14814/phy2.13266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023] Open
Abstract
A maternal low‐protein diet has been shown to program hypertension and a reduction in glomerular filtration rate in adult offspring. This study examined the effect of continuous administration of enalapril in the drinking water and transient administration of enalapril administered from 21 to 42 days of age on blood pressure and glomerular filtration rate (GFR) in male rats whose mothers were fed a 20% protein diet (control) or a 6% protein diet (programmed) during the last half of pregnancy. After birth all rats were fed a 20% protein diet. Programmed rats (maternal 6% protein diet) were hypertensive at 15 months of age compared to control rats and both continuous and transient administration of enalapril had no effect on blood pressure on control offspring, but normalized the blood pressure of programmed offspring. GFR was 3.2 ± 0.1 mL/min in the control group and 1.7 ± 0.1 mL/min in the programmed rats at 17 months of age (P < 0.001). The GFR was 3.0 ± 0.1 mL/min in the control and 2.7 ± 0.1 mL/min in the programmed group that received continuous enalapril in their drinking water showing that enalapril can prevent the decrease in GFR in programmed rats. Transient administration of enalapril had no effect on GFR in the control group (3.2 ± 0.1 mL/min) and prevented the decrease in GFR in the programmed group (2.9 ± 0.1 mL/min). In conclusion, transient exposure to enalapril for 3 weeks after weaning can prevent the hypertension and decrease in GFR in prenatal programmed rats.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Ayah Elmaghrabi
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas .,Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
11
|
Mansuri A, Legan SK, Jain J, Alhamoud I, Gattineni J, Baum M. Effect of renal denervation on urine angiotensinogen excretion in prenatally programmed rats. Physiol Rep 2017; 5:5/20/e13482. [PMID: 29051307 PMCID: PMC5661239 DOI: 10.14814/phy2.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Prenatal programming results in an increase in blood pressure in adult offspring. We have shown that compared to control adult offspring whose mothers were fed a 20% protein diet, programmed adults whose mothers were fed a 6% protein diet during the last half of pregnancy have an increase in renal sympathetic nerve activity and urinary angiotensinogen/creatinine levels. We hypothesized that the increase in urinary angiotensinogen was mediated by renal sympathetic nerve activity in programmed rats. In this study performed in 3 month old rats, renal denervation resulted in normalization of blood pressure in the 6% programmed group (150 ± 3 Hg in 6% sham vs. 121 ± 4 Hg in 6% denervated, P < 0.001), and a reduction in blood pressure in the 20% group (126 ± 2 Hg 20% sham vs. 113 ± 4 Hg 20% denervated (P < 0.05). We confirm that the intrarenal renin–angiotensin system assessed by urinary angiotensinogen/creatinine is upregulated in offspring of rats fed a 6% protein diet rats compared to 20% controls. To determine if sympathetic nerve activity was mediating the increase in urinary angiotensinogen in programmed rats, we compared denervated to sham‐operated control and programmed rats. Renal denervation had no effect on urinary angiotensinogen/creatinine ratio in the 20% group and no effect on the increased urinary angiotensinogen/creatinine ratio found in programmed rats. This study demonstrates that the increase in urinary angiotensinogen in programmed rats is not mediated by renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Susan K Legan
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyoti Jain
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Issa Alhamoud
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Jyothsna Gattineni
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| | - Michel Baum
- Department of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas .,Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
12
|
Abstract
Hypertension is a risk factor for cardiovascular disease, the leading cause of death worldwide. Although multiple factors contribute to the pathogenesis of hypertension, studies by Dr David Barker reporting an inverse relationship between birth weight and blood pressure led to the hypothesis that slow growth during fetal life increased blood pressure and the risk for cardiovascular disease in later life. It is now recognized that growth during infancy and childhood, in addition to exposure to adverse influences during fetal life, contributes to the developmental programming of increased cardiovascular risk. Numerous epidemiological studies support the link between influences during early life and later cardiovascular health; experimental models provide proof of principle and indicate that numerous mechanisms contribute to the developmental origins of chronic disease. Sex has an impact on the severity of cardiovascular risk in experimental models of developmental insult. Yet, few studies examine the influence of sex on blood pressure and cardiovascular health in low-birth weight men and women. Fewer still assess the impact of ageing on sex differences in programmed cardiovascular risk. Thus, the aim of the present review is to highlight current data about sex differences in the developmental programming of blood pressure and cardiovascular disease.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Perinatal programming of renal function reflects the epigenetic alteration of genetically determined development by environmental factors. These include intrauterine malnutrition, pre and postnatal overnutrition, glucocorticoids, and certain toxins such as smoking. This review aims to summarize the most important findings. RECENT FINDINGS Human studies may show an increased susceptibility toward the general prevalence of renal failure in already small for gestational age children and adolescents. In particular, glomerular diseases present with a more severe clinical course. Partially related, partially independently, arterial hypertension is found in this at-risk group. The findings can mostly be confirmed in animal models. Both intrauterine nutrient deprived and overfed rodents show a tendency toward developing glomerulosclerosis and other renal disorders. Animal studies attempt to imitate clinical conditions, however, there are difficulties in transferring the findings to the human setting. The reduction of nephron number, especially in intrauterine growth-restricted humans and animals, is one mechanism of perinatal programming in the kidneys. In addition, vascular and endocrine alterations are prevalent. The molecular changes behind these mechanisms include epigenetic changes such as DNA-methylation, microRNAs, and histone modifications. SUMMARY Future research will have to establish clinical studies with clear and well defined inclusion criteria which also reflect prenatal life. The use of transgenic animal models might help to obtain a deeper insight into the underlying mechanisms.
Collapse
|
14
|
Mansuri A, Elmaghrabi A, Legan SK, Gattineni J, Baum M. Transient Exposure of Enalapril Normalizes Prenatal Programming of Hypertension and Urinary Angiotensinogen Excretion. PLoS One 2015; 10:e0146183. [PMID: 26719973 PMCID: PMC4699824 DOI: 10.1371/journal.pone.0146183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Maternal low protein diet programs offspring to develop hypertension as adults. Transient exposure to angiotensin converting enzyme inhibitors or angiotensin II receptor blockers can result in improvement in hypertension. Male rats whose mothers received a low protein diet during the last half of pregnancy were given either vehicle, continuous enalapril (CE) in their drinking water or were given transient enalapril exposure (TE) after weaning at 21 days of age. The TE group had enalapril in their drinking water for 21 days starting from day 21 of life. All rats were studied at 6 months of age. Vehicle treated rats whose mothers were fed a low protein diet were hypertensive, had albuminuria, and demonstrated upregulation of the intrarenal renin-angiotensin system as evidenced by higher urinary angiotensinogen and urinary angiotensin II levels. In low protein rats both continuous and transient exposure to enalapril normalized blood pressure, urinary angiotensinogen and urinary angiotensin II levels at 6 months of age, but only continuous administration of enalapril decreased urinary albumin excretion. These data support the importance of the intrarenal renin-angiotensin system in mediating hypertension in programmed rats and transient exposure to enalapril can reprogram the hypertension and dysregulation of the intrarenal renin-angiotensin system.
Collapse
Affiliation(s)
- Asifhusen Mansuri
- Department of Pediatrics University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ayah Elmaghrabi
- Department of Pediatrics University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Susan K. Legan
- Department of Pediatrics University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jyothsna Gattineni
- Department of Pediatrics University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michel Baum
- Department of Pediatrics University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|