1
|
Abstract
Endothelin (ET) is one of the most potent renal vasoconstrictors. Endothelin plays an essential role in the regulation of renal blood flow, glomerular filtration, sodium and water transport, and acid-base balance. ET-1, ET-2, and ET-3 are the three distinct endothelin isoforms comprising the endothelin family. ET-1 is the major physiologically relevant peptide and exerts its biological activity through two G-protein-coupled receptors: ET(A) and ET(B). Both ET(A) and ET(B) are expressed by the renal vasculature. Although ET(A) are expressed mainly by vascular smooth muscle cells, ET(B) are expressed by both renal endothelial and vascular smooth muscle cells. Activation of the endothelin system, or overexpression of downstream endothelin signaling pathways, has been implicated in several pathophysiological conditions including hypertension, acute kidney injury, diabetic nephropathy, and immune nephritis. In this review, we focus on the effects of endothelin on the renal microvasculature, and update recent findings on endothelin in the regulation of renal hemodynamics.
Collapse
Affiliation(s)
- Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Justin P VanBeusecum
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
2
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
Rapoport RM. Acute nitric oxide synthase inhibition and endothelin-1-dependent arterial pressure elevation. Front Pharmacol 2014; 5:57. [PMID: 24744731 PMCID: PMC3978292 DOI: 10.3389/fphar.2014.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/15/2014] [Indexed: 11/13/2022] Open
Abstract
Key evidence that endogenous nitric oxide (NO) inhibits the continuous, endothelin (ET)-1-mediated drive to elevate arterial pressure includes demonstrations that ET-1 mediates a significant component of the pressure elevated by acute exposure to NO synthase (NOS) inhibitors. This review examines the characteristics of this pressure elevation in order to elucidate potential mechanisms associated with the negative regulation of ET-1 by NO and, thereby, provide potential insight into the vascular pathophysiology underlying NO dysregulation. We surmise that the magnitude of the ET-1-dependent component of the NOS inhibitor-elevated pressure is (1) independent of underlying arterial pressure and other pressor pathways activated by the NOS inhibitors and (2) dependent on relatively higher NOS inhibitor dose, release of stored and de novo synthesized ET-1, and ETA receptor-mediated increased vascular resistance. Major implications of these conclusions include: (1) the marked variation of the ET-1-dependent component, i.e., from 0 to 100% of the pressure elevation, reflects the NO-ET-1 regulatory pathway. Thus, NOS inhibitor-mediated, ET-1-dependent pressure elevation in vascular pathophysiologies is an indicator of the level of compromised/enhanced function of this pathway; (2) NO is a more potent inhibitor of ET-1-mediated elevated arterial pressure than other pressor pathways, due in part to inhibition of intravascular pressure-independent release of ET-1. Thus, the ET-1-dependent component of pressure elevation in vascular pathophysiologies associated with NO dysregulation is of greater magnitude at higher levels of compromised NO.
Collapse
Affiliation(s)
- Robert M Rapoport
- Research Service, Department of Pharmacology and Cell Biophysics, Veterans Affairs Medical Center, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
4
|
Braam B, Cupples WA, Joles JA, Gaillard C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev 2013; 17:161-75. [PMID: 21553212 DOI: 10.1007/s10741-011-9246-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heart and kidney interactions are fascinating, in the sense that failure of the one organ strongly affects the function of the other. In this review paper, we analyze how principal driving forces for glomerular filtration and renal blood flow are changed in heart failure. Moreover, renal autoregulation and modulation of neurohumoral factors, which can both have repercussions on renal function, are analyzed. Two paradigms seem to apply. One is that the renin-angiotensin system (RAS), the sympathetic nervous system (SNS), and extracellular volume control are the three main determinants of renal function in heart failure. The other is that the classical paradigm to analyze renal dysfunction that is widely applied in nephrology also applies to the pathophysiology of heart failure: pre-renal, intra-renal, and post-renal alterations together determine glomerular filtration. At variance with the classical paradigm is that the most important post-renal factor in heart failure seems renal venous hypertension that, by increasing renal tubular pressure, decreases GFR. When different pharmacological strategies to inhibit the RAS and SNS and to assist renal volume control are considered, there is a painful lack in knowledge about how widely applied drugs affect primary driving forces for ultrafiltration, renal autoregulation, and neurohumoral control. We call for more clinical physiological studies.
Collapse
Affiliation(s)
- Branko Braam
- Department of Medicine/Division of Nephrology and Immunology, University of Alberta Hospital, 11-132 CSB Clinical Sciences Building, Edmonton, AB T6G 2G3, Canada.
| | | | | | | |
Collapse
|
5
|
Neerhof MG, Synowiec S, Khan S, Thaete LG. Impact of endothelin A receptor antagonist selectivity in chronic nitric oxide synthase inhibition-induced fetal growth restriction in the rat. Hypertens Pregnancy 2010; 29:284-93. [PMID: 20504166 DOI: 10.3109/10641950902777739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Endothelin receptor A (ETA) antagonism improves fetal and placental growth and placental perfusion on days 1 and 4, but not day 7 of a 7-day infusion of a nitric oxide synthase (NOS) inhibitor. Our purpose was to evaluate the significance of the degree of ETA antagonist selectivity on uteroplacental perfusion and fetal growth on day 7 of chronic NOS inhibition. METHODS Timed-pregnant rats were treated with the NOS inhibitor nitro-L-arginine methyl ester (L-NAME, 2.5 mg/kg/h) with and without one of the following ETA antagonists or their respective vehicles for 7 days beginning on day 14 of gestation: A-127722 (2,000-fold selective for ETA over ETB), FR139317 (8,000-fold ETA-selective), or ABT-546 (28,000-fold ETA-selective). Uterine and placental perfusion, as well as fetal and placental weight, was evaluated at the 7th day of treatment (gestation day 21). RESULTS L-NAME administration resulted in a significant reduction in uterine and placental perfusion as well as fetal and placental growth. In the setting of NOS inhibition, ETA antagonism did not improve uterine or placental perfusion or fetal growth after 7 days of infusion irrespective of the degree of selectivity of the antagonist used. CONCLUSIONS ETA antagonism, irrespective of the degree of receptor selectivity, does not improve fetal growth or uteroplacental perfusion on day 7 of chronic NOS inhibition.
Collapse
Affiliation(s)
- Mark G Neerhof
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, North Shore University Health System, Evanston, Illinois 60201, USA. mneerhof@ enh.org
| | | | | | | |
Collapse
|
6
|
Lau C, Sudbury I, Thomson M, Howard PL, Magil AB, Cupples WA. Salt-resistant blood pressure and salt-sensitive renal autoregulation in chronic streptozotocin diabetes. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1761-70. [PMID: 19339676 DOI: 10.1152/ajpregu.90731.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hyperfiltration occurs in early type 1 diabetes mellitus in both rats and humans. It results from afferent vasodilation and thus may impair stabilization of glomerular capillary pressure by autoregulation. It is inversely related to dietary salt intake, the "salt paradox." Restoration of normal glomerular filtration rate (GFR) involves increased preglomerular resistance, probably mediated by tubuloglomerular feedback (TGF). To begin to test whether the salt paradox has pathogenic significance, we compared intact vs. diabetic (streptozotocin) Long-Evans rats with normal and increased salt intake, 1 and approximately 3% by weight of food eaten, respectively. Weekly 24-h blood pressure records were acquired by telemetry before and during diabetes. Blood glucose was maintained at approximately 20 mmol/l by insulin implants. GFR was significantly elevated only in diabetic rats on normal salt intake, confirming diabetic hyperfiltration and the salt paradox. Renal blood flow dynamics show strong contributions to autoregulation by both TGF and the myogenic mechanism and were not impaired by diabetes or by increased salt intake. Separately, systolic pressure was not elevated in diabetic rats at any time during 12 wk with normal or high salt intake. Autoregulation was effective in all groups, and the diabetic-normal salt group showed significantly improved autoregulation at low perfusion pressures. Histological examination revealed very minor glomerulosclerosis and modest mesangial expansion, although neither was diagnostic of diabetes. Periodic acid-Schiff-positive droplets found in distal tubules and collecting duct segments were diagnostic of diabetic kidneys. Biologically significant effects attributable to increased salt intake were abrogation of hyperfiltration and of the left shift in autoregulation in diabetic rats.
Collapse
Affiliation(s)
- Catherine Lau
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Wang X, Cupples WA. Brown Norway rats show impaired nNOS-mediated information transfer in renal autoregulationThis article is part of a Special Issue on Information Transfer in the Microcirculation. Can J Physiol Pharmacol 2009; 87:29-36. [DOI: 10.1139/y08-102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonselective inhibition of NO synthase (NOS) augments myogenic autoregulation of renal blood flow (RBF) and profoundly reduces RBF. Previously in Wistar rats, we showed that augmented autoregulation, but not vasoconstriction, is duplicated by intrarenal inhibition of neuronal NOS (nNOS), whereas intrarenal inhibition of inducible NOS (iNOS) has no effect on RBF or on RBF dynamics. Thus macula densa nNOS transfers information from tubuloglomerular feedback to the afferent arteriole. This information flow requires that macula densa nNOS can sufficiently alter ambient NO concentration, that is, that endothelial NOS (eNOS) and iNOS do not alter local NO concentration. Because the Brown Norway rat often shows exaggerated responses to NOS inhibition and has peculiarities of renal autoregulation that are related to NO, we used this strain to study systemic and renal vascular responses to NOS inhibition. The first experiment showed transient blood pressure reduction by bolus i.v. acetylcholine that was dose-dependent in both strains and substantially prolonged in Brown Norway rats. The depressor response decayed more rapidly after nonselective NOS inhibition and the difference between strains was lost, indicating a greater activity of eNOS in Brown Norway rats. In Brown Norway rats, selective inhibition of iNOS reduced RBF (–16% ± 7%) and augmented myogenic autoregulation, whereas nNOS inhibition reduced RBF (–25% ± 4%) and did not augment myogenic autoregulation. The significant responses to intrarenal iNOS inhibition, the reduced modulation of autoregulation by nNOS inhibition, and the enhanced endothelial depressor response suggest that physiological signalling by NO within the kidney is impaired in Brown Norway rats because of irrelevant or inappropriate input of NO by eNOS and iNOS.
Collapse
Affiliation(s)
- Xuemei Wang
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Quebec
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta
- Centre for Biomedical Research and Biology Department, University of Victoria, PO Box 3020, Stn. CSC, Victoria, BC V8W 3N5, Canada
| | - William A. Cupples
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Quebec
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta
- Centre for Biomedical Research and Biology Department, University of Victoria, PO Box 3020, Stn. CSC, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
8
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Abstract
PURPOSE OF REVIEW Autoregulation of renal blood flow has traditionally been considered to stabilize glomerular filtration, and thus tubular load, in the face of blood pressure fluctuations. This view arose because of the contribution of tubuloglomerular feedback, which senses distal tubular fluid composition, to regulation and autoregulation of renal blood flow. Studies have indicated a more important role for the myogenic mechanism. It has been proposed that the 'purpose' of autoregulation is to defend glomerular structure. Both these views may be incomplete because neither takes into consideration the complex interactions between tubuloglomerular feedback and the myogenic mechanism and among nephrons whose afferent arterioles derived from a common interlobular artery. RECENT FINDINGS Recent findings indicate that it is now indisputable that effective autoregulation is necessary for defense of glomerular structure. Extensive modulation of the myogenic mechanism by tubuloglomerular feedback has been shown using a variety of experimental designs that have illuminated one pathway (neuronal nitric oxide synthase at the macula densa) by which this occurs. SUMMARY These findings indicate that the myogenic mechanism can no longer be considered as a purely vascular mechanism in the kidney and instead receives information via tubuloglomerular feedback about the status of renal function.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research, Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
11
|
Abstract
The kidney displays highly efficient autoregulation so that under steady-state conditions renal blood flow (RBF) is independent of blood pressure over a wide range of pressure. Autoregulation occurs in the preglomerular microcirculation and is mediated by two, perhaps three, mechanisms. The faster myogenic mechanism and the slower tubuloglomerular feedback contribute both directly and interactively to autoregulation of RBF and of glomerular capillary pressure. Multiple experiments have been used to study autoregulation and can be considered as variants of two basic designs. The first measures RBF after multiple stepwise changes in renal perfusion pressure to assess how a biological condition or experimental maneuver affects the overall pressure-flow relationship. The second uses time-series analysis to better understand the operation of multiple controllers operating in parallel on the same vascular smooth muscle. There are conceptual and experimental limitations to all current experimental designs so that no one design adequately describes autoregulation. In particular, it is clear that the efficiency of autoregulation varies with time and that most current techniques do not adequately address this issue. Also, the time-varying and nonadditive interaction between the myogenic mechanism and tubuloglomerular feedback underscores the difficulty of dissecting their contributions to autoregulation. We consider the modulation of autoregulation by nitric oxide and use it to illustrate the necessity for multiple experimental designs, often applied iteratively.
Collapse
Affiliation(s)
- William A Cupples
- Centre for Biomedical Research and Dept. of Biology, Univ. of Victoria, PO Box 3020, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
12
|
Shi Y, Lau C, Cupples WA. Interactive modulation of renal myogenic autoregulation by nitric oxide and endothelin acting through ET-B receptors. Am J Physiol Regul Integr Comp Physiol 2007; 292:R354-61. [PMID: 16990488 DOI: 10.1152/ajpregu.00440.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rats, nitric oxide modulates renal autoregulation in steady-state experiments and the myogenic mechanism in dynamic studies. Interactive modulation of autoregulation by nitric oxide and endothelin-1, predominantly involving endothelin B receptors, has been reported although it remains unclear whether the interaction is synergistic or obligatory or whether it affects the myogenic component of autoregulation. Nonselective inhibition of nitric oxide synthase (Lω-nitro-l-arginine methyl-ester; l-NAME) with endothelin A and B selective receptor antagonists BQ-123 and BQ-788, all infused into the renal artery, plus time series analysis were used to test the interactive actions of nitric oxide and endothelin on renal vascular conductance and on autoregulation. Nonselective endothelin receptor antagonism blunted the constrictor response to subsequent l-NAME but had no effect on previously established l-NAME-induced vasoconstriction. BQ-123 did not affect conductance and caused only minor reduction in myogenic autoregulatory efficiency. Responses to BQ-123 and l-NAME were additive and not interactive. BQ-788 and l-NAME each caused strong vasoconstriction alone and in the presence of the other, indicating that coupling between nitric oxide- and endothelin B-mediated events is not obligatory. l-NAME augmented myogenic autoregulation, and subsequent BQ-788 did not alter this response. However, BQ-788 infused alone also enhanced myogenic autoregulation but resulted in significant impairment of myogenic autoregulation by subsequent l-NAME. Thus the interaction between nitric oxide and endothelin is clearly nonadditive and, because it is asymmetrical, cannot be explained simply by convergence on a common signal pathway. Instead one must postulate some degree of hierarchical organization and that nitric oxide acts downstream to endothelin B activation.
Collapse
Affiliation(s)
- Ying Shi
- Biology Department, Concordia University, Montréal, Québec
| | | | | |
Collapse
|
13
|
Schulman IH, Zhou MS, Raij L. Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension. J Hypertens 2006; 24:S45-50. [PMID: 16601573 DOI: 10.1097/01.hjh.0000220406.46246.f2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Although there is overwhelming evidence that hypertension promotes atherosclerosis, the relative contribution and/or interaction of vasoactive and hemodynamic factors remain undefined. Endothelial dysfunction complicates hypertension and is a precursor of atherosclerosis. It is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide, and an increase in the activity of vasoconstrictors, including angiotensin (Ang) II and reactive oxygen species (ROS). Nitric oxide antagonizes the vasoconstrictive and pro-atherosclerotic effects of Ang II, whereas Ang II decreases nitric oxide bioavailability by promoting oxidative stress. OBJECTIVES The present review will focus on the interaction among nitric oxide, Ang II, and ROS in the endothelium and will examine their role in vascular tone and atherogenesis. In this context, studies from our laboratory will be reviewed demonstrating that salt-sensitive hypertension is a vascular diathesis characterized by a local activation of Ang II and NAD(P)H oxidase-derived ROS in the setting of insufficient nitric oxide. In hypertensive Dahl salt-sensitive rats, a paradigm of human salt-sensitive hypertension, inhibition of Ang II type 1 receptor or NAD(P)H oxidase-derived ROS prevented the development of endothelial dysfunction, upregulation of pro-atherogenic molecules, and vascular ROS generation, independently of blood pressure. CONCLUSIONS Salt sensitivity, an independent risk factor for increased cardiovascular morbidity and mortality, affects approximately 50% of hypertensives. Our studies suggest that, in salt-sensitive hypertension, atherogenesis is more closely linked to oxidative stress than to the hemodynamic stress of hypertension. To prevent or arrest atherosclerosis, antihypertensive therapy should aim at restoring the homeostatic balance between vasoactive factors in the vascular wall.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Nephrology and Hypertension Section, Veterans Affairs Medical Center and Division of Nephrology and Hypertension and Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, Florida 33125, USA
| | | | | |
Collapse
|
14
|
Shi Y, Wang X, Chon KH, Cupples WA. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide. Am J Physiol Regul Integr Comp Physiol 2005; 290:R982-91. [PMID: 16293681 DOI: 10.1152/ajpregu.00346.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonselective inhibition of nitric oxide (NO) synthase (NOS) augments myogenic autoregulation, an action that implies enhancement of pressure-induced constriction and dilatation. This pattern is not explained solely by interaction with a vasoconstrictor pathway. To test involvement of the Rho-Rho kinase pathway in modulation of autoregulation by NO, the selective Rho kinase inhibitor Y-27632 and/or the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME) were infused into the left renal artery of anesthetized rats. Y-27632 and l-NAME were also infused into isolated, perfused hydronephrotic kidneys to assess myogenic autoregulation over a wide range of perfusion pressure. In vivo, l-NAME reduced renal vascular conductance and augmented myogenic autoregulation, as shown by increased slope of gain reduction and associated phase peak in the pressure-flow transfer function. Y-27632 (10 mumol/l) strongly dilated the renal vasculature and profoundly inhibited autoregulation in the absence or presence of l-NAME in vivo and in vitro. Afferent arteriolar constriction induced by 30 mmol/l KCl was reversed (-92 +/- 3%) by Y-27632. Phenylephrine caused strong renal vasoconstriction but did not affect autoregulation. Inhibition of neuronal NOS by N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO) did not cause significant vasoconstriction but did augment myogenic autoregulation. Thus vasoconstriction is neither necessary (l-VNIO) nor sufficient (phenylephrine) to explain the augmented myogenic autoregulation induced by l-NAME. The effect of l-VNIO implicates tubuloglomerular feedback (TGF) and neuronal NOS at the macula densa in regulation of the myogenic mechanism. This conclusion was confirmed by the demonstration that systemic furosemide removed the TGF signature from the pressure-flow transfer function and significantly inhibited myogenic autoregulation. In the presence of furosemide, augmentation of myogenic autoregulation by l-NAME was significantly reduced. These results provide a potential mechanism to explain interaction between myogenic and TGF-mediated autoregulation.
Collapse
Affiliation(s)
- Ying Shi
- Biology Department, Concordia University, Montreal, QB, Canada
| | | | | | | |
Collapse
|
15
|
Just A, Arendshorst WJ. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback. J Physiol 2005; 569:959-74. [PMID: 16223765 PMCID: PMC1464274 DOI: 10.1113/jphysiol.2005.094888] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This rat renal blood flow (RBF) study quantified the impact of nitric oxide synthase (NOS) inhibition on the myogenic response and the balance of autoregulatory mechanisms in the time domain following a 20 mmHg-step increase or decrease in renal arterial pressure (RAP). When RAP was increased, the myogenic component of renal vascular resistance (RVR) rapidly rose within the initial 7-10 s, exhibiting an approximately 5 s time constant and providing approximately 36% of perfect autoregulation. A secondary rise between 10 and 40 s brought RVR to 95% total autoregulatory efficiency, reflecting tubuloglomerular feedback (TGF) and possibly one or two additional mechanisms. The kinetics were similar after the RAP decrease. Inhibition of NOS (by l-NAME) increased RAP, enhanced the strength (79% autoregulation) and doubled the speed of the myogenic response, and promoted the emergence of RVR oscillations ( approximately 0.2 Hz); the strength (52%) was lower at control RAP. An equi-pressor dose of angiotensin II had no effect on myogenic or total autoregulation. Inhibition of TGF (by furosemide) abolished the l-NAME effect on the myogenic response. RVR responses during furosemide treatment, assuming complete inhibition of TGF, suggest a third mechanism that contributes 10-20% and is independent of TGF, slower than the myogenic response, and abolished by NOS inhibition. The hindlimb circulation displayed a solitary myogenic response similar to the kidney (35% autoregulation) that was not enhanced by l-NAME. We conclude that NO normally restrains the strength and speed of the myogenic response in RBF but not hindlimb autoregulation, an action dependent on TGF, thereby allowing more and slow RAP fluctuations to reach glomerular capillaries.
Collapse
Affiliation(s)
- Armin Just
- Department of Cell and Molecular Physiology, 6341 Medical Biomolecular Research Bldg, CB 7545, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA.
| | | |
Collapse
|
16
|
Majid DSA, Nishiyama A, Jackson KE, Castillo A. Superoxide scavenging attenuates renal responses to ANG II during nitric oxide synthase inhibition in anesthetized dogs. Am J Physiol Renal Physiol 2005; 288:F412-9. [PMID: 15467005 DOI: 10.1152/ajprenal.00294.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To assess the role of superoxide (O2−) and nitric oxide (NO) interaction in mediating the renal actions of ANG II, we examined the renal responses to intra-arterial infusion of ANG II (0.5 ng·kg−1·min−1) before and during administration of a superoxide dismutase mimetic, tempol (0.5 mg·kg−1·min−1), in the presence or absence of NO synthase inhibitor, nitro-l-arginine (NLA; 50 μg·kg−1·min−1), in anesthetized dogs pretreated with enalaprilat (33 μg·kg−1·min−1). In one group of dogs ( n = 7), ANG II infusion before tempol infusion caused decreases of 24 ± 4% in renal blood flow (RBF), 55 ± 7% in urine flow (V), and 53 ± 8% in urinary sodium excretion (UNaV) with a slight decrease in glomerular filtration rate (GFR; −7.8 ± 3.4%). Tempol infusion alone did not cause significant alterations in RBF, GFR, V, or UNaV; however, ANG II in the presence of tempol caused a smaller degree of decreases in RBF (−12 ± 2%), in V (−16 ± 5%), and in UNaV (−27 ± 10%) with a slight increase in GFR (6.6 ± 2.8%) than the responses observed before tempol. In another group of NLA-treated dogs ( n = 6), tempol infusion also caused significant attenuation in the ANG II-induced responses on RBF (−13 ± 3% vs. −22 ± 7%), GFR (−19 ± 5% vs. −33 ± 3), V (−15 ± 12% vs. −28 ± 4%), and UNaV (−11 ± 14% vs. −32 ± 7%). These data demonstrate that renal responses to ANG II are partly mediated by O2−generation and its interaction with NO. The sodium-retaining effect of ANG II is greatly influenced by O2−generation, particularly in the condition of NO deficiency.
Collapse
Affiliation(s)
- Dewan S A Majid
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
17
|
Guan Z, Willgoss DA, Matthias A, Manley SW, Crozier S, Gobe G, Endre ZH. Facilitation of renal autoregulation by angiotensin II is mediated through modulation of nitric oxide. ACTA ACUST UNITED AC 2003; 179:189-201. [PMID: 14510783 DOI: 10.1046/j.1365-201x.2003.01125.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS This study was designed to investigate the influence of angiotensin II (Ang II) and nitric oxide (NO) on autoregulation of renal perfusion. METHODS Autoregulation was investigated in isolated perfused kidneys (IPRK) from Sprague-Dawley rats during stepped increases in perfusion pressure. RESULTS Ang II (75-200 pM) produced dose-dependent enhancement of autoregulation whereas phenylephrine produced no enhancement and impaired autoregulation of GFR. Enhancement by Ang II was inhibited by the AT1 antagonist, Losartan, and the superoxide scavenger, Tempol. Under control conditions nitric oxide synthase (NOS) inhibition by 10 microm N-omega-nitro-L-arginine methyl ester (L-NAME) facilitated autoregulation in the presence of non-specific cyclooxygenase (COX) inhibition by 10 microm indomethacin. Both COX and combined NOS/COX inhibition reduced the autoregulatory threshold concentration of Ang II. Facilitation by 100 pm Ang II was inhibited by 100 microm frusemide. Methacholine (50 nm) antagonised Ang II-facilitated autoregulation in the presence and absence of NOS/COX inhibition. Infusion of the NO donor, 1 microm sodium nitroprusside, inhibited L-NAME enhancement of autoregulation under control conditions and during Ang II infusion. CONCLUSIONS The results suggest than an excess of NO impairs autoregulation under control conditions in the IPRK and that endogenous and exogenous NO, vasodilatory prostaglandins and endothelium-derived hyperpolarizing factor (EDHF) activity antagonise Ang II-facilitated autoregulation. Ang II also produced a counterregulatory vasodilatory response that included prostaglandin and NO release. We suggest that Ang II facilitates autoregulation by a tubuloglomerular feedback-dependent mechanism through AT1 receptor-mediated depletion of nitric oxide, probably by stimulating generation of superoxide.
Collapse
Affiliation(s)
- Z Guan
- Renal Research Centre, Department of Medicine, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Racasan S, Joles JA, Boer P, Koomans HA, Braam B. NO dependency of RBF and autoregulation in the spontaneously hypertensive rat. Am J Physiol Renal Physiol 2003; 285:F105-12. [PMID: 12631552 DOI: 10.1152/ajprenal.00348.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the spontaneously hypertensive rat (SHR), renal blood flow (RBF) has been reported to be very dependent on nitric oxide (NO); however, autoregulation is normal, albeit shifted to higher perfusion pressures. To test the hypothesis that in the SHR NO dependency of RBF autoregulation is diminished, we investigated RBF autoregulation in anesthetized young male SHR and normotensive Wistar-Kyoto (WKY) rats before and during acute intravenous NO synthase (NOS) inhibition with N(omega)-nitro-L-arginine (L-NNA) and urinary excretion of nitrate plus nitrite (U(NOx)V) at different renal perfusion pressures (RPP). Under baseline conditions, SHR had higher mean arterial pressure (147 +/- 4 mmHg) and renal vascular resistance (16 +/- 1 U) than WKY (105 +/- 4 mmHg and 10 +/- 0.5 U, respectively, P < 0.05). RBF was similar (9.4 +/- 0.5 vs. 10.3 +/- 0.1 ml x min(-1)x g kidney wt(-1)). Acute NOS blockade increased mean arterial pressure similarly, but there was significantly more reduction in RBF and hence an enhanced increase in renal vascular resistance in SHR (to 36 +/- 3 vs. 17 +/- 1 U in WKY, P < 0.001). The renal vasculature of SHR is thus strongly dependent on NO in maintaining basal RBF. The lower limit of autoregulation was higher in SHR than WKY in the baseline situation (85 +/- 3 vs. 71 +/- 2 mmHg, P < 0.05). Acute L-NNA administration did not decrease the lower limit in the SHR (to 81 +/- 3 mmHg, not significant) and decreased the lower limit to 63 +/- 2 mmHg (P < 0.05) in the WKY. The degree of compensation as a measure of autoregulatory efficiency attained at spontaneous perfusion pressures was comparable in SHR vs. WKY but with a shift of the curve toward higher perfusion pressures in SHR. Acute NOS blockade only increased the degree of compensation in WKY. Remarkably, U(NOx)V was significantly lower at spontaneous RPP in SHR. After reduction of RPP, the observed decrease in U(NOx)V was significantly more pronounced in WKY than in SHR. In conclusion, the renal circulation in SHR is dependent on high levels of NO; however, the capacity to modulate NO in response to RPP-induced changes in shear stress seems to be limited.
Collapse
Affiliation(s)
- Simona Racasan
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|