1
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Mebarek S, Buchet R, Pikula S, Strzelecka-Kiliszek A, Brizuela L, Corti G, Collacchi F, Anghieri G, Magrini A, Ciancaglini P, Millan JL, Davies O, Bottini M. Do Media Extracellular Vesicles and Extracellular Vesicles Bound to the Extracellular Matrix Represent Distinct Types of Vesicles? Biomolecules 2023; 14:42. [PMID: 38254642 PMCID: PMC10813234 DOI: 10.3390/biom14010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Mineralization-competent cells, including hypertrophic chondrocytes, mature osteoblasts, and osteogenic-differentiated smooth muscle cells secrete media extracellular vesicles (media vesicles) and extracellular vesicles bound to the extracellular matrix (matrix vesicles). Media vesicles are purified directly from the extracellular medium. On the other hand, matrix vesicles are purified after discarding the extracellular medium and subjecting the cells embedded in the extracellular matrix or bone or cartilage tissues to an enzymatic treatment. Several pieces of experimental evidence indicated that matrix vesicles and media vesicles isolated from the same types of mineralizing cells have distinct lipid and protein composition as well as functions. These findings support the view that matrix vesicles and media vesicles released by mineralizing cells have different functions in mineralized tissues due to their location, which is anchored to the extracellular matrix versus free-floating.
Collapse
Affiliation(s)
- Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Rene Buchet
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (S.P.); (A.S.-K.)
| | - Leyre Brizuela
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, Université de Lyon, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex, France; (R.B.); (L.B.)
| | - Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Federica Collacchi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
| | - Genevieve Anghieri
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Jose Luis Millan
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| | - Owen Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE113TU, UK; (G.A.); (O.D.)
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (F.C.)
- Sanford Children’s Health Research Center, Sanford Burnham Prebys, La Jolla, CA 92037, USA;
| |
Collapse
|
3
|
Jiang T, Zeng Q, He J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl Cancer Res 2023; 12:2932-2945. [PMID: 37969388 PMCID: PMC10643954 DOI: 10.21037/tcr-23-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 11/17/2023]
Abstract
Alkaline phosphatase (ALP) is a group of enzymes that catalyze hydrolysis of phosphate esters at an alkaline pH, resulting in the generation of inorganic phosphate. These enzymes are widely distributed, and their activity is found in various tissues including bone, liver, intestine, and placenta. However, abnormalities in ALP expression and activity have been observed in certain types of cancer. In some cases, elevated serum levels of ALP are observed in patients with liver and bone metastasis. In other cases, increased levels of ALP have been observed in patients with pancreatic and lung cancer. On the other hand, low expression of ALP has also been associated with poor prognosis in patients with certain types of tumors, including colorectal cancer (CRC), breast cancer, and non-small cell lung cancer (NSCLC). In these cases, low ALP activity may be associated with decreased differentiation of cancer cells and increased cancer cell proliferation. Overall, the role of ALP in cancer is complex and context-dependent. This article reviews application progress of ALP in cancer, and we hypothesize that ALP might be a potential tumor biomarker, combined detection of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), bone-specific alkaline phosphatase (BSAP), carbohydrate antigen 19-9 (CA 19-9), lactate dehydrogenase (LDH) and ALP isozymes levels can be used for more accurate diagnosis of a particular tumor. Further research is needed to better understand the mechanisms underlying ALP dysregulation in cancer and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
5
|
Ramos AP, Sebinelli HG, Ciancaglini P, Rosato N, Mebarek S, Buchet R, Millán JL, Bottini M. The functional role of soluble proteins acquired by extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e34. [PMID: 38938684 PMCID: PMC11080634 DOI: 10.1002/jex2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanosized particles released by all cell types during physiological as well as pathophysiological processes to carry out diverse biological functions, including acting as sources of cellular dumping, signalosomes and mineralisation nanoreactors. The ability of EVs to perform specific biological functions is due to their biochemical machinery. Among the components of the EVs' biochemical machinery, surface proteins are of critical functional significance as they mediate the interactions of EVs with components of the extracellular milieu, the extracellular matrix and neighbouring cells. Surface proteins are thought to be native, that is, pre-assembled on the EVs' surface by the parent cells before the vesicles are released. However, numerous pieces of evidence have suggested that soluble proteins are acquired by the EVs' surface from the extracellular milieu and further modulate the biological functions of EVs during innate and adaptive immune responses, autoimmune disorders, complement activation, coagulation, viral infection and biomineralisation. Herein, we will describe the methods currently used to identify the EVs' surface proteins and discuss recent knowledge on the functional relevance of the soluble proteins acquired by EVs.
Collapse
Affiliation(s)
- Ana Paula Ramos
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Heitor Gobbi Sebinelli
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Pietro Ciancaglini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
| | - Nicola Rosato
- Dipartimento di Medicina SperimentaleUniversita’ di Roma “Tor Vergata”RomeItaly
| | - Saida Mebarek
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | - Rene Buchet
- ICBMS UMR CNRS 5246UFR BiosciencesUniversité Lyon 1Villeurbanne CedexFrance
| | | | - Massimo Bottini
- Departamento de QuímicaFaculdade de FilosofiaCiências e Letras de Ribeirão PretoUniversidade de São Paulo (FFCLRP‐USP)Ribeirão PretoSão PauloBrazil
- Sanford Burnham PrebysLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Liu S, Lin Z. Vascular Smooth Muscle Cells Mechanosensitive Regulators and Vascular Remodeling. J Vasc Res 2021; 59:90-113. [PMID: 34937033 DOI: 10.1159/000519845] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Blood vessels are subjected to mechanical loads of pressure and flow, inducing smooth muscle circumferential and endothelial shear stresses. The perception and response of vascular tissue and living cells to these stresses and the microenvironment they are exposed to are critical to their function and survival. These mechanical stimuli not only cause morphological changes in cells and vessel walls but also can interfere with biochemical homeostasis, leading to vascular remodeling and dysfunction. However, the mechanisms underlying how these stimuli affect tissue and cellular function, including mechanical stimulation-induced biochemical signaling and mechanical transduction that relies on cytoskeletal integrity, are unclear. This review focuses on signaling pathways that regulate multiple biochemical processes in vascular mesangial smooth muscle cells in response to circumferential stress and are involved in mechanosensitive regulatory molecules in response to mechanotransduction, including ion channels, membrane receptors, integrins, cytoskeletal proteins, nuclear structures, and cascades. Mechanoactivation of these signaling pathways is closely associated with vascular remodeling in physiological or pathophysiological states.
Collapse
Affiliation(s)
- Shangmin Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China, .,Medical Research Center, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China,
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, China.,Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, China
| |
Collapse
|
7
|
Mu X, Lin CY, Hambright WS, Tang Y, Ravuri S, Lu A, Matre P, Chen W, Gao X, Cui Y, Zhong L, Wang B, Huard J. Aberrant RhoA activation in macrophages increases senescence-associated secretory phenotypes and ectopic calcification in muscular dystrophic mice. Aging (Albany NY) 2020; 12:24853-24871. [PMID: 33361519 PMCID: PMC7803538 DOI: 10.18632/aging.202413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) patients often suffer from both muscle wasting and osteoporosis. Our previous studies have revealed reduced regeneration potential in skeletal muscle and bone, concomitant with ectopic calcification of soft tissues in double knockout (dKO, dystrophin-/-; utrophin-/-) mice, a severe murine model for DMD. We found significant involvement of RhoA/ROCK (Rho-Associated Protein Kinase) signaling in mediating ectopic calcification of muscles in dKO mice. However, the cellular identity of these RhoA+ cells, and the role that RhoA plays in the chronic inflammation-associated pathologies has not been elucidated. Here, we report that CD68+ macrophages are highly prevalent at the sites of ectopic calcification of dKO mice, and that these macrophages highly express RhoA. Macrophages from dKO mice feature a shift towards a more pro-inflammatory M1 polarization and an increased expression of various senescence-associated secretory phenotype (SASP) factors that was reduced with the RhoA/ROCK inhibitor Y-27632. Further, systemic inhibition of RhoA activity in dKO mice led to reduced number of RhoA+/CD68+ cells, as well as a reduction in fibrosis and ectopic calcification. Together, these data revealed that RhoA signaling may be a key regulator of imbalanced mineralization in the dystrophic musculoskeletal system and consequently a therapeutic target for the treatment of DMD or other related muscle dystrophies.
Collapse
Affiliation(s)
- Xiaodong Mu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO 81657, USA
| | - Chi-Yi Lin
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - William S Hambright
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO 81657, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sudheer Ravuri
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO 81657, USA
| | - Aiping Lu
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO 81657, USA
| | - Polina Matre
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wanqun Chen
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Biochemistry and Molecular Biology, Jinan University, Guangzhou, China
| | - Xueqin Gao
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO 81657, USA
| | - Yan Cui
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ling Zhong
- Department of Orthopedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Johnny Huard
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO 81657, USA
| |
Collapse
|
8
|
Tsuda T, Imanishi M, Oogoshi M, Goda M, Kihira Y, Horinouchi Y, Zamami Y, Ishizawa K, Ikeda Y, Hashimoto I, Tamaki T, Izawa-Ishizawa Y. Rho-associated protein kinase and cyclophilin a are involved in inorganic phosphate-induced calcification signaling in vascular smooth muscle cells. J Pharmacol Sci 2019; 142:109-115. [PMID: 31882204 DOI: 10.1016/j.jphs.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023] Open
Abstract
Arterial calcification, a risk factor of cardiovascular events, develops with differentiation of vascular smooth muscle cells (VSMCs) into osteoblast-like cells. Cyclophilin A (CypA) is a peptidyl-prolyl isomerase involved in cardiovascular diseases such as atherosclerosis and aortic aneurysms, and rho-associated protein kinase (ROCK) is involved in the pathogenesis of vascular calcification. CypA is secreted in a ROCK activity-dependent manner and works as a mitogen via autocrine or paracrine mechanisms in VSMCs. We examined the involvement of the ROCK-CypA axis in VSMC calcification induced by inorganic phosphate (Pi), a potent cell mineralization initiator. We found that Pi stimulated ROCK activity, CypA secretion, extracellular signal-regulated protein kinase (ERK) 1/2 phosphorylation, and runt-related transcription factor 2 expression, resulting in calcium accumulation in rat aortic smooth muscle cells (RASMCs). The ROCK inhibitor Y-27632 significantly suppressed Pi-induced CypA secretion, ERK1/2 phosphorylation, and calcium accumulation. Recombinant CypA was found to be associated with increased calcium accumulation in RASMCs. Based on these results, we suggest that autocrine CypA is mediated by ROCK activity and is involved in Pi-induced ERK1/2 phosphorylation following calcification signaling in RASMCs.
Collapse
Affiliation(s)
- Tatsuya Tsuda
- Department of Plastic and Reconstructive Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Japan
| | - Mizuho Oogoshi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan; Student Lab, Tokushima University School of Medicine, Japan
| | - Mitsuhiro Goda
- Department of Pharmacy, Tokushima University Hospital, Japan
| | - Yoshitaka Kihira
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Japan; Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Ichiro Hashimoto
- Department of Plastic and Reconstructive Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan; Anan Medical Center, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan; AWA Support Center, Tokushima University, Japan.
| |
Collapse
|
9
|
Chen NX, O'Neill KD, Moe SM. Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney Int 2018; 93:343-354. [PMID: 29032812 PMCID: PMC8211355 DOI: 10.1016/j.kint.2017.07.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/19/2022]
Abstract
In patients with chronic kidney and end-stage renal diseases, the major risk factor for progression of arterial calcification is the presence of existing (baseline) calcification. Here, we tested whether calcification of arteries is extended from calcified vascular smooth muscle cells (VSMCs) to adjacent normal cells by matrix vesicle-induced alteration of cell signaling. Matrix vesicles isolated from VSMC of rats with chronic kidney disease were co-cultured with VSMCs from normal littermates. Endocytosis of vesicles by recipient cells was confirmed by confocal microscopy. The addition of cellular matrix vesicles with characteristics of exosomes and low fetuin-A content enhanced the calcification of recipient VSMC. Further, only cellular-derived matrix vesicles induced an increase in intracellular calcium ion concentration, NOX1 (NADPH oxidase) and the anti-oxidant superoxide dismutase-2 in recipient normal VSMC. The increase in intracellular calcium ion concentration was due to release from endoplasmic reticulum and partially attributed to the activation of both NOX1 and mitogen-activated protein kinase (MEK1 and Erk1/2) signaling, since inhibiting both pathways blocked the increase in intracellular calcium ion in recipient VSMC. In contrast, matrix vesicles isolated from the media had no effect on the intracellular calcium ion concentration or MEK1 signaling, and did not induce calcification. However, media matrix vesicles did increase Erk1/2, although not to the level of cellular matrix vesicles, and NOX1 expression. Blockade of NOX activity further inhibited the cellular matrix vesicle-induced accelerated calcification of recipient VSMC, suggesting a potential therapeutic role of such inhibition. Thus, addition of cellular-derived matrix vesicles from calcifying VSMC can accelerate calcification by inducing cell signaling changes and phenotypic alteration of recipient VSMC.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cells, Cultured
- Coculture Techniques
- Disease Models, Animal
- Endocytosis
- Exosomes/metabolism
- Exosomes/ultrastructure
- Extracellular Matrix/metabolism
- Extracellular Matrix/ultrastructure
- Extracellular Signal-Regulated MAP Kinases/metabolism
- MAP Kinase Kinase 1/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/ultrastructure
- NADPH Oxidase 1/metabolism
- Phenotype
- Rats
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Superoxide Dismutase/metabolism
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kalisha D O'Neill
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Roduebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.
| |
Collapse
|
10
|
Morris TG, Borland SJ, Clarke CJ, Wilson C, Hannun YA, Ohanian V, Canfield AE, Ohanian J. Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 2017; 59:69-78. [PMID: 29167409 DOI: 10.1194/jlr.m079731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is the deposition of mineral in the artery wall by vascular smooth muscle cells (VSMCs) in response to pathological stimuli. The process is similar to bone formation and is an independent risk factor for cardiovascular disease. Given that ceramide and sphingosine 1-phosphate (S1P) are involved in cardiovascular pathophysiology and biomineralization, their role in VSMC matrix mineralization was investigated. During phosphate-induced VSMC mineralization, endogenous S1P levels increased accompanied by increased sphingosine kinase (SK) activity and increased mRNA expression of SK1 and SK2. Consistent with this, mineralization was increased by exogenous S1P, but decreased by C2-ceramide. Mechanistically, exogenous S1P stimulated ezrin-radixin-moesin (ERM) phosphorylation in VSMCs and ERM phosphorylation was increased concomitantly with endogenous S1P during mineralization. Moreover, inhibition of acid sphingomyelinase and ceramidase with desipramine prevented increased S1P levels, ERM activation, and mineralization. Finally, pharmacological inhibition of ERM phosphorylation with NSC663894 decreased mineralization induced by phosphate and exogenous S1P. Although further studies will be needed to verify these findings in vivo, this study defines a novel role for the SK-S1P-ERM pathways in phosphate-induced VSMC matrix mineralization and shows that blocking these pathways with pharmacological inhibitors reduces mineralization. These results may inform new therapeutic approaches to inhibit or delay vascular calcification.
Collapse
Affiliation(s)
- Thomas G Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Samantha J Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Claire Wilson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Vasken Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ann E Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Borrás T. A single gene connects stiffness in glaucoma and the vascular system. Exp Eye Res 2017; 158:13-22. [PMID: 27593913 PMCID: PMC6067113 DOI: 10.1016/j.exer.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Arterial calcification results in arterial stiffness and higher systolic blood pressure. Arterial calcification is prevented by the high expression of the Matrix-Gla gene (MGP) in the vascular smooth muscle cells (VSMC) of the arteries' tunica media. Originally, MGP, a gene highly expressed in cartilage and VSMC, was found to be one of the top expressed genes in the trabecular meshwork. The creation of an Mgp-lacZ Knock-In mouse and the use of mouse genetics revealed that in the eye, Mgp's abundant expression is localized and restricted to glaucoma-associated tissues from the anterior and posterior segments. In particular, it is specifically expressed in the regions of the trabecular meshwork and of the peripapillary sclera that surrounds the optic nerve. Because stiffness in these tissues would significantly alter outflow facility and biomechanical scleral stress in the optic nerve head (ONH), we propose MGP as a strong candidate for the regulation of stiffness in glaucoma. MGP further illustrates the presence of a common function affecting key glaucomatous parameters in the front and back of the eye, and thus offers the possibility for a sole therapeutic target for the disease.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, 4109C Neuroscience Research Building CB 7041, 105 Mason Farm Road, Chapel Hill, NC 27599-7041, USA.
| |
Collapse
|
12
|
Sung DC, Bowen CJ, Vaidya KA, Zhou J, Chapurin N, Recknagel A, Zhou B, Chen J, Kotlikoff M, Butcher JT. Cadherin-11 Overexpression Induces Extracellular Matrix Remodeling and Calcification in Mature Aortic Valves. Arterioscler Thromb Vasc Biol 2016; 36:1627-37. [PMID: 27312222 DOI: 10.1161/atvbaha.116.307812] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Calcific aortic valve (AoV) disease is a significant clinical problem for which the regulatory mechanisms are poorly understood. Enhanced cell-cell adhesion is a common mechanism of cellular aggregation, but its role in calcific lesion formation is not known. Cadherin-11 (Cad-11) has been associated with lesion formation in vitro, but its function during adult valve homeostasis and pathogenesis is not known. This study aims to elucidate the specific functions of Cad-11 and its downstream targets, RhoA and Sox9, in extracellular matrix remodeling and AoV calcification. APPROACH AND RESULTS We conditionally overexpressed Cad-11 in murine heart valves using a novel double-transgenic Nfatc1(Cre);R26-Cad11(TglTg) mouse model. These mice developed hemodynamically significant aortic stenosis with prominent calcific lesions in the AoV leaflets. Cad-11 overexpression upregulated downstream targets, RhoA and Sox9, in the valve interstitial cells, causing calcification and extensive pathogenic extracellular matrix remodeling. AoV interstitial cells overexpressing Cad-11 in an osteogenic environment in vitro rapidly form calcific nodules analogous to in vivo lesions. Molecular analyses revealed upregulation of osteoblastic and myofibroblastic markers. Treatment with a Rho-associated protein kinase inhibitor attenuated nodule formation, further supporting that Cad-11-driven calcification acts through the small GTPase RhoA/Rho-associated protein kinase signaling pathway. CONCLUSIONS This study identifies one of the underlying molecular mechanisms of heart valve calcification and demonstrates that overexpression of Cad-11 upregulates RhoA and Sox9 to induce calcification and extracellular matrix remodeling in adult AoV pathogenesis. The findings provide a potential molecular target for clinical treatment.
Collapse
Affiliation(s)
- Derek C Sung
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Caitlin J Bowen
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Kiran A Vaidya
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Jingjing Zhou
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Nikita Chapurin
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Andrew Recknagel
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Bin Zhou
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Jonathan Chen
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Michael Kotlikoff
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.)
| | - Jonathan T Butcher
- From the Meinig School of Biomedical Engineering (D.C.S., C.J.B., K.A.V., J.Z., N.C., A.R., J.T.B.) and Department of Biomedical Sciences (M.K.), Cornell University, Ithaca, NY; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine, Montefiore Medical Center, New York (B.Z.); and Department of Pediatric Cardiovascular Surgery, Seattle Children's Hospital, WA (J.C.).
| |
Collapse
|
13
|
Sharma T, Radosevich JA, Pachori G, Mandal CC. A Molecular View of Pathological Microcalcification in Breast Cancer. J Mammary Gland Biol Neoplasia 2016; 21:25-40. [PMID: 26769216 DOI: 10.1007/s10911-015-9349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Breast microcalcification is a potential diagnostic indicator for non-palpable breast cancers. Microcalcification type I (calcium oxalate) is restricted to benign tissue, whereas type II (calcium hydroxyapatite) occurs both in benign as well as in malignant lesions. Microcalcification is a pathological complication of the mammary gland. Over the past few decades, much attention has been paid to exploit this property, which forms the basis for advances in diagnostic procedures and imaging techniques. The mechanism of its formation is still poorly understood. Hence, in this paper, we have attempted to address the molecular mechanism of microcalcification in breast cancer. The central theme of this communication is "how a subpopulation of heterogeneous breast tumor cells attains an osteoblast-like phenotype, and what activities drive the process of pathophysiological microcalcification, especially at the invasive or infiltrating front of breast tumors". The role of bone morphogenetic proteins (BMPs) and tumor associated macrophages (TAMs) along with epithelial to mesenchymal transition (EMT) in manipulating this pathological process has been highlighted. Therefore, this review offers a novel insight into the mechanism underlying the development of microcalcification in breast carcinomas.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - James A Radosevich
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Geeta Pachori
- Department of Pathology, J.L.N Medical College, Ajmer, Rajasthan, 305001, India
| | - Chandi C Mandal
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
14
|
Deng W, Gu L, Li X, Zheng J, Zhang Y, Duan B, Cui J, Dong J, Du J. CD24 associates with EGFR and supports EGF/EGFR signaling via RhoA in gastric cancer cells. J Transl Med 2016; 14:32. [PMID: 26830684 PMCID: PMC5439121 DOI: 10.1186/s12967-016-0787-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background CD24, a mucin-like membrane glycoprotein, plays a critical role in carcinogenesis, but its role in human gastric cancer and the underlying mechanism remains undefined. Methods The contents of CD24 and epidermal growth factor receptor (EGFR) in gastric cancer cells (SGC-7901 and BGC-823) and non-malignant gastric epithelial cells (GES-1) were evaluated by Western blotting assay. Cellular EGFR staining was examined by immunofluorescence assay. Cell migration rate was measured by wound healing assay. The effects of depletion/overexperssion of CD24 on EGFR expression and activation of EGF/EGFR singaling pathways were evaluated by immunofluorescence, qPCR, Western blotting and flow cytometry techniques. RhoA activity was assessed by pulldown assay. CD24 and EGFR expression patterns in human gastric tumor samples were also investigated by immunohistochemistry staining. Results CD24 was overexpressed in human gastric cancer cells. Ectopic expression of CD24 in gastric epithelial cells augmented the expression of EGFR, while knockdown of CD24 in gastric cancer cells decreased the level of EGFR and cell migration velocity. To further explore the mechanisms, we investigated the effect of CD24 expression on EGF/EGFR signaling. We noticed that this effect of CD24 on EGFR expression was dependent on promoting EGFR internalization and degradation. Lower ERK and Akt phosphorylations in response to EGF stimulation were observed in CD24-depleted cells. In addition, we noticed that the effect of CD24 on EGFR stability was mediated by RhoA activity in SGC-7901 gastric cancer cells. Analysis of gastric cancer specimens revealed a positive correlation between CD24 and EGFR levels and an association between CD24 expression and worse prognosis. Conclusion Thus, these findings suggest for the first time that CD24 regulates EGFR signaling by inhibiting EGFR internalization and degradation in a RhoA-dependent manner in gastric cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0787-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjie Deng
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Luo Gu
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xiaojie Li
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yujie Zhang
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jie Cui
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jing Dong
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Epidemiology and Biostatistics and Ministry of Education (MOE) Key Laboratory for Modern Toxicology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jun Du
- Cancer Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, Jiangsu, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
15
|
Sun GQ, Li YB, Du B, Meng Y. Resveratrol via activation of AMPK lowers blood pressure in DOCA-salt hypertensive mice. Clin Exp Hypertens 2015; 37:616-21. [DOI: 10.3109/10641963.2015.1036060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Chaturvedi P, Chen NX, O'Neill K, McClintick JN, Moe SM, Janga SC. Differential miRNA Expression in Cells and Matrix Vesicles in Vascular Smooth Muscle Cells from Rats with Kidney Disease. PLoS One 2015; 10:e0131589. [PMID: 26115487 PMCID: PMC4482652 DOI: 10.1371/journal.pone.0131589] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/02/2015] [Indexed: 01/14/2023] Open
Abstract
Vascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies that examine the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play in important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network of post-transcriptional targets.
Collapse
Affiliation(s)
- Praneet Chaturvedi
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, Indiana, United States of America
| | - Neal X Chen
- Division of Nephrology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Kalisha O'Neill
- Division of Nephrology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Jeanette N McClintick
- Division of Nephrology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Sharon M Moe
- Division of Nephrology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America; Roudebush VA Medical Center, Indianapolis, Indiana, United States of America
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University Purdue University, Indianapolis, Indiana, United States of America; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), Indianapolis, Indiana, United States of America; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, Indianapolis, Indiana, United States of America
| |
Collapse
|
17
|
Huh YH, Kweon HS, Kitazawa T. ROCK inhibitor, Y-27632, reduces FBS-induced structural alteration in organ-cultured mesenteric artery. J Anal Sci Technol 2013. [DOI: 10.1186/2093-3371-4-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Background
Chronic treatment with fetal bovine serum (FBS) causes gradual vasoconstriction, vascular wall thickening, and contractility reduction in organ-cultured vascular tissues. We have previously demonstrated that Rho-associated kinase (ROCK) inhibitors prevent the functional alterations of small arteries in response to the FBS treatment. Here, we tested a further hypothesis that the chronic inhibition of ROCK has a protective effect on FBS-induced structural alterations.
Methods
To verify the new hypothesis, the rabbit mesenteric arterial rings were cultured in FBS-supplemented culture medium with or without Y-27632, a reversible ROCK inhibitor and then western blot, immunohistochemistry, apoptosis assay, and electron microscopy were performed using organ-cultured arterial rings.
Results
Chronic treatment with Y-27632 maintained the arterial diameter by preventing FBS-induced gradual arterial constriction during organ culture. Y-27632 also reduced the apoptosis and the loss of contractile myosin and actin filaments of smooth muscle cells. In addition, Y-27632 protected the morphological integrity between the endothelial cell layer and smooth muscle cell layer by preventing endothelial cell detachment and platelet endothelial cell adhesion molecule (PECAM) expression decrement.
Conclusions
Chronic ROCK inhibition provides protective effects against FBS-stimulated structural in addition to functional alterations of vascular smooth muscle cells and endothelial cells. These results strongly suggest that the RhoA/ROCK signaling is crucial for maintaining the structural and functional phenotypes of vasculature, and hence, chronic ROCK inhibition may provide protective effects on excessive growth factor-related vascular diseases including hypertension and atherosclerosis.
Collapse
|
18
|
Abstract
Vascular calcification is an actively regulated process driven by vascular smooth muscle cell (VSMC) adaptation and ultimately dysfunction, leading to the induction of active osteogenic processes within the vessel wall. Dai et al., for the first time, identify autophagy as a novel adaptive mechanism that protects against phosphate-induced VSMC calcification, by acting to regulate apoptosis and the release of mineralizing matrix vesicles from VSMCs.
Collapse
Affiliation(s)
- Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King's College London, London, UK.
| |
Collapse
|
19
|
Phan O, Maillard M, Peregaux C, Mordasini D, Stehle JC, Funk F, Burnier M. PA21, a new iron-based noncalcium phosphate binder, prevents vascular calcification in chronic renal failure rats. J Pharmacol Exp Ther 2013; 346:281-9. [PMID: 23697346 DOI: 10.1124/jpet.113.204792] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic renal failure (CRF) is associated with the development of secondary hyperparathyroidism and vascular calcifications. We evaluated the efficacy of PA21, a new iron-based noncalcium phosphate binder, in controlling phosphocalcic disorders and preventing vascular calcifications in uremic rats. Rats with adenine-diet-induced CRF were randomized to receive either PA21 0.5, 1.5, or 5% or CaCO3 3% in the diet for 4 weeks, and were compared with uremic and nonuremic control groups. After 4 weeks of phosphate binder treatment, serum calcium, creatinine, and body weight were similar between all CRF groups. Serum phosphorus was reduced with CaCO3 3% (2.06 mM; P ≤ 0.001), PA21 1.5% (2.29 mM; P < 0.05), and PA21 5% (2.21 mM; P ≤ 0.001) versus CRF controls (2.91 mM). Intact parathyroid hormone was strongly reduced in the PA21 5% and CaCO3 3% CRF groups to a similar extent (1138 and 1299 pg/ml, respectively) versus CRF controls (3261 pg/ml; both P ≤ 0.001). A lower serum fibroblast growth factor 23 concentration was observed in the PA21 5%, compared with CaCO3 3% and CRF, control groups. PA21 5% CRF rats had a lower vascular calcification score compared with CaCO3 3% CRF rats and CRF controls. In conclusion, PA21 was as effective as CaCO3 at controlling phosphocalcic disorders but superior in preventing the development of vascular calcifications in uremic rats. Thus, PA21 represents a possible alternative to calcium-based phosphate binders in CRF patients.
Collapse
Affiliation(s)
- Olivier Phan
- Department of Internal Medicine, Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 2013; 14:7089-108. [PMID: 23538840 PMCID: PMC3645678 DOI: 10.3390/ijms14047089] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 01/21/2023] Open
Abstract
Rho family GTPases belong to the Ras GTPase superfamily and transduce intracellular signals known to regulate a variety of cellular processes, including cell polarity, morphogenesis, migration, apoptosis, vesicle trafficking, viral transport and cellular transformation. The three best-characterized Rho family members are Cdc42, RhoA and Rac1. Cdc42 regulates endocytosis, the transport between the endoplasmic reticulum and Golgi apparatus, post-Golgi transport and exocytosis. Cdc42 influences trafficking through interaction with Wiskott-Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, leading to changes in actin dynamics. Rac1 mediates endocytic and exocytic vesicle trafficking by interaction with its effectors, PI3kinase, synaptojanin 2, IQGAP1 and phospholipase D1. RhoA participates in the regulation of endocytosis through controlling its downstream target, Rho kinase. Interestingly, these GTPases play important roles at different stages of viral protein and genome transport in infected host cells. Importantly, dysregulation of Cdc42, Rac1 and RhoA leads to numerous disorders, including malignant transformation. In some cases, hyperactivation of Rho GTPases is required for cellular transformation. In this article, we review a number of findings related to Rho GTPase function in intracellular transport and cellular transformation.
Collapse
Affiliation(s)
- Xiaojuan Chi
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
| | - Mark Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; E-Mail:
| | - Ji-Long Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; E-Mails: (X.C.); (Y.H.)
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-6480-7300; Fax: +86-10-6480-7980
| |
Collapse
|
21
|
Prowse PDH, Elliott CG, Hutter J, Hamilton DW. Inhibition of Rac and ROCK signalling influence osteoblast adhesion, differentiation and mineralization on titanium topographies. PLoS One 2013; 8:e58898. [PMID: 23505566 PMCID: PMC3591363 DOI: 10.1371/journal.pone.0058898] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/08/2013] [Indexed: 11/18/2022] Open
Abstract
Reducing the time required for initial integration of bone-contacting implants with host tissues would be of great clinical significance. Changes in osteoblast adhesion formation and reorganization of the F-actin cytoskeleton in response to altered topography are known to be upstream of osteoblast differentiation, and these processes are regulated by the Rho GTPases. Rac and RhoA (through Rho Kinase (ROCK)). Using pharmacological inhibitors, we tested how inhibition of Rac and ROCK influenced osteoblast adhesion, differentiation and mineralization on PT (Pre-treated) and SLA (sandblasted large grit, acid etched) topographies. Inhibition of ROCK, but not Rac, significantly reduced adhesion number and size on PT, with adhesion size consistent with focal complexes. After 1 day, ROCK, but not Rac inhibition increased osteocalcin mRNA levels on SLA and PT, with levels further increasing at 7 days post seeding. ROCK inhibition also significantly increased bone sialoprotein expression at 7 days, but not BMP-2 levels. Rac inhibition significantly reduced BMP-2 mRNA levels. ROCK inhibition increased nuclear translocation of Runx2 independent of surface roughness. Mineralization of osteoblast cultures was greater on SLA than on PT, but was increased by ROCK inhibition and attenuated by Rac inhibition on both topographies. In conclusion, inhibition of ROCK signalling significantly increases osteoblast differentiation and biomineralization in a topographic dependent manner, and its pharmacological inhibition could represent a new therapeutic to speed bone formation around implanted metals and in regenerative medicine applications.
Collapse
Affiliation(s)
- Paul D. H. Prowse
- Department of Anatomy, Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Christopher G. Elliott
- Department of Cell Biology, Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada
| | - Jeff Hutter
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Douglas W. Hamilton
- Department of Anatomy, Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada
- Department of Cell Biology, Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada
- Division of Oral Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Chen NX, O'Neill K, Chen X, Kiattisunthorn K, Gattone VH, Moe SM. Transglutaminase 2 accelerates vascular calcification in chronic kidney disease. Am J Nephrol 2013; 37:191-8. [PMID: 23466870 DOI: 10.1159/000347031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Transglutaminase 2 (TGM2) is a calcium-dependent enzyme that can cross-link nearly all extracellular matrix (ECM) proteins and can facilitate cell-ECM interaction through integrins. Given the importance of the ECM in vascular calcification we tested the hypothesis that increased TGM2 activity may accelerate vascular calcification in chronic kidney disease (CKD). METHODS We utilized thoracic aortas and vascular smooth muscle cells (VSMC) from the Cy/+ rat, a model of progressive CKD that develops arterial calcification on a normal phosphorus diet, compared to normal rats. RESULTS VSMC isolated from CKD rats had increased expression and activity of TGM2 compared to cells from normal rats. The increased calcification and expression of alkaline phosphatase activity observed in VSMC from CKD rats compared to normal was inhibited in a dose-dependent manner with the TGM inhibitors cystamine and Z006. Matrix vesicles (MV) from CKD rat VSMC also had increased TGM2 expression and the calcification of MV on type I collagen could be inhibited with cystamine and accelerated by exogenous cross-linking of fibronectin or type I collagen with TGM2. Finally, the calcification of aorta rings from CKD rats in ex vivo cultures was inhibited with TGM2 inhibitor. CONCLUSION These data demonstrate a role of TGM2 in the pathogenesis of vascular calcification in CKD through enhancement of MV-ECM calcification.
Collapse
Affiliation(s)
- Neal X Chen
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Zhu D, Mackenzie NCW, Farquharson C, MacRae VE. Mechanisms and clinical consequences of vascular calcification. Front Endocrinol (Lausanne) 2012; 3:95. [PMID: 22888324 PMCID: PMC3412412 DOI: 10.3389/fendo.2012.00095] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022] Open
Abstract
Vascular calcification has severe clinical consequences and is considered an accurate predictor of future adverse cardiovascular events, including myocardial infarction and stroke. Previously vascular calcification was thought to be a passive process which involved the deposition of calcium and phosphate in arteries and cardiac valves. However, recent studies have shown that vascular calcification is a highly regulated, cell-mediated process similar to bone formation. In this article, we outline the current understanding of key mechanisms governing vascular calcification and highlight the clinical consequences. By understanding better the molecular pathways and genetic circuitry responsible for the pathological mineralization process novel drug targets may be identified and exploited to combat and reduce the detrimental effects of vascular calcification on human health.
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
| | - Neil C. W. Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
| | - Vicky E. MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
- *Correspondence: Vicky E. MacRae, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK. e-mail:
| |
Collapse
|
24
|
Chen NX, O'Neill KD, Chen X, Kiattisunthorn K, Gattone VH, Moe SM. Activation of arterial matrix metalloproteinases leads to vascular calcification in chronic kidney disease. Am J Nephrol 2011; 34:211-9. [PMID: 21791917 DOI: 10.1159/000330175] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/14/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND The objective of the current study was to determine if altered regulation of matrix metalloproteinases (MMPs) may predispose to extracellular matrix degradation, facilitating arterial calcification in chronic kidney disease (CKD) using a progressive model of CKD-MBD, the Cy/+ rat. METHODS Sera were collected from normal or CKD rats at various times and MMP-2 and MMP-9 levels determined by ELISA or zymography. Aorta tissue was harvested at sacrifice for RT-PCR and immunostaining. Calcification of aorta rings was assessed with MMP inhibitors. RESULTS There was an increase in MMP-2, MMP-9, TIMP-1, and RUNX-2 expression in the aorta with progressive CKD, and increased MMP-2 activity in the serum. Immunostaining revealed increased expression of MMP-2 and MMP-9 in areas of aorta calcification. There was also an upregulation of MMP-2 and MMP-9 in vascular smooth muscle cells (VSMC) from CKD rats. MMP inhibitors decreased calcification of aorta rings from normal and CKD rats. High phosphorus increased MMP-2 and MMP-9 expressions in VSMC from normal rats but not from CKD rats. CONCLUSION MMP-2 and MMP-9 expression and activity are increased with progressive CKD, and blockade of MMP activity can inhibit arterial calcification. These data suggest degradation of the extracellular matrix is a critical step in the pathogenesis of arterial calcification in CKD.
Collapse
Affiliation(s)
- Neal X Chen
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gu X, Masters KS. Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am J Physiol Heart Circ Physiol 2010; 300:H448-58. [PMID: 21131478 DOI: 10.1152/ajpheart.01178.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The differentiation of valvular interstitial cells (VICs) to a myofibroblastic or osteoblast-like phenotype is commonly found in calcific valvular stenosis, although the molecular-level mechanisms of this process remain poorly understood. Due to the role of the Rho pathway in various vascular diseases and in the expression of a myofibroblast phenotype, the present study was inspired by the hypothesis that Rho activation is involved in regulating cellular processes related to valve calcification. It was found that increased RhoA and Rho kinase (ROCK) activity was associated with increased nodule formation in VIC cultures in vitro, and intentional induction of RhoA activity led to a further increase in nodules and expression of α-smooth muscle actin. VICs treated with ROCK inhibitors were also examined for nodule formation, proliferation, apoptosis, and expression of myofibroblastic or osteoblastic markers. ROCK inhibition dramatically reduced myofibroblast-regulated nodule formation in VIC cultures, as evidenced by a decrease in nodule number, total nodule area, α-smooth muscle actin-positive stress fibers, apoptosis, and gene expression of myofibroblast-related phenotypic markers. Meanwhile, ROCK inhibition was less effective at reducing nodule formation associated with osteogenic activity. In fact, ROCK inhibition increased the expression of alkaline phosphatase and effected only a modest decrease in nodule number when applied to VIC cultures with higher osteogenic activity. Thus, the Rho pathway possesses a complex role in regulating the VIC phenotype and nodule formation, and it is hoped that further elucidation of these molecular-level events will lead to an improved understanding of valvular disease and identification of potential treatments.
Collapse
Affiliation(s)
- Xiaoxiao Gu
- Materials Science Program, Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr., no. 2152, Madison, WI 53706, USA
| | | |
Collapse
|