1
|
Kumar A, Priyadarshini G, Parameswaran S, Ramesh A, Rajappa M. Evaluation of MicroRNA 145 and MicroRNA 155 as Markers of Cardiovascular Risk in Chronic Kidney Disease. Cureus 2024; 16:e66494. [PMID: 39246913 PMCID: PMC11380758 DOI: 10.7759/cureus.66494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Background Chronic kidney disease (CKD) leads to a progressive decline in renal function, primarily due to deteriorating kidney structures. Vascular calcification is a key effect of CKD. MicroRNAs (miRNAs) play a significant role in the onset and progression of both cardiovascular illness and CKD. Aim The aim of this study was to compare biomarkers of endothelial dysfunction, 25-hydroxyvitamin D (25(OH)D), intact parathyroid hormone (iPTH), miRNA 155, and miRNA 145, in patients with CKD versus controls. Methods We recruited 60 patients with CKD and 60 controls. All participants underwent brachial artery flow-mediated dilatation (FMD). Asymmetric dimethylarginine (ADMA) levels were measured using ELISA. Levels of miRNA 145 and miRNA 155 were quantified using real-time polymerase chain reaction (PCR). Results Serum levels of miRNA 145, miRNA 155, 25(OH)D, and FMD were significantly lower in CKD patients compared to controls. Conversely, serum ADMA and iPTH levels were significantly higher in CKD patients. There was a significant negative association between miRNA 145, miRNA 155, FMD, and 25(OH)D with ADMA and iPTH. Additionally, miRNA 145, miRNA 155, FMD, and 25(OH)D showed a significant positive correlation with estimated glomerular filtration rate (eGFR) and with each other. Conclusion Lower levels of miRNA 145 and miRNA 155 and increased endothelial dysfunction correlate with CKD severity, suggesting an accelerated risk for cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - G Priyadarshini
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Sreejith Parameswaran
- Department of Nephrology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Ananthakrishnan Ramesh
- Department of Radiodiagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | - Medha Rajappa
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| |
Collapse
|
2
|
Machfer A, Tagougui S, Zghal F, Hassen HBH, Fekih N, Amor HIH, Chtourou H, Bouzid MA. Hemodynamic and neuromuscular basis of reduced exercise capacity in patients with end-stage renal disease. Eur J Appl Physiol 2024; 124:1991-2004. [PMID: 38374473 DOI: 10.1007/s00421-024-05427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/27/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The present study aimed to characterize the exercise-induced neuromuscular fatigue and its possible links with cerebral and muscular oxygen supply and utilization to provide mechanistic insights into the reduced exercise capacity characterizing patients with end-stage renal disease (ESRD). METHODS Thirteen patients with ESRD and thirteen healthy males (CTR group) performed a constant-force sustained isometric contraction at 50% of their maximal voluntary isometric contraction (MVC) until exhaustion. Quadriceps muscle activation during exercise was estimated from vastus lateralis, vastus medialis, and rectus femoris EMG. Central and peripheral fatigue were quantified via changes in pre- to postexercise quadriceps voluntary activation (ΔVA) and quadriceps twitch force (ΔQtw,pot) evoked by supramaximal electrical stimulation, respectively. To assess cerebral and muscular oxygenation, throughout exercise, near-infrared spectroscopy allowed investigation of changes in oxyhemoglobin (∆O2Hb), deoxyhemoglobin (∆HHb), and total hemoglobin (∆THb) in the prefrontal cortex and in the vastus lateralis muscle. RESULTS ESRD patients demonstrated lower exercise time to exhaustion than that of CTR (88.8 ± 15.3 s and 119.9 ± 14.6 s, respectively, P < 0.01). Following the exercise, MVC, Qtw,pot, and VA reduction were similar between the groups (P > 0.05). There was no significant difference in muscle oxygenation (∆O2Hb) between the two groups (P > 0.05). Cerebral and muscular blood volume (∆THb) and oxygen extraction (∆HHb) were significantly blunted in the ESRD group (P < 0.05). A significant positive correlation was observed between time to exhaustion and cerebral blood volume (∆THb) in both groups (r2 = 0.64, P < 0.01). CONCLUSIONS These findings support cerebral hypoperfusion as a factor contributing to the reduction in exercise capacity characterizing ESRD patients.
Collapse
Affiliation(s)
- Amal Machfer
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Sémah Tagougui
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS), Lille, France
- Montreal Clinical Research Institute (IRCM), Montreal, Canada
| | - Firas Zghal
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Université de La Réunion, IRISSE, Le Tampon, La Réunion, France
| | - Hayfa Ben Haj Hassen
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Nadia Fekih
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | | | - Hamdi Chtourou
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, 1003, Tunis, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
3
|
Weggen JB, Darling AM, Autler AS, Hogwood AC, Decker KP, Richardson J, Tuzzolo G, Garten RS. Lower vascular conductance responses to handgrip exercise are improved following acute antioxidant supplementation in young individuals with post-traumatic stress disorder. Exp Physiol 2024; 109:992-1003. [PMID: 38711207 PMCID: PMC11140166 DOI: 10.1113/ep091762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Young individuals with post-traumatic stress disorder (PTSD) display peripheral vascular and autonomic nervous system dysfunction, two factors potentially stemming from a redox imbalance. It is currently unclear if these aforementioned factors, observed at rest, alter peripheral haemodynamic responses to exercise in this population. This study examined haemodynamic responses to handgrip exercise in young individuals with PTSD following acute antioxidant (AO) supplementation. Thirteen young individuals with PTSD (age 23 ± 3 years), and 13 age- and sex-matched controls (CTRL) participated in the study. Exercise-induced changes to arm blood flow (BF), mean arterial pressure (MAP) and vascular conductance (VC) were evaluated across two workloads of rhythmic handgrip exercise (3 and 6 kg). The PTSD group participated in two visits, consuming either a placebo (PL) or AO prior to their visits. The PTSD group demonstrated significantly lower VC (P = 0.04) across all exercise workloads (vs. CTRL), which was significantly improved following AO supplementation. In the PTSD group, AO supplementation improved VC in participants possessing the lowest VC responses to handgrip exercise, with AO supplementation significantly improving VC responses (3 and 6 kg: P < 0.01) by blunting elevated exercise-induced MAP responses (3 kg: P = 0.01; 6 kg: P < 0.01). Lower VC responses during handgrip exercise were improved following AO supplementation in young individuals with PTSD. AO supplementation was associated with a blunting of exercise-induced MAP responses in individuals with PTSD displaying elevated MAP responses. This study revealed that young individuals with PTSD exhibit abnormal, peripherally mediated exercise responses that may be linked to a redox imbalance.
Collapse
Affiliation(s)
- Jennifer B. Weggen
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ashley M. Darling
- Department of KinesiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Aaron S. Autler
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Austin C. Hogwood
- Department of KinesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kevin P. Decker
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Jacob Richardson
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gina Tuzzolo
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ryan S. Garten
- Department of Kinesiology and Health SciencesVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
4
|
Biernat K, Kuciel N, Mazurek J, Hap K. Is It Possible to Train the Endothelium?-A Narrative Literature Review. Life (Basel) 2024; 14:616. [PMID: 38792637 PMCID: PMC11121998 DOI: 10.3390/life14050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This review provides an overview of current knowledge regarding the adaptive effects of physical training on the endothelium. The endothelium plays a crucial role in maintaining the health of vessel walls and regulating vascular tone, structure, and homeostasis. Regular exercise, known for its promotion of cardiovascular health, can enhance endothelial function through various mechanisms. The specific health benefits derived from exercise are contingent upon the type and intensity of physical training. The review examines current clinical evidence supporting exercise's protective effects on the vascular endothelium and identifies potential therapeutic targets for endothelial dysfunction. There is an urgent need to develop preventive strategies and gain a deeper understanding of the distinct impacts of exercise on the endothelium.
Collapse
Affiliation(s)
| | - Natalia Kuciel
- University Rehabilitation Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.B.); (J.M.); (K.H.)
| | | | | |
Collapse
|
5
|
Gollie JM, Ryan AS, Sen S, Patel SS, Kokkinos PF, Harris-Love MO, Scholten JD, Blackman MR. Exercise for patients with chronic kidney disease: from cells to systems to function. Am J Physiol Renal Physiol 2024; 326:F420-F437. [PMID: 38205546 PMCID: PMC11208028 DOI: 10.1152/ajprenal.00302.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic kidney disease (CKD) is among the leading causes of death and disability, affecting an estimated 800 million adults globally. The underlying pathophysiology of CKD is complex creating challenges to its management. Primary risk factors for the development and progression of CKD include diabetes mellitus, hypertension, age, obesity, diet, inflammation, and physical inactivity. The high prevalence of diabetes and hypertension in patients with CKD increases the risk for secondary consequences such as cardiovascular disease and peripheral neuropathy. Moreover, the increased prevalence of obesity and chronic levels of systemic inflammation in CKD have downstream effects on critical cellular functions regulating homeostasis. The combination of these factors results in the deterioration of health and functional capacity in those living with CKD. Exercise offers protective benefits for the maintenance of health and function with age, even in the presence of CKD. Despite accumulating data supporting the implementation of exercise for the promotion of health and function in patients with CKD, a thorough description of the responses and adaptations to exercise at the cellular, system, and whole body levels is currently lacking. Therefore, the purpose of this review is to provide an up-to-date comprehensive review of the effects of exercise training on vascular endothelial progenitor cells at the cellular level; cardiovascular, musculoskeletal, and neural factors at the system level; and physical function, frailty, and fatigability at the whole body level in patients with CKD.
Collapse
Affiliation(s)
- Jared M Gollie
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, District of Columbia, United States
| | - Alice S Ryan
- Department of Medicine, University of Maryland, Baltimore, Maryland, United States
- Division of Geriatrics and Palliative Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, United States
| | - Sabyasachi Sen
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Samir S Patel
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
| | - Peter F Kokkinos
- Division of Cardiology, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Michael O Harris-Love
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Geriatric Research Education and Clinical Center, Eastern Colorado Veterans Affairs Health Care System, Denver, Colorado, United States
| | - Joel D Scholten
- Physical Medicine and Rehabilitation Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
| | - Marc R Blackman
- Research and Development Service, Washington DC Veterans Affairs Medical Center, Washington, District of Columbia, United States
- Department of Medicine, Washington DC Veterans Affairs, Medical Center, Washington, District of Columbia, United States
- Department of Medicine, The George Washington University, Washington, District of Columbia, United States
- Department of Medicine, Georgetown University, Washington, District of Columbia, United States
- Department of Rehabilitation Medicine, Georgetown University, Washington, District of Columbia, United States
| |
Collapse
|
6
|
Yao J, Sprick JD, Jeong J, Park J, Reiter DA. Differences in peripheral microcirculatory blood flow regulation in chronic kidney disease based on wavelet analysis of resting near-infrared spectroscopy. Microvasc Res 2024; 151:104624. [PMID: 37926135 PMCID: PMC11018197 DOI: 10.1016/j.mvr.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Vascular impairment is closely related to increased mortality in chronic kidney disease (CKD). The objective of this study was to assess impairments in the regulation of peripheral microvascular perfusion in patients with CKD based on time-frequency spectral analysis of resting near-infrared spectroscopy (NIRS) signals. Total hemoglobin (tHb) concentration and tissue saturation index (TSI) signals were collected using NIRS for a continuous 5 mins at 10 Hz from the forearm of 55 participants (34 CKD including 5 with end-stage renal disease, and 21 age-matched control). Continuous wavelet transform-based spectral analysis was used to quantify the spectral amplitude within five pre-defined frequency intervals (I, 0.0095-0.021 Hz; II, 0.021-0.052 Hz; III, 0.052-0.145 Hz; IV, 0.145-0.6 Hz and V, 0.6-2.0 Hz), representing endothelial, neurogenic, myogenic, respiratory and heartbeat activity, respectively. CKD patients showed lower tHb average spectral amplitude within the neurogenic frequency interval compared with controls (p = 0.014), consistent with an increased sympathetic outflow observed in CKD. CKD patients also showed lower TSI average spectral amplitude within the endothelial frequency interval compared with controls (p = 0.046), consistent with a reduced endothelial function in CKD. These findings demonstrate the potential of wavelet analysis of NIRS to provide complementary information on peripheral microvascular regulation in CKD.
Collapse
Affiliation(s)
- Jingting Yao
- Department of Radiology and Imaging Science, Emory University, Atlanta, GA, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Justin D Sprick
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Jeanie Park
- Division of Renal Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - David A Reiter
- Department of Radiology and Imaging Science, Emory University, Atlanta, GA, United States; Department of Orthopedics, Emory University, Atlanta, GA, United States; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.
| |
Collapse
|
7
|
Machfer A, Tagougui S, Fekih N, Ben Haj Hassen H, Amor HIH, Bouzid MA, Chtourou H. Muscle oxygen supply impairment during maximal exercise in patients undergoing dialysis therapy. Respir Physiol Neurobiol 2024; 319:104169. [PMID: 37813323 DOI: 10.1016/j.resp.2023.104169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate whether Chronic Kidney Disease (CKD) influences O2 supply including O2 delivery and release to the active muscles during maximal physical exercise. Twelve CKD patients undergoing dialysis therapy (HD group) and twelve healthy adults (CTR group) performed an incremental exercise test to determine maximal oxygen uptake (VO2peak). Throughout the exercise, near-infrared spectroscopy allowed the investigation of changes in oxyhemoglobin (∆O2Hb), deoxyhemoglobin (∆HHb), and total hemoglobin (∆THb) in the vastus lateralis muscle. VO2peak was significantly lower in HD group. In addition, HD patients had impaired changes in muscular oxygenation (∆HHb and ∆O2Hb) and blood volume (∆THb) during the exercise (p < 0.05). Moreover, a positive correlation was observed between VO2peak and muscle blood volume (∆THb) in both groups (p < 0.05). This study provides the first evidence that HD patients displayed lower VO2peak and blunted muscular deoxyhemoglobin increase during exercise. This result supports the hypothesis of an increase in oxygen affinity and/or mitochondrial dysfunction in this population.
Collapse
Affiliation(s)
- Amal Machfer
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Sémah Tagougui
- Université de Lille, Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport, Santé, Société (URePSSS), Lille, France; Montreal Clinical Research Institute (IRCM), Montreal, Canada
| | - Nadia Fekih
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | - Hayfa Ben Haj Hassen
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia
| | | | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Tunisia.
| | - Hamdi Chtourou
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, 1003 Tunis, Tunisia
| |
Collapse
|
8
|
Kirkman DL, Stock JM, Shenouda N, Bohmke NJ, Kim Y, Kidd J, Townsend RR, Edwards DG. Effects of a mitochondrial-targeted ubiquinol on vascular function and exercise capacity in chronic kidney disease: a randomized controlled pilot study. Am J Physiol Renal Physiol 2023; 325:F448-F456. [PMID: 37560769 DOI: 10.1152/ajprenal.00067.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Mitochondria-derived oxidative stress has been implicated in vascular and skeletal muscle abnormalities in chronic kidney disease (CKD). The purpose of this study was to investigate the effects of a mitochondria-targeted ubiquinol (MitoQ) on vascular function and exercise capacity in CKD. In this randomized controlled trial, 18 patients with CKD (means ± SE, age: 62 ± 3 yr and estimated glomerular filtration rate: 45 ± 3 mL/min/1.73 m2) received 4 wk of 20 mg/day MitoQ (MTQ group) or placebo (PLB). Outcomes assessed at baseline and follow-up included macrovascular function measured by flow-mediated dilation, microvascular function assessed by laser-Doppler flowmetry combined with intradermal microdialysis, aortic hemodynamics assessed by oscillometry, and exercise capacity assessed by cardiopulmonary exercise testing. Compared with PLB, MitoQ improved flow-mediated dilation (baseline vs. follow-up: MTQ, 2.4 ± 0.3% vs. 4.0 ± 0.9%, and PLB, 4.2 ± 1.0% vs. 2.5 ± 1.0%, P = 0.04). MitoQ improved microvascular function (change in cutaneous vascular conductance: MTQ 4.50 ± 2.57% vs. PLB -2.22 ± 2.67%, P = 0.053). Central aortic systolic and pulse pressures were unchanged; however, MitoQ prevented increases in augmentation pressures that were observed in the PLB group (P = 0.026). MitoQ did not affect exercise capacity. In conclusion, this study demonstrates the potential for a MitoQ to improve vascular function in CKD. The findings hold promise for future investigations of mitochondria-targeted therapies in CKD.NEW & NOTEWORTHY In this randomized controlled pilot study, we investigated the effects of a mitochondria-targeted ubiquinol (MitoQ) on vascular function and exercise capacity in chronic kidney disease. Our novel findings showed that 4-wk supplementation of MitoQ was well tolerated and improved macrovascular endothelial function, arterial hemodynamics, and microvascular function in patients with stage 3-4 chronic kidney disease. Our mechanistic findings also suggest that MitoQ improved microvascular function in part by reducing the NADPH oxidase contribution to vascular dysfunction.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Natalie J Bohmke
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Youngdeok Kim
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jason Kidd
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia, United States
| | - Raymond R Townsend
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
9
|
Sprick JD, Jeong J, Sabino-Carvalho JL, Li S, Park J. Neurocirculatory regulation and adaptations to exercise in chronic kidney disease. Am J Physiol Heart Circ Physiol 2023; 324:H843-H855. [PMID: 37000610 PMCID: PMC10191135 DOI: 10.1152/ajpheart.00115.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by pronounced exercise intolerance and exaggerated blood pressure reactivity during exercise. Classic mechanisms of exercise intolerance in CKD have been extensively described previously and include uremic myopathy, chronic inflammation, malnutrition, and anemia. We contend that these classic mechanisms only partially explain the exercise intolerance experienced in CKD and that alterations in cardiovascular and autonomic regulation also play a key contributing role. The purpose of this review is to examine the physiological factors that contribute to neurocirculatory dysregulation during exercise and discuss the adaptations that result from regular exercise training in CKD. Key neurocirculatory mechanisms contributing to exercise intolerance in CKD include augmentation of the exercise pressor reflex, aberrations in neurocirculatory control, and increased neurovascular transduction. In addition, we highlight how some contributing factors may be improved through exercise training, with a specific focus on the sympathetic nervous system. Important areas for future work include understanding how the exercise prescription may best be optimized in CKD and how the beneficial effects of exercise training may extend to the brain.
Collapse
Affiliation(s)
- Justin D Sprick
- Department of Kinesiology, Health Promotion and Recreation, University of North Texas, Denton, Texas, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeann L Sabino-Carvalho
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Sabrina Li
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| |
Collapse
|
10
|
Cuspidi C, Faggiano A, Gherbesi E, Sala C, Grassi G, Tadic M. Clinical and Prognostic Value of Exaggerated Blood Pressure Response to Exercise. Rev Cardiovasc Med 2023; 24:64. [PMID: 39077480 PMCID: PMC11263987 DOI: 10.31083/j.rcm2403064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 07/31/2024] Open
Abstract
The hypertensive response to exercise testing, defined as exaggerated blood pressure response (EBPR), has been documented to be independently associated with unhealthy conditions, carrying an increased risk of future hypertension, cardiovascular (CV) morbidity and mortality. In treated hypertensives, EBPR is a marker of uncontrolled hypertension, a condition previously undetected by office blood pressure (BP) measurements at rest; EBPR may also detect masked hypertension, a phenotype characterized by normal BP values in the medical environment but elevated home or ambulatory BP monitoring (ABPM). The aim of the present review is to provide a comprehensive and up-dated information on the clinical importance of EBPR targeting the following issues: (I) definition and prevalence; (II) underlying mechanisms; (III) clinical correlates and association with subclinical organ damage; (IV) predictive value; (V) clinical decision making.
Collapse
Affiliation(s)
- Cesare Cuspidi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy
| | - Andrea Faggiano
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Elisa Gherbesi
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Carla Sala
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milano, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Guido Grassi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy
| | - Marijana Tadic
- Department of Cardiology, University Hospital “Dr. Dragisa Misovic-Dedinje'', 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
12
|
Sprick JD, Mammino K, Jeong J, DaCosta DR, Hu Y, Morison DG, Nocera JR, Park J. Aerobic exercise training improves endothelial function and attenuates blood pressure reactivity during maximal exercise in chronic kidney disease. J Appl Physiol (1985) 2022; 132:785-793. [PMID: 35142559 PMCID: PMC8917938 DOI: 10.1152/japplphysiol.00808.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have exaggerated increases in blood pressure during exercise that are associated with endothelial dysfunction. We hypothesized that aerobic exercise training would improve endothelial function and attenuate blood pressure reactivity during exercise in CKD. Sedentary individuals with CKD stages III-IV underwent 12 wk of aerobic cycling exercise (n = 26) or nonaerobic exercise (n = 22, control). Both interventions were performed 3 days/wk and matched for duration. Endothelial function was measured via peripheral arterial tonometry and quantified as reactive hyperemia index (RHI). Peak oxygen uptake (V̇o2peak) was assessed via maximal treadmill exercise testing with concomitant blood pressure monitoring. All measurements were performed at baseline and after the 12-wk intervention. A linear mixed model was used to compare the rate of increase in blood pressure during the test. RHI improved with exercise (Pre = 1.78 ± 0.10 vs. Post = 2.01 ± 0.13, P = 0.03) with no change following stretching (Pre = 1.73 ± 0.08 vs. Post = 1.67 ± 0.10, P = 0.69). Peak systolic blood pressure during the maximal treadmill exercise test was lower after exercise training (Pre = 186 ± 5 mmHg, Post = 174 ± 4 mmHg, P = 0.003) with no change after stretching (Pre = 190 ± 6 mmHg, Post = 190 ± 4 mmHg, P = 0.12). The rate of increase in systolic blood pressure during the V̇o2peak test tended to decrease after training for both groups (-2 mmHg/stage) with no differences between groups (P = 0.97). There was no change in V̇o2peak after either intervention. In conclusion, aerobic exercise training improves endothelial function and attenuates peak blood pressure reactivity during exercise in CKD.NEW & NOTEWORTHY Patients with chronic kidney disease (CKD) exhibit increased blood pressure reactivity during exercise that is associated with endothelial dysfunction. Twelve weeks of structured, aerobic, exercise training improves endothelial function and attenuates peak blood pressure responses during exercise in CKD stages III-IV.
Collapse
Affiliation(s)
- Justin D. Sprick
- 1Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Department of Veterans Affairs Health Care System, Decatur, Georgia,3Department of Veterans Affairs Health Care System, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
| | - Kevin Mammino
- 2Department of Veterans Affairs Health Care System, Decatur, Georgia,3Department of Veterans Affairs Health Care System, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
| | - Jinhee Jeong
- 1Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Department of Veterans Affairs Health Care System, Decatur, Georgia,3Department of Veterans Affairs Health Care System, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
| | - Dana R. DaCosta
- 1Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Department of Veterans Affairs Health Care System, Decatur, Georgia,3Department of Veterans Affairs Health Care System, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
| | - Yingtian Hu
- 4Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Doree G. Morison
- 1Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Joe R. Nocera
- 2Department of Veterans Affairs Health Care System, Decatur, Georgia,3Department of Veterans Affairs Health Care System, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia,5Departments of Neurology and Rehabilitative Medicine, Emory University Department of Medicine, Atlanta, Georgia
| | - Jeanie Park
- 1Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,2Department of Veterans Affairs Health Care System, Decatur, Georgia,3Department of Veterans Affairs Health Care System, Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia
| |
Collapse
|
13
|
Gollie JM, Patel SS, Harris-Love MO, Cohen SD, Blackman MR. Fatigability and the Role of Neuromuscular Impairments in Chronic Kidney Disease. Am J Nephrol 2022; 53:253-263. [PMID: 35344954 PMCID: PMC9871956 DOI: 10.1159/000523714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The combination of neuromuscular impairments plus psychosocial aspects of chronic kidney disease (CKD) may predispose these patients to greater risk for experiencing increased levels of fatigability. There has been extensive clinical and scientific interest in the problem of fatigue in CKD and end-stage kidney disease (ESKD) patients, whereas less attention has been directed to understanding fatigability. Accordingly, the primary purposes of this review are to (1) discuss fatigue and fatigability and their potential interactions in patients with CKD and ESKD, (2) provide evidence for increased fatigability in CKD and ESKD patients, (3) examine how commonly experienced neuromuscular impairments in CKD and ESKD patients may contribute to the severity of performance fatigability, and (4) highlight preliminary evidence on the effects of exercise as a potential clinical treatment for targeting fatigability in this population. SUMMARY Fatigue is broadly defined as a multidimensional construct encompassing a subjective lack of physical and/or mental energy that is perceived by the individual to interfere with usual or desired activities. In contrast, fatigability is conceptualized within the context of physical activity and is quantified as the interactions between reductions in objective measures of performance (i.e., performance fatigability) and perceptual adjustments regulating activity performance (i.e., perceived fatigability). We propose herein a conceptual model to extend current understandings of fatigability by considering the interactions among fatigue, perceived fatigability, and performance fatigability. Neuromuscular impairments reported in patients with CKD and ESKD, including reductions in force capacity, skeletal muscle atrophy, mitochondrial dysfunction, abnormal skeletal muscle excitability, and neurological complications, may each contribute to the greater performance fatigability observed in these patients. KEY MESSAGES Considering the interactions among fatigue, perceived fatigability, and performance fatigability provides a novel conceptual framework to advance the understanding of fatigability in CKD and ESKD patients. Measures of fatigability may provide valuable clinical insights into the overall health status of CKD and ESKD patients. Existing data suggest that CKD and ESKD patients are at greater risk of experiencing increased fatigability, partly due to neuromuscular impairments associated with reduced kidney function. Further investigations are warranted to determine the potential clinical role fatigability measures can play in monitoring the health of CKD and ESKD patients, and in identifying potential treatments targeting fatigability in this patient population.
Collapse
Affiliation(s)
- Jared M. Gollie
- Research Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Health, Human Function and Rehabilitation Sciences, George Washington University, Washington, DC, USA
| | - Samir S. Patel
- Renal Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA
| | - Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado, Aurora, CO, USA;,Geriatric Research Education and Clinical Center, VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Scott D. Cohen
- Renal Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA
| | - Marc R. Blackman
- Research Service, Washington DC VA Medical Center, Washington, DC, USA;,Department of Medicine, George Washington University, Washington, DC, USA;,Departments of Medicine and Rehabilitation Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
14
|
Tajanpure A, Nade V, Kawale L. Liriodendrin, ameliorates hypertension by calcium channel blockade and enhancing enos expression in wistar rats. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.20.4759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Introduction: Hypertension is found to be the prime cause ofdeath worldwide in spite of a number of available treatmentswhich suggests that there is a need of discovering new leadmolecules that would be more effective to treat cardiovasculardisease (CVD). Liriodendrin, the lignan phytoconstituent possessespotential pharmacological effects. Literature survey suggeststhat liriodendrin could be effective in mitigating hypertensionconsidering its structural similarity with reported cardiovascularprotective drugs. Hence liriodendrin is investigated to reveal itsmechanism of actions to support its antihypertensive property.Methods: Hypertension was induced in male wistar rats withDOCA salt. Hypertensive rats were treated with liriodendrin for4 weeks. Blood pressure, heart rate, body weight, lipid profile,serum nitrite levels, vascular reactivity to various catecholamines,in-vitro calcium channel blocking assays, antioxidantassay, determination of aortic calcium level, endothelial function,expression of eNOS analysis were studied.Result: Liriodendrin was found safe orally up to 2000 mg/kg. Itshowed a significant decrease in heart rate, blood pressure andmean arterial pressure. In-vitro study on the isolated rat aorta revealedthe calcium channel blocking potential of liriodendrin. Vascularreactivity to various catecholamines was normalized. Vascularendothelium was significantly protected by the enhancedrelease of nitric oxide and eNOS expression by the western blottechnique. Oxidative stress was also significantly reduced.Conclusion: Liriodendrin was found to be beneficial in hypertensionas it produced vasorelaxation by blocking calciumchannels, enhancing nitric oxide release, and reducing oxidativestress. Thus, liriodendrin may be useful to relieve hypertensionand cardiovascular complications.
Collapse
|
15
|
Pella E, Theodorakopoulou MP, Boutou AK, Alexandrou ME, Bakaloudi DR, Sarridou D, Boulmpou A, Papadopoulos C, Papagianni A, Sarafidis P. Cardiopulmonary reserve examined with cardiopulmonary exercise testing in individuals with chronic kidney disease: A systematic review and meta-analysis. Ann Phys Rehabil Med 2021; 65:101588. [PMID: 34634515 DOI: 10.1016/j.rehab.2021.101588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) often present reduced physical activity and exercise tolerance due to factors relevant to co-existing disturbances of the cardiac, nervous and muscular systems. Cardiopulmonary exercise testing (CPET) is used for clinical evaluation of exercise limitation and related symptoms (i.e., dyspnea, fatigue) in several medical fields. OBJECTIVES This is a systematic review and meta-analysis of studies using CPET technology to examine cardiopulmonary reserve in individuals with versus without CKD. METHODS Literature search involved PubMed, Web of Science and Scopus databases; manual search of article references and of gray literature was also performed. Observational studies and randomized trials that used CPET for patients with CKD stage 1-5 versus controls were eligible. The primary outcome was peak oxygen uptake (VO2peak). The Newcastle-Ottawa Scale was used to evaluate the quality of retrieved studies. RESULTS From an initial 4944 literature records, we identified 29 studies fulfilling the inclusion criteria; of these, 25 studies (2,213 participants) with complete data were included in the final meta-analysis. VO2peak was significantly lower in CKD patients than controls without CKD [standardized mean difference (SMD) -1.40, 95% confidence interval (CI) -1.68; -1.13)]. Values were lower for CKD than non-CKD individuals for oxygen consumption at anaerobic threshold (SMD -1.06, 95% CI -1.34; -0.79) and maximum workload [weighted mean difference (WMD) -58.26, 95% CI 74.14; -42.38]. In 3 studies, CKD patients had higher VO2peak than controls with heart failure without CKD (WMD 6.60, 95% CI 3.02; 10.18). Sensitivity analyses confirmed the robustness of these findings. CONCLUSIONS VO2peak and other commonly analyzed CPET variables were lower in patients with CKD than controls, which indicates reduced functional cardiopulmonary reserve in CKD. In contrast, patients with CKD performed better than controls with heart failure without CKD. Overall, rehabilitation programs should be more widely applied to individuals with CKD. PROSPERO REGISTRATION NUMBER CRD42021227805.
Collapse
Affiliation(s)
- Eva Pella
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | | | - Afroditi K Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| | - Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | | | - Despoina Sarridou
- Department of Cardiothoracic and Vascular Anaesthesia, G. Papanikolaou Hospital, Thessaloniki, Greece
| | - Aristi Boulmpou
- Third Department of Cardiology, Hippokration University Hospital, Aristotle University of Thessaloniki, Greece
| | - Christodoulos Papadopoulos
- Third Department of Cardiology, Hippokration University Hospital, Aristotle University of Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
16
|
The association of elevated blood pressure during ischaemic exercise with sport performance in Master athletes with and without morbidity. Eur J Appl Physiol 2021; 122:211-221. [PMID: 34652528 PMCID: PMC8748359 DOI: 10.1007/s00421-021-04828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/29/2021] [Indexed: 11/04/2022]
Abstract
Background An exaggerated exercise blood pressure (BP) is associated with a reduced exercise capacity. However, its connection to physical performance during competition is unknown. Aim To examine BP responses to ischaemic handgrip exercise in Master athletes (MA) with and without underlying morbidities and to assess their association with athletic performance during the World Master Track Cycling Championships 2019. Methods Forty-eight Master cyclists [age 59 ± 13yrs; weekly training volume 10.4 ± 4.1 h/week; handgrip maximum voluntary contraction (MVC) 46.3 ± 11.5 kg] divided into 2 matched groups (24 healthy MA and 24 MA with morbidity) and 10 healthy middle-aged non-athlete controls (age 48.3 ± 8.3 years; MVC 40.4 ± 14.8 kg) performed 5 min of forearm occlusion including 1 min handgrip isometric contraction (40%MVC) followed by 5 min recovery. Continuous beat-by-beat BP was recorded using finger plethysmography. Age-graded performance (AGP) was calculated to compare race performances among MA. Healthy Master cyclists were further grouped into middle-age (age 46.2 ± 6.4 years; N:12) and old-age (age 65.0 ± 7.7 years; N:12) for comparison with middle-aged non-athlete controls. Results Healthy and morbidity MA groups showed similar BP responses during forearm occlusion and AGP (90.1 ± 4.3% and 91.0 ± 5.3%, p > 0.05, respectively). Healthy and morbidity MA showed modest correlation between the BP rising slope for 40%MVC ischaemic exercise and AGP (r = 0.5, p < 0.05). MA showed accelerated SBP recovery after cessation of ischaemic handgrip exercise compared to healthy non-athlete controls. Conclusion Our findings associate long-term athletic training with improved BP recovery following ischaemic exercise regardless of age or reported morbidity. Exaggerated BP in Master cyclists during ischaemic exercise was associated with lower AGP during the World Master Cycling Championships. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04828-9.
Collapse
|
17
|
Gao J, Pan X, Li G, Chatterjee E, Xiao J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J Cardiovasc Transl Res 2021; 15:604-620. [PMID: 34533746 PMCID: PMC8447895 DOI: 10.1007/s12265-021-10171-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Increasing evidence shows that endothelial cells play critical roles in maintaining vascular homeostasis, regulating vascular tone, inhibiting inflammatory response, suppressing lipid leakage, and preventing thrombosis. The damage or injury of endothelial cells induced by physical, chemical, and biological risk factors is a leading contributor to the development of mortal cardiovascular and cerebrovascular diseases. However, the underlying mechanism of endothelial injury remains to be elucidated. Notably, no drugs effectively targeting and mending injured vascular endothelial cells have been approved for clinical practice. There is an urgent need to understand pathways important for repairing injured vasculature that can be targeted with novel therapies. Exercise training-induced protection to endothelial injury has been well documented in clinical trials, and the underlying mechanism has been explored in animal models. This review mainly summarizes the protective effects of exercise on vascular endothelium and the recently identified potential therapeutic targets for endothelial dysfunction.
Collapse
Affiliation(s)
- Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China. .,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, 333 Nan Chen Road, Shanghai, 200444, China.
| |
Collapse
|
18
|
Grazioli E, Romani A, Marrone G, Di Lauro M, Cerulli C, Urciuoli S, Murri A, Guerriero C, Tranchita E, Tesauro M, Parisi A, Di Daniele N, Noce A. Impact of Physical Activity and Natural Bioactive Compounds on Endothelial Dysfunction in Chronic Kidney Disease. Life (Basel) 2021; 11:life11080841. [PMID: 34440585 PMCID: PMC8402113 DOI: 10.3390/life11080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) represents a world-wide public health problem. Inflammation, endothelial dysfunction (ED) and vascular calcifications are clinical features of CKD patients that increase cardiovascular (CV) mortality. CKD-related CV disease pathogenic mechanisms are not only associated with traditional factors such as arterial hypertension and dyslipidemia, but also with ED, oxidative stress and low-grade inflammation. The typical comorbidities of CKD contribute to reduce the performance and the levels of the physical activity in nephropathic patients compared to healthy subjects. Currently, the effective role of physical activity on ED is still debated, but the available few literature data suggest its positive contribution. Another possible adjuvant treatment of ED in CKD patients is represented by natural bioactive compounds (NBCs). Among these, minor polar compounds of extra virgin olive oil (hydroxytyrosol, tyrosol and oleocanthal), polyphenols, and vitamin D seem to exert a beneficial role on ED in CKD patients. The objective of the review is to evaluate the effectiveness of physical exercise protocols and/or NBCs on ED in CKD patients.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (A.R.); (S.U.)
| | - Giulia Marrone
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Claudia Cerulli
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Silvia Urciuoli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), DiSIA, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; (A.R.); (S.U.)
| | - Arianna Murri
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Cristina Guerriero
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Eliana Tranchita
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Manfredi Tesauro
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
- Correspondence: (M.T.); (A.N.); Tel.: +39-06-2090-2982 (M.T.); +39-06-2090-2194 (A.N.)
| | - Attilio Parisi
- Department of Exercise, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy; (E.G.); (C.C.); (A.M.); (E.T.); (A.P.)
| | - Nicola Di Daniele
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
| | - Annalisa Noce
- UOC of Internal Medicine—Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.G.); (N.D.D.)
- Correspondence: (M.T.); (A.N.); Tel.: +39-06-2090-2982 (M.T.); +39-06-2090-2194 (A.N.)
| |
Collapse
|
19
|
Pella E, Boutou A, Theodorakopoulou MP, Sarafidis P. Assessment of Exercise Intolerance in Patients with Pre-Dialysis CKD with Cardiopulmonary Function Testing: Translation to Everyday Practice. Am J Nephrol 2021; 52:264-278. [PMID: 33882502 DOI: 10.1159/000515384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is often characterized by increased prevalence of cardiovascular risk factors and increased incidence of cardiovascular events and death. Reduced cardiovascular reserve and exercise intolerance are common in patients with CKD and are associated with adverse outcomes. SUMMARY The gold standard for identifying exercise limitation is cardiopulmonary exercise testing (CPET). CPET provides an integrative evaluation of cardiovascular, pulmonary, hematopoietic, neuropsychological, and metabolic function during maximal or submaximal exercise. It is useful in clinical setting for differentiation of the causes of exercise intolerance, risk stratification, and assessment of response to relevant treatments. A number of recent studies have used CPET in patients with pre-dialysis CKD, aiming to assess the cardiovascular reserve of these individuals, as well as the effect of interventions such as exercise training programs on their functional capacity. This review provides an in-depth description of CPET methodology and an overview of studies that utilized CPET technology to assess cardiovascular reserve in patients with pre-dialysis CKD. Key Messages: CPET can delineate multisystem changes and offer comprehensive phenotyping of factors determining overall cardiovascular risk. Potential clinical applications of CPET in CKD patients range from objective diagnosis of exercise intolerance to preoperative and long-term risk stratification and providing intermediate endpoints for clinical trials. Future studies should delineate the association of CPET indexes, with cardiovascular and respiratory alterations and hard outcomes in CKD patients, to enhance its diagnostic and prognostic utility in this population.
Collapse
Affiliation(s)
- Eva Pella
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Afroditi Boutou
- Department of Respiratory Medicine, G. Papanikolaou Hospital, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Kirkman DL, Bohmke N, Carbone S, Garten RS, Rodriguez-Miguelez P, Franco RL, Kidd JM, Abbate A. Exercise intolerance in kidney diseases: physiological contributors and therapeutic strategies. Am J Physiol Renal Physiol 2020; 320:F161-F173. [PMID: 33283641 DOI: 10.1152/ajprenal.00437.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exertional fatigue, defined as the overwhelming and debilitating sense of sustained exhaustion that impacts the ability to perform activities of daily living, is highly prevalent in chronic kidney disease (CKD) and end-stage renal disease (ESRD). Subjective reports of exertional fatigue are paralleled by objective measurements of exercise intolerance throughout the spectrum of the disease. The prevalence of exercise intolerance is clinically noteworthy, as it leads to increased frailty, worsened quality of life, and an increased risk of mortality. The physiological underpinnings of exercise intolerance are multifaceted and still not fully understood. This review aims to provide a comprehensive outline of the potential physiological contributors, both central and peripheral, to kidney disease-related exercise intolerance and highlight current and prospective interventions to target this symptom. In this review, the CKD-related metabolic derangements, cardiac and pulmonary dysfunction, altered physiological responses to oxygen consumption, vascular derangements, and sarcopenia are discussed in the context of exercise intolerance. Lifestyle interventions to improve exertional fatigue, such as aerobic and resistance exercise training, are discussed, and the lack of dietary interventions to improve exercise tolerance is highlighted. Current and prospective pharmaceutical and nutraceutical strategies to improve exertional fatigue are also broached. An extensive understanding of the pathophysiological mechanisms of exercise intolerance will allow for the development of more targeted therapeutic approached to improve exertional fatigue and health-related quality of life in CKD and ESRD.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Natalie Bohmke
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Salvatore Carbone
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia.,Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan S Garten
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Paula Rodriguez-Miguelez
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Robert L Franco
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Jason M Kidd
- Division of Nephrology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Antonio Abbate
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.,Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
21
|
Jeong JH, Fonkoue IT, Quyyumi AA, DaCosta D, Park J. Nocturnal blood pressure is associated with sympathetic nerve activity in patients with chronic kidney disease. Physiol Rep 2020; 8:e14602. [PMID: 33112490 PMCID: PMC7592496 DOI: 10.14814/phy2.14602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Elevated nocturnal blood pressure (BP) and nocturnal non-dipping are frequently observed in patients with chronic kidney disease (CKD) and are stronger predictors of cardiovascular complications and CKD progression than standard office BP. The sympathetic nervous system (SNS) is thought to modulate diurnal hemodynamic changes and the vascular endothelium plays a fundamental role in BP regulation. We hypothesized that SNS overactivity and endothelial dysfunction in CKD are linked to elevated nocturnal BP and non-dipping. In 32 CKD patients with hypertension (56 ± 7 years), office BP, 24-hr ambulatory BP, muscle sympathetic nerve activity (MSNA) and endothelial function via flow-mediated dilation (FMD) were measured. Participants were subsequently divided into dippers (nighttime average BP > 10% lower than the daytime average BP, n = 8) and non-dippers (n = 24). Non-dippers had higher nighttime BP (p < .05), but not office and daytime BP, compared to dippers. MSNA burst incidence (81 ± 13 versus 67 ± 13 bursts/100 HR, p = .019) was higher and brachial artery FMD (1.7 ± 1.5 versus 4.7 ± 1.9%, p < .001) was lower in non-dippers compared to dippers. MSNA and FMD each predicted nighttime systolic (β = 0.48,-0.46, p = .02, 0.07, respectively) and diastolic BP (β = 0.38,-0.47, p = .04, 0.03, respectively) in multivariate-adjusted analyses. Our novel findings demonstrate that unfavorable nocturnal BP profiles are associated with elevated SNS activity and endothelial dysfunction in CKD. Specifically, CKD patients with higher nighttime BP and the non-dipping pattern have higher MSNA and lower FMD. These support our hypothesis that SNS overactivation and endothelial dysfunction are linked to the dysregulation of nighttime BP as well as the magnitude of BP lowering at nighttime in CKD.
Collapse
Affiliation(s)
- Jin H. Jeong
- Division of Renal MedicineDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of Veterans Affairs Health Care SystemResearch Service LineDecaturGAUSA
| | - Ida T. Fonkoue
- Division of Renal MedicineDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of Veterans Affairs Health Care SystemResearch Service LineDecaturGAUSA
| | - Arshed A. Quyyumi
- Division of CardiologyDepartment of MedicineEmory University School of medicineAtlantaGAUSA
| | - Dana DaCosta
- Division of Renal MedicineDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of Veterans Affairs Health Care SystemResearch Service LineDecaturGAUSA
| | - Jeanie Park
- Division of Renal MedicineDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of Veterans Affairs Health Care SystemResearch Service LineDecaturGAUSA
| |
Collapse
|
22
|
Lim K, McGregor G, Coggan AR, Lewis GD, Moe SM. Cardiovascular Functional Changes in Chronic Kidney Disease: Integrative Physiology, Pathophysiology and Applications of Cardiopulmonary Exercise Testing. Front Physiol 2020; 11:572355. [PMID: 33041870 PMCID: PMC7522507 DOI: 10.3389/fphys.2020.572355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The development of cardiovascular disease during renal impairment involves striking multi-tiered, multi-dimensional complex alterations encompassing the entire oxygen transport system. Complex interactions between target organ systems involving alterations of the heart, vascular, musculoskeletal and respiratory systems occur in Chronic Kidney Disease (CKD) and collectively contribute to impairment of cardiovascular function. These systemic changes have challenged our diagnostic and therapeutic efforts, particularly given that imaging cardiac structure at rest, rather than ascertainment under the stress of exercise, may not accurately reflect the risk of premature death in CKD. The multi-systemic nature of cardiovascular disease in CKD patients provides strong rationale for an integrated approach to the assessment of cardiovascular alterations in this population. State-of-the-art cardiopulmonary exercise testing (CPET) is a powerful, dynamic technology that enables the global assessment of cardiovascular functional alterations and reflects the integrative exercise response and complex machinery that form the oxygen transport system. CPET provides a wealth of data from a single assessment with mechanistic, physiological and prognostic utility. It is an underutilized technology in the care of patients with kidney disease with the potential to help advance the field of cardio-nephrology. This article reviews the integrative physiology and pathophysiology of cardio-renal impairment, critical new insights derived from CPET technology, and contemporary evidence for potential applications of CPET technology in patients with kidney disease.
Collapse
Affiliation(s)
- Kenneth Lim
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gordon McGregor
- Coventry University Hospital, Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University - Purdue University, Indianapolis, IN, United States
| | - Gregory D Lewis
- Division of Cardiology, The Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
23
|
Bakris GL, Josephson MA. Improvement of Cardiovascular Functional Reserve After Kidney Transplant-Has the CAPER Been Solved? JAMA Cardiol 2020; 5:430-431. [PMID: 32022826 DOI: 10.1001/jamacardio.2019.5874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, Illinois
| | | |
Collapse
|
24
|
Nakano T, Shiizaki K, Miura Y, Matsui M, Kosaki K, Mori S, Yamagata K, Maeda S, Kishi T, Usui N, Yoshida M, Onaka T, Mizukami H, Kaneda R, Karasawa K, Nitta K, Kurosu H, Kuro-O M. Increased fibroblast growth factor-21 in chronic kidney disease is a trade-off between survival benefit and blood pressure dysregulation. Sci Rep 2019; 9:19247. [PMID: 31848393 PMCID: PMC6917750 DOI: 10.1038/s41598-019-55643-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Circulating levels of fibroblast growth factor-21 (FGF21) start increasing in patients with chronic kidney disease (CKD) since early stages during the cause of disease progression. FGF21 is a liver-derived hormone that induces responses to stress through acting on hypothalamus to activate the sympathetic nervous system and the hypothalamus-pituitary-adrenal endocrine axis. However, roles that FGF21 plays in pathophysiology of CKD remains elusive. Here we show in mice that FGF21 is required to survive CKD but responsible for blood pressure dysregulation. When introduced with CKD, Fgf21−/− mice died earlier than wild-type mice. Paradoxically, these Fgf21−/− CKD mice escaped several complications observed in wild-type mice, including augmentation of blood pressure elevating response and activation of the sympathetic nervous system during physical activity and increase in serum noradrenalin and corticosterone levels. Supplementation of FGF21 by administration of an FGF21-expressing adeno-associated virus vector recapitulated these complications in wild-type mice and restored the survival period in Fgf21−/− CKD mice. In CKD patients, high serum FGF21 levels are independently associated with decreased baroreceptor sensitivity. Thus, increased FGF21 in CKD can be viewed as a survival response at the sacrifice of blood pressure homeostasis.
Collapse
Affiliation(s)
- Toshihiro Nakano
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.,Department of Medicine IV, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yutaka Miura
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiro Matsui
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Keisei Kosaki
- Faculty of Sport Sciences, Waseda University, Saitama, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shoya Mori
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takuya Kishi
- Faculty of Health and Welfare Sciences in Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| | - Naoki Usui
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ruri Kaneda
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazunori Karasawa
- Department of Medicine IV, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine IV, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Kurosu
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan. .,Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
25
|
Drew RC, Charkoudian N, Park J. Neural control of cardiovascular function in black adults: implications for racial differences in autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R234-R244. [PMID: 31823675 DOI: 10.1152/ajpregu.00091.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Black adults are at increased risk for developing hypertension and cardiovascular and chronic kidney disease and have greater associated morbidity/mortality than white adults who are otherwise demographically similar. Despite the key role of the autonomic nervous system in the regulation of cardiovascular function, the mechanistic contributions of sympathetic nerves to racial differences in cardiovascular dysfunction and disease remain poorly understood. In this review, we present an update and synthesis of current understanding regarding the roles of autonomic neural mechanisms in normal and pathophysiological cardiovascular control in black and white adults. At rest, many hemodynamic and autonomic variables, including blood pressure, cardiac output, and sympathetic nerve activity, are similar in healthy black and white adults. However, resting sympathetic vascular transduction and carotid baroreflex responses are altered in ways that tend to promote increased vasoconstriction and higher blood pressure, even in healthy, normotensive black adults. Acute sympathoexcitatory maneuvers, including exercise and cold pressor test, often result in augmented sympathetic and hemodynamic responses in healthy black adults. Clinically, although mechanistic evidence is scarce in this area, existing data support the idea that excessive sympathetic activation and/or transduction into peripheral vasoconstriction contribute importantly to the pathophysiology of hypertension and chronic kidney disease in black compared with white adults. Important areas for future work include more detailed study of sympathetic and hemodynamic reactivity to exercise and other stressors in male and female black adults and, particularly, sympathetic control of renal function, an important area of clinical concern in black patients.
Collapse
Affiliation(s)
- Rachel C Drew
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
26
|
Vianna LC, Fisher JP. Reflex control of the cardiovascular system during exercise in disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Sprick JD, Morison DL, Stein CM, Li Y, Paranjape S, Fonkoue IT, DaCosta DR, Park J. Vascular α 1-adrenergic sensitivity is enhanced in chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 2019; 317:R485-R490. [PMID: 31314543 DOI: 10.1152/ajpregu.00090.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) is often complicated by difficult-to-control hypertension, in part due to chronic overactivation of the sympathetic nervous system (SNS). CKD patients also exhibit a greater increase in arterial blood pressure for a given increase in sympathetic nerve activation, suggesting an augmented vasoconstrictive response to SNS activation (i.e., neurovascular transduction). One potential mechanism of increased sympathetic neurovascular transduction is heightened sensitivity of the vascular α1-adrenergic receptors (α1ARs), the major effectors of vasoconstriction in response to norepinephrine release at the sympathetic nerve terminals. Therefore, we hypothesized that patients with CKD have increased vascular α1AR sensitivity. We studied 32 patients with CKD stages III and IV (age 59.9 ± 1.3 yr) and 19 age-matched controls (CON, age 63.2 ± 1.6 yr). Using a linear variable differential transformer (LVDT), we measured change in venoconstriction in response to exponentially increasing doses of the selective α1AR agonist phenylephrine (PE) administered sequentially into a dorsal hand vein. Individual semilogarithmic PE dose-response curves were constructed for each participant to determine the PE dose at which 50% of maximum venoconstriction occurred (ED50), reflecting α1AR sensitivity. In support of our hypothesis, CKD patients had a lower PE ED50 than CON (CKD = 2.23 ± 0.11 vs. CON = 2.63 ± 0.20, P = 0.023), demonstrating increased vascular α1AR sensitivity. Additionally, CKD patients had a greater venoconstrictive capacity to PE than CON (P = 0.015). Augmented α1AR sensitivity may contribute mechanistically to enhanced neurovascular transduction in CKD and may explain, in part, the greater blood pressure reactivity exhibited in these patients.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Doree L Morison
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - C Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Sachin Paranjape
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ida T Fonkoue
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Dana R DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
28
|
Sprick JD, Morison DL, Fonkoue IT, Li Y, DaCosta D, Rapista D, Choi H, Park J. Metabolic acidosis augments exercise pressor responses in chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 2019; 317:R312-R318. [PMID: 31141417 DOI: 10.1152/ajpregu.00076.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) patients experience augmented blood pressure (BP) reactivity during exercise that is associated with an increased risk of cardiovascular mortality. Exaggerated exercise pressor responses in CKD are in part mediated by augmented sympathetic nerve activation due to heightened muscle mechanoreflex. One mechanism that may lead to sensitization of the muscle mechanoreflex in CKD is metabolic acidosis. We hypothesized that CKD patients with low serum [bicarbonate] would exhibit exaggerated increases in arterial BP, greater reductions in muscle interstitial pH, and fatigue earlier during exercise compared with CKD patients with normal serum bicarbonate concentration ([bicarbonate]). Eighteen CKD participants with normal serum [bicarbonate] (≥24 mmol/l, normal-bicarb) and 9 CKD participants with mild metabolic acidosis ([bicarbonate] range 20-22 mmol/l, low-bicarb) performed rhythmic handgrip (RHG) exercise to volitional fatigue at 40% of maximal voluntary contraction. BP, heart rate, and muscle interstitial pH using near infrared spectroscopy were measured continuously. While mean arterial pressure (MAP) increased with exercise in both groups (P ≤ 0.002), CKD with low-bicarb had an exaggerated MAP response compared with CKD with normal-bicarb (+5.9 ± 1.3 mmHg/30 s vs. +2.6 ± 0.5 mmHg/30 s, P = 0.01). The low-bicarb group reached exhaustion earlier than the normal-bicarb group (179 ± 21 vs. 279 ± 19 s, P = 0.003). There were no differences in the change in muscle interstitial pH during exercise between groups (P = 0.31). CKD patients with metabolic acidosis have augmented exercise-induced increases in BP and poorer exercise tolerance. There was no difference in change in muscle interstitial pH between groups, however, suggesting that augmented exercise BP responses in metabolic acidosis are not due to impaired muscle-buffering capacity.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Doree Lynn Morison
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Ida T Fonkoue
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Dana DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Derick Rapista
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - HyunKyu Choi
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
29
|
The effect of exercise on blood pressure in chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2019; 14:e0211032. [PMID: 30726242 PMCID: PMC6364898 DOI: 10.1371/journal.pone.0211032] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/07/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Management of hypertension in chronic kidney disease (CKD) remains a major challenge. We conducted a systematic review to assess whether exercise is an effective strategy for lowering blood pressure in this population. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS We searched MEDLINE, EMBASE, the Cochrane Library, CINAHL and Web of Science for randomized controlled trials (RCTs) that examined the effect of exercise on blood pressure in adults with non-dialysis CKD, stages 3-5. Outcomes were non-ambulatory systolic blood pressure (primary), other blood pressure parameters, 24-hour ambulatory blood pressure, pulse-wave velocity, and flow-mediated dilatation. Results were summarized using random effects models. RESULTS Twelve studies with 505 participants were included. Ten trials (335 participants) reporting non-ambulatory systolic blood pressure were meta-analysed. All included studies were a high risk of bias. Using the last available time point, exercise was not associated with an effect on systolic blood pressure (mean difference, MD -4.33 mmHg, 95% confidence interval, CI -9.04, 0.38). The MD after 12-16 and 24-26 weeks of exercise was significant (-4.93 mmHg, 95% CI -8.83, -1.03 and -10.94 mmHg, 95% CI -15.83, -6.05, respectively) but not at 48-52 weeks (1.07 mmHg, 95% CI -6.62, 8.77). Overall, exercise did not have an effect on 24-hour ambulatory blood pressure (-5.40 mmHg, 95% CI -12.67, 1.87) or after 48-52 weeks (-7.50 mmHg 95% CI -20.21, 5.21) while an effect was seen at 24 weeks (-18.00 mmHg, 95% CI -29.92, -6.08). Exercise did not have a significant effect on measures of arterial stiffness or endothelial function. CONCLUSION Limited evidence from shorter term studies suggests that exercise is a potential strategy to lower blood pressure in CKD. However, to recommend exercise for blood pressure control in this population, high quality, longer term studies specifically designed to evaluate hypertension are needed.
Collapse
|
30
|
Vaes AW, Spruit MA, Theunis J, Wouters EF, De Boever P. Peripheral endothelial function is positively associated with maximal aerobic capacity in patients with chronic obstructive pulmonary disease. Respir Med 2018; 142:41-47. [DOI: 10.1016/j.rmed.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/16/2023]
|
31
|
Characterising skeletal muscle haemoglobin saturation during exercise using near-infrared spectroscopy in chronic kidney disease. Clin Exp Nephrol 2018; 23:32-42. [PMID: 29961156 PMCID: PMC6344386 DOI: 10.1007/s10157-018-1612-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Background Chronic kidney disease (CKD) patients have reduced exercise capacity. Possible contributing factors may include impaired muscle O2 utilisation through reduced mitochondria number and/or function slowing the restoration of muscle ATP concentrations via oxidative phosphorylation. Using near-infrared spectroscopy (NIRS), we explored changes in skeletal muscle haemoglobin/myoglobin O2 saturation (SMO2%) during exercise. Methods 24 CKD patients [58.3 (± 16.5) years, eGFR 56.4 (± 22.3) ml/min/1.73 m2] completed the incremental shuttle walk test (ISWT) as a marker of exercise capacity. Using NIRS, SMO2% was measured continuously before, during, and after (recovery) exercise. Exploratory differences were investigated between exercise capacity tertiles in CKD, and compared with six healthy controls. Results We identified two discrete phases; a decline in SMO2% during incremental exercise, followed by rapid increase upon cessation (recovery). Compared to patients with low exercise capacity [distance walked during ISWT, 269.0 (± 35.9) m], patients with a higher exercise capacity [727.1 (± 38.1) m] took 45% longer to reach their minimum SMO2% (P = .038) and recovered (half-time recovery) 79% faster (P = .046). Compared to controls, CKD patients took significantly 56% longer to recover (i.e., restore SMO2% to baseline, full recovery) (P = .014). Conclusions Using NIRS, we have determined for the first time in CKD, that favourable SMO2% kinetics (slower deoxygenation rate, quicker recovery) are associated with greater exercise capacity. These dysfunctional kinetics may indicate reduced mitochondria capacity to perform oxidative phosphorylation—a process essential for carrying out even simple activities of daily living. Accordingly, NIRS may provide a simple, low cost, and non-invasive means to evaluate muscle O2 kinetics in CKD.
Collapse
|
32
|
Afsar B, Siriopol D, Aslan G, Eren OC, Dagel T, Kilic U, Kanbay A, Burlacu A, Covic A, Kanbay M. The impact of exercise on physical function, cardiovascular outcomes and quality of life in chronic kidney disease patients: a systematic review. Int Urol Nephrol 2018; 50:885-904. [DOI: 10.1007/s11255-018-1790-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/07/2018] [Indexed: 12/18/2022]
|
33
|
Li W, Sun R, Zhou S, Ma J, Xie Y, Xu B, Long H, Luo K, Fang K. 2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside inhibits septic serum‑induced inflammatory injury via interfering with the ROS‑MAPK‑NF‑κB signaling pathway in pulmonary aortic endothelial cells. Int J Mol Med 2017; 41:1643-1650. [PMID: 29286092 DOI: 10.3892/ijmm.2017.3329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis is characterized by injury to the microvasculature and the microvascular endothelial cells, leading to barrier dysfunction. However, the specific role of injury in septic endothelial barrier dysfunction remains to be elucidated. In the present study, it was hypothesized that endothelial cell inflammatory injury is likely required for barrier dysfunction under septic conditions in vitro. 2,3,5,4'‑Tetrahydroxystilbene‑2‑O‑β‑D‑glucoside (TSG), a compound extracted from Chinese herbs, is able to inhibit the inflammatory injury of septic‑serum in endothelial cells. In the present study, cell viability was assayed by CCK‑8 method; mRNA and protein expression was identified by RT‑qPCR, western blot or Elisa, respectively and the production of reactive oxygen species was observed by a fluorescence microscope. The present study indicated that septic serum significantly decreased the cell viability of pulmonary aortic endothelial cells (PAECs) following co‑cultivation for 6 h, which occurred in a time‑dependent manner. TSG notably increased the viability of PAECs in a time‑ and concentration‑dependent manner. Further investigations revealed that septic serum increased the secretion of interleukin (IL)‑1β, IL‑6 and C‑reactive protein in PAECs, whereas pretreatment with TSG significantly decreased the secretion of these inflammatory factors. These data indicated that septic serum increased inflammatory injury to the PAECs, and TSG decreased this injury via the reactive oxygen species‑mitogen‑activated protein kinase‑nuclear factor‑κB signaling pathway.
Collapse
Affiliation(s)
- Wenqiang Li
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Ruifang Sun
- Department of Joint Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Sumei Zhou
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jinluan Ma
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yingguang Xie
- Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bingcan Xu
- Department of Emergency, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Huibao Long
- Department of Emergency, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Keqin Luo
- Department of Emergency, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kuaifa Fang
- Emergency of ICU, Huiyang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|