1
|
Maadurshni GB, Nagarajan M, Mahalakshmi B, Sivasubramanian J, Hemamalini V, Manivannan J. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) exposure induces hepatotoxicity and nephrotoxicity - role of oxidative stress, mitochondrial dysfunction and pathways of cytotoxicity. Toxicol Res (Camb) 2024; 13:tfae173. [PMID: 39417036 PMCID: PMC11474237 DOI: 10.1093/toxres/tfae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Bisphenol A (BPA) is a ubiquitous pollutant worldwide and 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is considered a major active metabolite of BPA with a wide range of potent toxicological properties. However, its adverse outcome pathway (AOP) on the hepatic and renal system has not yet been explored. Methods Hence, the current study evaluated its effect on cell survival, oxidative stress, and apoptosis. In addition, the influence of signalling pathways on cytotoxicity and ROS generating enzymes (NOX2 and XO) on oxidative stress was explored by siRNA knockdown experiments. Further, its molecular interaction with SOD, CAT, and HSA (molecular docking and dynamics) was evaluated and validated with spectroscopy (fluorescence and FTIR) based methods. Results The outcome indicates that MBP exposure dose dependently increased the cytotoxic response, oxidative stress, and apoptosis in both hepatocytes and kidney cells. Further, MAPK signalling pathways and oxidative stress influenced the overall cytotoxic response in both cells. In addition, the stimulatory (NOX2 and XO) and inhibitory (SOD and CAT) effects of MBP were observed, along with a robust interaction with HSA. Conclusions The overall observation illustrates that MBP exposure adversely impacts hepatic and renal cells through oxidative stress and relevant molecular pathways which may connect the missing links during risk assessment of BPA.
Collapse
Affiliation(s)
| | - Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States of America
| | - Balamurali Mahalakshmi
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | | | - Vedagiri Hemamalini
- Department of Bioinformatics, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| |
Collapse
|
2
|
Wang XL, Li L, Meng X. Interplay between the Redox System and Renal Tubular Transport. Antioxidants (Basel) 2024; 13:1156. [PMID: 39456410 PMCID: PMC11505102 DOI: 10.3390/antiox13101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
The kidney plays a critical role in maintaining the homeostasis of body fluid by filtration of metabolic wastes and reabsorption of nutrients. Due to the overload, a vast of energy is required through aerobic metabolism, which inevitably leads to the generation of reactive oxygen species (ROS) in the kidney. Under unstressed conditions, ROS are counteracted by antioxidant systems and maintained at low levels, which are involved in signal transduction and physiological processes. Accumulating evidence indicates that the reduction-oxidation (redox) system interacts with renal tubular transport. Redox imbalance or dysfunction of tubular transport leads to renal disease. Here, we discuss the ROS and antioxidant systems in the kidney and outline the metabolic dysfunction that is a common feature of renal disease. Importantly, we describe the key molecules involved in renal tubular transport and their relationship to the redox system and, finally, summarize the impact of their dysregulation on the pathogenesis and progression of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Lianjian Li
- Department of Vascular Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Hubei Academy of Chinese Medicine, Wuhan 430061, China;
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Wang Y, Zhang Y, Zeng X, Xian X, Chen J, Niu T. Association between cMIND diet and hypertension among older adults in China: a nationwide survey. Aging Clin Exp Res 2024; 36:182. [PMID: 39235675 PMCID: PMC11377468 DOI: 10.1007/s40520-024-02842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Existing research indicates that the Mediterranean diet has a positive impact on preventing and treating hypertension. However, its specific effect on hypertension among elderly Chinese individuals is unclear. AIMS The objective of this research was to explore the association between the Chinese version of the Mediterranean-DASH Intervention for Neurodegenerative Delay (cMIND) diet and hypertension among elderly Chinese individuals, aiming to offer novel strategies for alleviating the burden of hypertension in this demographic. METHODS In this study, we used cross-sectional data published in 2018 by the China Longitudinal Health and Longevity Survey (CLHLS) to develop a binary logistic regression model to investigate the correlation between cMIND diet and hypertension in a Chinese elderly population. Restricted cubic spline was used to test for linear associations, and further subgroup analyses were performed to test for interactions. RESULTS In total, 7,103 older adults were included in the study, with a prevalence of hypertension of 39.0%. When the cMIND diet score was used as a continuous variable, a significant protective effect against hypertension was present (OR = 0.955, 95% CI:0.923-0.988, p = 0.008); when used as a categorical variable, this protective effect was still present at higher levels (compared to lower levels) of the cMIND diet (OR = 0.869, 95% CI: 0.760-0.995, p = 0.042). DISCUSSION Although the Mediterranean diet has great potential to reduce the chance of hypertension, it should also consider the effect on the Chinese population. The results of this study provide new ways to reduce the disease burden of hypertension in Chinese older adults and improve quality of life in later life. CONCLUSION The cMIND diet can considerably reduce the risk of hypertension among older adults in China.
Collapse
Affiliation(s)
- Yazhu Wang
- Department of Cardiology, Shapingba Hospital affiliated to Chongqing University (Shapingba District People's Hospital of Chongqing), Chongqing, 400030, China
| | - Yu Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Xinrong Zeng
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaobing Xian
- The Thirteenth People's Hospital of Chongqing, Chongqing, 400053, China
- Chongqing Geriatrics Hospital, Chongqing, 400053, China
| | - Jingyu Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Tengfei Niu
- Department of Basic Courses, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| |
Collapse
|
4
|
Thimm C, Adjaye J. Untangling the Uncertain Role of Overactivation of the Renin-Angiotensin-Aldosterone System with the Aging Process Based on Sodium Wasting Human Models. Int J Mol Sci 2024; 25:9332. [PMID: 39273282 PMCID: PMC11394713 DOI: 10.3390/ijms25179332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Every individual at some point encounters the progressive biological process of aging, which is considered one of the major risk factors for common diseases. The main drivers of aging are oxidative stress, senescence, and reactive oxygen species (ROS). The renin-angiotensin-aldosterone system (RAAS) includes several systematic processes for the regulation of blood pressure, which is caused by an imbalance of electrolytes. During activation of the RAAS, binding of angiotensin II (ANG II) to angiotensin II type 1 receptor (AGTR1) activates intracellular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate superoxide anions and promote uncoupling of endothelial nitric oxide (NO) synthase, which in turn decreases NO availability and increases ROS production. Promoting oxidative stress and DNA damage mediated by ANG II is tightly regulated. Individuals with sodium deficiency-associated diseases such as Gitelman syndrome (GS) and Bartter syndrome (BS) show downregulation of inflammation-related processes and have reduced oxidative stress and ROS. Additionally, the histone deacetylase sirtuin-1 (SIRT1) has a significant impact on the aging process, with reduced activity with age. However, GS/BS patients generally sustain higher levels of sirtuin-1 (SIRT1) activity than age-matched healthy individuals. SIRT1 expression in GS/BS patients tends to be higher than in healthy age-matched individuals; therefore, it can be assumed that there will be a trend towards healthy aging in these patients. In this review, we highlight the importance of the hallmarks of aging, inflammation, and the RAAS system in GS/BS patients and how this might impact healthy aging. We further propose future research directions for studying the etiology of GS/BS at the molecular level using patient-derived renal stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Zayed Centre for Research into Rare Diseases in Children (ZCR), EGA Institute for Women’s Health, University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
5
|
Armand AA, Ale-Ebrahim M, Barikrow N, Bahrami N, Rouhollah F. Investigating the indirect therapeutic effect of hAMSCs utilizing a novel scaffold (PGS-co-PCL/PGC/PPy/Gelatin) in myocardial ischemia-reperfusion-induced renal failure in male Wistar rats. Tissue Cell 2024; 89:102428. [PMID: 38878657 DOI: 10.1016/j.tice.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) occurs due to temporary or permanent interruptions in the coronary and circulatory system, indirectly affecting kidney function through reduced cardiac output for metabolic needs. In this study, the aim was to explore the indirect effects of using human amniotic membrane mesenchymal stem cells (hAMSCs) with the PGS-co-PCL/PGC/PPy/Gelatin scaffold in male rats with renal failure induced by miocardial ischemia-reperfusion. METHODS MI/R injury was induced in 48 male Wistar rats through left anterior descending artery ligation, divided into four groups (n=12); control group, cell group, scaffold group, and celss+scaffold group. Evaluations were conducted at two and thirty days post MI/R injury, encompassing echocardiography, biochemical, inflammatory markers analysis, and histological assessment. RESULTS Echocardiographic findings exhibited notable enhancement in ejection fraction, fractional shortening, and stroke volume of treated groups compared to controls after 30 days (P< 0.05). Serum creatinine (P< 0.001) and urea (P< 0.05) levels significantly decreased in the scaffold+cells group) compared to the control group. The treated cells+ scaffold group displayed improved kidney structure, evidenced by larger glomeruli and reduced Bowman's space compared to the control group (P< 0.01). Immunohistochemical analysis indicated reduced TNF-α protein in the scaffold+ cells group (P< 0.05) in contrast to the control group (P< 0.05). Inflammatory factors IL-6, TNF-α, and AKT gene expression in renal tissues were improved in scaffold+ cells-treated animals. CONCLUSION Our research proposes the combination of hAMSCs and the PGS-co-PCL/PGC/PPy/Gelatin scaffold in MI/R injured rats appears to enhance renal function and reduce kidney inflammation by improving cardiac output.
Collapse
Affiliation(s)
- Amir Akbari Armand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nooshin Barikrow
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Bahrami
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
8
|
Scurt FG, Ganz MJ, Herzog C, Bose K, Mertens PR, Chatzikyrkou C. Association of metabolic syndrome and chronic kidney disease. Obes Rev 2024; 25:e13649. [PMID: 37783465 DOI: 10.1111/obr.13649] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
The prevalence of kidney disease is increasing rapidly worldwide, reflecting rising rates of obesity, diabetes, and associated metabolic syndrome (MetS). Chronic kidney disease and related comorbidities such as obesity, diabetes, and hypertension place a significant financial burden on healthcare systems. Despite the widespread use of RAAS inhibitors, intensive blood pressure and glycemic control, and newer therapeutic options consisting of sodium/glucose cotransporter-2 (SGLT-2) inhibitors or glucagon-like peptide-1 (GLP-1) receptor agonists, a significant risk of progression to end-stage renal disease remains in the high-risk obese and diabetic population. The MetS is a cluster of cardiovascular risk factors that adversely affect the development and progression of chronic kidney failure. According to the criteria of the World Health Organization, it is defined by visceral adiposity, impaired glucose tolerance or insulin resistance, atherogenic dyslipidemia, raised blood pressure, and microalbuminuria with a albumin-to-creatinine ratio ≥30 mg/g. At molecular level MetS is marked by a proinflammatory state and increased oxidative stress leading to various pathophysiological changes causing endothelial dysfunction and a hypercoagulable state. Because the kidney is a highly vascularized organ, it is especially susceptible for those microvascular changes. Therefore, the MetS and its individual components are associated with the premature development, acceleration, and progression of chronic kidney disease. Therefore, it is becoming increasingly important to elucidate the underlying mechanisms of MetS-associated chronic kidney disease in order to develop new strategies for preventing and slowing the progression of renal disease. In this review, we will elucidate (i) the renal structural, hemodynamic, and metabolic changes that occur in obesity and obesity-related kidney injury; (ii) the clinicopathological characteristics of obesity-related kidney injury, primarily focusing on obesity-associated glomerulopathy; (iii) the potential additional factors or predisposing factors that may turn patients more susceptible to renal structural or functional compensatory failure and subsequent injury.
Collapse
Affiliation(s)
- Florian G Scurt
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Maximilian J Ganz
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Carolin Herzog
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- University Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Medical Faculty, Otto-von Guericke University Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
9
|
Pisapia F, O’Brien D, Tasinato E, Garner KL, Brown CDA. Development of a Highly Differentiated Human Primary Proximal Tubule MPS Model (aProximate MPS Flow). Bioengineering (Basel) 2023; 11:7. [PMID: 38275575 PMCID: PMC10813028 DOI: 10.3390/bioengineering11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly predictive of human outcome. To address this, we developed a physiologically relevant micro-physiological system (MPS) model of the human PT, the aProximate MPS Flow platform (Patent No: G001336.GB). In this model, primary human PT cells (hPTCs) are subjected to fluidic media flow and a shear stress of 0.01-0.2 Pa. We observe that these cells replicate the polarity of hPTCs and exhibit a higher expression of all the key transporters of SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A2 (OCT2), SLC47A1 (MATE1), SLC22A12 (URAT1), SLC2A9 (GLUT9), ABCB1 (MDR1), ABCC2 (MRP2), LRP2 (megalin), CUBN (cubilin), compared with cells grown under static conditions. Immunofluorescence microscopy confirmed an increase in OAT1, OAT3, and cilia protein expression. Increased sensitivity to nephrotoxic protein cisplatin was observed; creatinine and FITC-albumin uptake was significantly increased under fluidic shear stress conditions. Taken together, these data suggest that growing human PT cells under media flow significantly improves the phenotype and function of hPTC monolayers and has benefits to the utility and near-physiology of the model.
Collapse
Affiliation(s)
- Francesca Pisapia
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| | - Donovan O’Brien
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| | - Elena Tasinato
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Kathryn L. Garner
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| | - Colin D. A. Brown
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| |
Collapse
|
10
|
Miñano S, González-Correa C, Moleón J, Duarte J. Metabolic Modulators in Cardiovascular Complications of Systemic Lupus Erythematosus. Biomedicines 2023; 11:3142. [PMID: 38137363 PMCID: PMC10741086 DOI: 10.3390/biomedicines11123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disorder with contributions from hormones, genetics, and the environment, predominantly affecting young women. Cardiovascular disease is the primary cause of mortality in SLE, and hypertension is more prevalent among SLE patients. The dysregulation of both innate and adaptive immune cells in SLE, along with their infiltration into kidney and vascular tissues, is a pivotal factor contributing to the cardiovascular complications associated with SLE. The activation, proliferation, and differentiation of CD4+ T cells are intricately governed by cellular metabolism. Numerous metabolic inhibitors have been identified to target critical nodes in T cell metabolism. This review explores the existing evidence and knowledge gaps concerning whether the beneficial effects of metabolic modulators on autoimmunity, hypertension, endothelial dysfunction, and renal injury in lupus result from the restoration of a balanced immune system. The inhibition of glycolysis, mitochondrial metabolism, or mTORC1 has been found to improve endothelial dysfunction and prevent the development of hypertension in mouse models of SLE. Nevertheless, limited information is available regarding the potential vasculo-protective effects of drugs that act on immunometabolism in SLE patients.
Collapse
Affiliation(s)
- Sofía Miñano
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
| | - Cristina González-Correa
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Javier Moleón
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; (S.M.); (C.G.-C.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| |
Collapse
|
11
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
12
|
Wang T, Zhai Y, Xue H, Zhou W, Ding Y, Nie H. Regulation of Epithelial Sodium Transport by SARS-CoV-2 Is Closely Related with Fibrinolytic System-Associated Proteins. Biomolecules 2023; 13:biom13040578. [PMID: 37189326 DOI: 10.3390/biom13040578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Dyspnea and progressive hypoxemia are the main clinical features of patients with coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary pathology shows diffuse alveolar damage with edema, hemorrhage, and the deposition of fibrinogens in the alveolar space, which are consistent with the Berlin Acute Respiratory Distress Syndrome Criteria. The epithelial sodium channel (ENaC) is a key channel protein in alveolar ion transport and the rate-limiting step for pulmonary edema fluid clearance, the dysregulation of which is associated with acute lung injury/acute respiratory distress syndrome. The main protein of the fibrinolysis system, plasmin, can bind to the furin site of γ-ENaC and induce it to an activation state, facilitating pulmonary fluid reabsorption. Intriguingly, the unique feature of SARS-CoV-2 from other β-coronaviruses is that the spike protein of the former has the same furin site (RRAR) with ENaC, suggesting that a potential competition exists between SARS-CoV-2 and ENaC for the cleavage by plasmin. Extensive pulmonary microthrombosis caused by disorders of the coagulation and fibrinolysis system has also been seen in COVID-19 patients. To some extent, high plasmin (ogen) is a common risk factor for SARS-CoV-2 infection since an increased cleavage by plasmin accelerates virus invasion. This review elaborates on the closely related relationship between SARS-CoV-2 and ENaC for fibrinolysis system-related proteins, aiming to clarify the regulation of ENaC under SARS-CoV-2 infection and provide a novel reference for the treatment of COVID-19 from the view of sodium transport regulation in the lung epithelium.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
13
|
Balog M, Anderson AC, Heffer M, Korade Z, Mirnics K. Effects of Psychotropic Medication on Somatic Sterol Biosynthesis of Adult Mice. Biomolecules 2022; 12:biom12101535. [PMID: 36291744 PMCID: PMC9599595 DOI: 10.3390/biom12101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022] Open
Abstract
Polypharmacy is commonly used to treat psychiatric disorders. These combinations often include drugs with sterol biosynthesis inhibiting side effects, including the antipsychotic aripiprazole (ARI), and antidepressant trazodone (TRZ). As the effects of psychotropic medications are poorly understood across the various tissue types to date, we investigated the effects of ARI, TRZ, and ARI + TRZ polypharmacy on the post-lanosterol biosynthesis in three cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and seven peripheral tissues of an adult mouse model. We found that both ARI and TRZ strongly interfere with the function of 7-dehydrocholesterol reductase enzyme (DHCR7) and lead to robust elevation in 7-dehydrocholesterol levels (7-DHC) and reduction in desmosterol (DES) across all cell lines and somatic tissues. ARI + TRZ co-administration resulted in summative or synergistic effects across the utilized in vitro and in vivo models. These findings suggest that at least some of the side effects of ARI and TRZ are not receptor mediated but arise from inhibiting DHCR7 enzyme activity. We propose that interference with sterol biosynthesis, particularly in the case of simultaneous utilization of medications with such side effects, can potentially interfere with functioning or development of multiple organ systems, warranting further investigation.
Collapse
Affiliation(s)
- Marta Balog
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Allison C Anderson
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Zeljka Korade
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (Z.K.); (K.M.)
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Psychiatry, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (Z.K.); (K.M.)
| |
Collapse
|
14
|
Levanovich PE, Daugherty AM, Komnenov D, Rossi NF. Dietary fructose and high salt in young male Sprague Dawley rats induces salt-sensitive changes in renal function in later life. Physiol Rep 2022; 10:e15456. [PMID: 36117446 PMCID: PMC9483717 DOI: 10.14814/phy2.15456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023] Open
Abstract
Dietary fructose and salt are associated with hypertension and renal disease. Dietary input during critical postnatal periods may impact pathophysiology in maturity. The highest consumption of fructose occurs during adolescence. We hypothesized that a diet high in fructose with or without high salt in young male Sprague Dawley rats will lead to salt-sensitive hypertension, albuminuria, and decreased renal function in maturity. Four groups were studied from age 5 weeks: 20% glucose + 0.4% salt (GCS-GCS) or 20% fructose + 4% salt throughout (FHS-FHS). Two groups received 20% fructose + 0.4% salt or 20% fructose + 4% salt for 3 weeks (Phase I) followed by 20% glucose + 0.4% salt (Phase II). In Phase III (age 13-15 weeks), these two groups were challenged with 20% glucose + 4% salt, (FCS-GHS) and (FHS-GHS), respectively. Each group fed fructose in Phase I exhibited significantly higher MAP than GCS-GCS in Phase III. Net sodium balance, unadjusted, or adjusted for caloric intake and urine flow rate, and cumulative sodium balance were positive in FHS during Phase I and were significantly higher in FCS-GHS, FHS-GHS, and FHS-FHS vs GCS-GCS during Phase III. All three groups fed fructose during Phase I displayed significantly elevated albuminuria. GFR was significantly lower in FHS-FHS vs GCS-GCS at maturity. Qualitative histology showed mesangial expansion and hypercellularity in FHS-FHS rats. Thus, fructose ingestion during a critical period in rats, analogous to human preadolescence and adolescence, results in salt-sensitive hypertension and albuminuria in maturity. Prolonged dietary fructose and salt ingestion lead to a decline in renal function with evidence suggestive of mesangial hypercellularity.
Collapse
Affiliation(s)
| | - Ana M. Daugherty
- Department of Psychology and Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Dragana Komnenov
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
| | - Noreen F. Rossi
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- Department of Internal MedicineWayne State UniversityDetroitMichiganUSA
- John D. Dingell VA Medical CenterDetroitMichiganUSA
| |
Collapse
|
15
|
Wu HT, Chao TH, Ou HY, Tsai LM. Coral Hydrate, a Novel Antioxidant, Improves Alcohol Intoxication in Mice. Antioxidants (Basel) 2022; 11:antiox11071290. [PMID: 35883781 PMCID: PMC9311879 DOI: 10.3390/antiox11071290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Alcohol-drinking culture may cause individuals to periodically experience unpleasant hangovers. In addition, ethanol catabolism stimulates the production of free radicals that may cause liver injury and further lead to the development of chronic alcoholic fatty liver disease. Although a number of studies have suggested that hydrogenated water may be consumed to act as free radical scavenger, its instability limits its application. In this study, we used coral hydrate (i.e., hydrogenated coral materials) as a more stable hydrogen source and evaluated its effects in a murine model of alcohol intoxication. In solution, coral hydrate exhibited much more stable redox potential than did hydrogenated water. Furthermore, administration of coral hydrate by oral gavage significantly prolonged the time to fall asleep and decreased the total sleep time in mice that received intraperitoneal injection of ethanol. The mice receiving coral hydrate also had lower plasma ethanol and acetaldehyde levels than controls. In line with this observation, hepatic expression of alcohol dehydrogenase, acetaldehyde dehydrogenase, catalase and glutathione peroxidase were all significantly increased by the treatment. Meanwhile, alcohol-induced upregulation of pro-inflammatory factors was attenuated by the administration of coral hydrate. Taken together, our data suggest that coral hydrate might be an effective novel treatment for alcohol intoxication.
Collapse
Affiliation(s)
- Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
| | - Ting-Hsing Chao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Liang-Miin Tsai
- Department of Internal Medicine, Tainan Municipal Hospital (Managed by Show-Chwan Medical Care Corporation), Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2609926; Fax: +886-6-2606351
| |
Collapse
|
16
|
Chaudhari S, Pham GS, Brooks CD, Dinh VQ, Young-Stubbs CM, Shimoura CG, Mathis KW. Should Renal Inflammation Be Targeted While Treating Hypertension? Front Physiol 2022; 13:886779. [PMID: 35770194 PMCID: PMC9236225 DOI: 10.3389/fphys.2022.886779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Despite extensive research and a plethora of therapeutic options, hypertension continues to be a global burden. Understanding of the pathological roles of known and underexplored cellular and molecular pathways in the development and maintenance of hypertension is critical to advance the field. Immune system overactivation and inflammation in the kidneys are proposed alternative mechanisms of hypertension, and resistant hypertension. Consideration of the pathophysiology of hypertension in chronic inflammatory conditions such as autoimmune diseases, in which patients present with autoimmune-mediated kidney inflammation as well as hypertension, may reveal possible contributors and novel therapeutic targets. In this review, we 1) summarize current therapies used to control blood pressure and their known effects on inflammation; 2) provide evidence on the need to target renal inflammation, specifically, and especially when first-line and combinatory treatment efforts fail; and 3) discuss the efficacy of therapies used to treat autoimmune diseases with a hypertension/renal component. We aim to elucidate the potential of targeting renal inflammation in certain subsets of patients resistant to current therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keisa W. Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
17
|
Early Effects of Extracellular Vesicles Secreted by Adipose Tissue Mesenchymal Cells in Renal Ischemia Followed by Reperfusion: Mechanisms Rely on a Decrease in Mitochondrial Anion Superoxide Production. Int J Mol Sci 2022; 23:ijms23062906. [PMID: 35328327 PMCID: PMC8955255 DOI: 10.3390/ijms23062906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) caused by ischemia followed by reperfusion (I/R) is characterized by intense anion superoxide (O2•−) production and oxidative damage. We investigated whether extracellular vesicles secreted by adipose tissue mesenchymal cells (EVs) administered during reperfusion can suppress the exacerbated mitochondrial O2•− formation after I/R. We used Wistar rats subjected to bilateral renal arterial clamping (30 min) followed by 24 h of reperfusion. The animals received EVs (I/R + EVs group) or saline (I/R group) in the kidney subcapsular space. The third group consisted of false-operated rats (SHAM). Mitochondria were isolated from proximal tubule cells and used immediately. Amplex Red™ was used to measure mitochondrial O2•− formation and MitoTracker™ Orange to evaluate inner mitochondrial membrane potential (Δψ). In vitro studies were carried out on human renal proximal tubular cells (HK-2) co-cultured or not with EVs under hypoxic conditions. Administration of EVs restored O2•− formation to SHAM levels in all mitochondrial functional conditions. The gene expression of catalase and superoxide dismutase-1 remained unmodified; transcription of heme oxygenase-1 (HO-1) was upregulated. The co-cultures of HK-2 cells with EVs revealed an intense decrease in apoptosis. We conclude that the mechanisms by which EVs favor long-term recovery of renal structures and functions after I/R rely on a decrease of mitochondrial O2•− formation with the aid of the upregulated antioxidant HO-1/Nuclear factor erythroid 2-related factor 2 system, thus opening new vistas for the treatment of AKI.
Collapse
|
18
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
19
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
20
|
Aryal D, Roy T, Chamcheu JC, Jackson KE. Chronic Metabolic Acidosis Elicits Hypertension via Upregulation of Intrarenal Angiotensin II and Induction of Oxidative Stress. Antioxidants (Basel) 2020; 10:antiox10010002. [PMID: 33374943 PMCID: PMC7821948 DOI: 10.3390/antiox10010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic metabolic acidosis (CMA) can be a consequence of persistent hypertension but could potentially play a role in invoking hypertension. Currently, there is a scarcity of studies examining the outcome of induced chronic acidosis on blood pressure regulation. This study investigates CMA as a cause of hypertension. Chronic acidosis was induced in Sprague Dawley rats (100–150 g) by providing a weak acid solution of 0.28 M ammonium chloride (NH4Cl) in tap water for 8 weeks. To determine whether the rats were acidotic, blood pH was measured, while blood pressure (BP) was monitored by tail-cuff plethysmography weekly. Rats were divided into five groups: control, CMA, CMA ± spironolactone, captopril, and tempol. Serum sodium and potassium; renal interstitial fluid (for Angiotensin II concentration); and kidney proximal tubules (for Na+/K+ ATPase- α1 concentration) were analyzed. Reactive oxygen species (ROS) were detected in renal cortical homogenates using electron paramagnetic resonance (EPR). In the CMA rats, a sustained elevation in mean arterial pressure (MAP) associated with a significant decrease in blood pH was observed compared to that of control over the 8 weeks. A significant decrease in MAP was observed in acidotic rats treated with captopril/tempol, whereas spironolactone treatment caused no decrease in MAP as compared to that of the CMA group. The interstitial angiotensin II was increased in the CMA group but decreased in the CMA with captopril and tempol groups. In addition, the urinary sodium was decreased, and the serum sodium levels increased significantly in the CMA groups as compared to that of control. However, the acidotic groups with captopril and tempol showed reduced levels of serum sodium and an elevation in urinary sodium as compared to that of the CMA group. In addition, there was a significant increase in plasma renin and no change in plasma aldosterone in the CMA group with no significant differences in plasma renin or aldosterone observed during spironolactone, captopril, or tempol treatments. The increased expression of Na+/K+ ATPase-α1 in the CMA group suggests that active transport of Na+ to the blood could be causative of the observed hypertension. Furthermore, the EPR analysis confirmed an elevation in superoxide (O2-) radical levels in the CMA group, but the tempol/captopril treated acidotic groups showed less (O2-) compared to that of either the CMA group or control. Taken together, our data suggest that induction of CMA could potentially be causative of hypertension, while the mechanisms underlying the increased BP could be through the activation of intrarenal Ang II and induction of oxidative stress.
Collapse
Affiliation(s)
- Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (D.A.); (T.R.); (J.C.C.)
- Department of Biomedical Affairs, Edward Via College of Osteopathic Medicine, Monroe, LA 71203, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (D.A.); (T.R.); (J.C.C.)
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (D.A.); (T.R.); (J.C.C.)
| | - Keith E. Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA; (D.A.); (T.R.); (J.C.C.)
- Correspondence: ; Tel.: +1-318-342-1390
| |
Collapse
|
21
|
Ito K. Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate. Environ Health Prev Med 2020; 25:45. [PMID: 32867671 PMCID: PMC7461326 DOI: 10.1186/s12199-020-00883-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
High salt intake increases blood pressure, and dietary salt intake has been clearly demonstrated to be associated with hypertension incidence. Japanese people consume higher amounts of salt than Westerners. It has been reported that miso soup was one of the major sources of daily salt intake in Japanese people. Adding salt is indispensable to make miso, and therefore, in some cases, refraining from miso soup is recommended to reduce dietary salt intake. However, recent studies using salt-sensitive hypertensive models have revealed that miso lessens the effects of salt on blood pressure. In other word, the intake of miso dose not increase the blood pressure compared to the equivalent intake of salt. In addition, many clinical observational studies have demonstrated the absence of a relationship between the frequency of miso soup intake and blood pressure levels or hypertension incidence. The mechanism of this phenomenon seen in the subjects with miso soup intake has not been fully elucidated yet. However, in basic studies, it was found that the ingredients of miso attenuate sympathetic nerve activity, resulting in lowered blood pressure and heart rate. Therefore, this review focused on the differences between the effects of miso intake and those of the equivalent salt intake on sympathetic nerve activity, blood pressure, and heart rate.
Collapse
Affiliation(s)
- Koji Ito
- Department of Clinical Laboratory, Japan Community Healthcare Organization, Kyushu Hospital, 1-8-1, Kishinoura, Yahatanishi-ku, Kitakyushu, 806-8501, Japan.
| |
Collapse
|
22
|
Cuevas S, Asico LD, Jose PA, Konkalmatt P. Renal Hydrogen Peroxide Production Prevents Salt-Sensitive Hypertension. J Am Heart Assoc 2020; 9:e013818. [PMID: 31902320 PMCID: PMC6988155 DOI: 10.1161/jaha.119.013818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Background The regulation of sodium excretion is important in the pathogenesis of hypertension and salt sensitivity is predictive of cardiovascular events and mortality. C57Bl/6 and BALB/c mice have different blood pressure sensitivities to salt intake. High salt intake increases blood pressure in some C57Bl/6J mouse strains but not in any BALB/c mouse strain. Methods and Results We determined the cause of the difference in salt sensitivity between C57Bl/6 and BALB/c mice. Basal levels of superoxide and H2O2 were higher in renal proximal tubule cells (RPTCs) from BALB/c than C57Bl/6J mice. High salt diet increased H2O2 production in kidneys from BALB/c but C57Bl/6J mice. High sodium concentration (170 mmol/L) in the incubation medium increased H2O2 levels in BALB/c-RPTCs but not in C57Bl/6J-RPTCs. H2O2 (10 μmol/L) treatment decreased sodium transport in RPTCs from BALB/c but not C57Bl/6J mice. Overexpression of catalase in the mouse kidney predisposed BALB/c mice to salt-sensitive hypertension. Conclusions Our data show that the level of salt-induced H2O2 production negatively regulates RPTC sodium transport and determines the state of salt sensitivity in 2 strains of mice. High concentrations of antioxidants could prevent H2O2 production in renal proximal tubules, which would result in sodium retention and increased blood pressure.
Collapse
Affiliation(s)
- Santiago Cuevas
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Laureano D. Asico
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Pedro A. Jose
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| | - Prasad Konkalmatt
- Division of Renal Diseases & HypertensionDepartment of MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDC
| |
Collapse
|
23
|
Duni A, Liakopoulos V, Roumeliotis S, Peschos D, Dounousi E. Oxidative Stress in the Pathogenesis and Evolution of Chronic Kidney Disease: Untangling Ariadne's Thread. Int J Mol Sci 2019; 20:ijms20153711. [PMID: 31362427 PMCID: PMC6695865 DOI: 10.3390/ijms20153711] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Amplification of oxidative stress is present since the early stages of chronic kidney disease (CKD), holding a key position in the pathogenesis of renal failure. Induction of renal pro-oxidant enzymes with excess generation of reactive oxygen species (ROS) and accumulation of dityrosine-containing protein products produced during oxidative stress (advanced oxidation protein products—AOPPs) have been directly linked to podocyte damage, proteinuria, and the development of focal segmental glomerulosclerosis (FSGS) as well as tubulointerstitial fibrosis. Vascular oxidative stress is considered to play a critical role in CKD progression, and ROS are potential mediators of the impaired myogenic responses of afferent renal arterioles in CKD and impaired renal autoregulation. Both oxidative stress and inflammation are CKD hallmarks. Oxidative stress promotes inflammation via formation of proinflammatory oxidized lipids or AOPPs, whereas activation of nuclear factor κB transcription factor in the pro-oxidant milieu promotes the expression of proinflammatory cytokines and recruitment of proinflammatory cells. Accumulating evidence implicates oxidative stress in various clinical models of CKD, including diabetic nephropathy, IgA nephropathy, polycystic kidney disease as well as the cardiorenal syndrome. The scope of this review is to tackle the issue of oxidative stress in CKD in a holistic manner so as to provide a future framework for potential interventions.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Vassilios Liakopoulos
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|