1
|
Nanami M, Pech V, Lazo-Fernandez Y, Weinstein AM, Wall SM. ENaC inhibition stimulates HCl secretion in the mouse cortical collecting duct. II. Bafilomycin-sensitive H+ secretion. Am J Physiol Renal Physiol 2015; 309:F259-68. [PMID: 26017972 DOI: 10.1152/ajprenal.00120.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/26/2015] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na(+) channel (ENaC) blockade stimulates stilbene-sensitive conductive Cl(-) secretion in the mouse cortical collecting duct (CCD). This study's purpose was to determine the co-ion that accompanies benzamil- and DIDS-sensitive Cl(-) flux. Thus transepithelial voltage, VT, as well as total CO2 (tCO2) and Cl(-) flux were measured in CCDs from aldosterone-treated mice consuming a NaCl-replete diet. We reasoned that if stilbene inhibitors (DIDS) reduce conductive anion secretion they should reduce the lumen-negative VT. However, during ENaC blockade (benzamil, 3 μM), DIDS (100 μM) application to the perfusate reduced net H(+) secretion, which increased the lumen-negative VT. Conversely, ENaC blockade alone stimulated H(+) secretion, which reduced the lumen-negative VT. Application of an ENaC inhibitor to the perfusate reduced the lumen-negative VT, increased intercalated cell intracellular pH, and reduced net tCO2 secretion. However, benzamil did not change tCO2 flux during apical H(+)-ATPase blockade (bafilomycin, 5 nM). The increment in H(+) secretion observed with benzamil application contributes to the fall in VT observed with application of this diuretic. As such, ENaC blockade reduces the lumen-negative VT by inhibiting conductive Na(+) absorption and by stimulating H(+) secretion by type A intercalated cells. In conclusion, 1) in CCDs from aldosterone-treated mice, benzamil application stimulates HCl secretion mediated by the apical H(+)-ATPase and a yet to be identified conductive Cl(-) transport pathway; 2) benzamil-induced HCl secretion is reversed with the application of stilbene inhibitors or H(+)-ATPase inhibitors to the perfusate; and 3) benzamil reduces VT not only by inhibiting conductive Na(+) absorption, but also by stimulating H(+) secretion.
Collapse
Affiliation(s)
- Masayoshi Nanami
- Department of Medicine. Emory University School of Medicine, Atlanta, Georgia
| | - Vladimir Pech
- Department of Medicine. Emory University School of Medicine, Atlanta, Georgia
| | | | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York; and Department of Medicine, Weill Medical College of Cornell University, New York, New York
| | - Susan M Wall
- Department of Medicine. Emory University School of Medicine, Atlanta, Georgia; Department of Physiology, Emory University School of Medicine, Atlanta, Georgia;
| |
Collapse
|
2
|
Ip YK, Ching B, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF. Light induces changes in activities of Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and glutamine synthetase in tissues involved directly or indirectly in light-enhanced calcification in the giant clam, Tridacna squamosa. Front Physiol 2015; 6:68. [PMID: 25798110 PMCID: PMC4351588 DOI: 10.3389/fphys.2015.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/17/2015] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to determine the effects of 12 h of exposure to light, as compared with 12 h of exposure to darkness (control), on enzymatic activities of transporters involved in the transport of NH(+) 4 or H(+), and activities of enzymes involved in converting NH(+) 4 to glutamate/glutamine in inner mantle, outer mantle, and ctenidia of the giant clam, Tridacna squamosa. Exposure to light resulted in a significant increase in the effectiveness of NH(+) 4 in substitution for K(+) to activate Na(+)/K(+)-ATPase (NKA), manifested as a significant increase in the Na(+)/NH(+) 4-activated-NKA activity in the inner mantle. However, similar phenomena were not observed in the extensible outer mantle, which contained abundant symbiotic zooxanthellae. Hence, during light-enhanced calcification, H(+) released from CaCO3 deposition could react with NH3 to form NH(+) 4 in the extrapallial fluid, and NH(+) 4 could probably be transported into the shell-facing inner mantle epithelium through NKA. Light also induced an increase in the activity of glutamine synthetase, which converts NH(+) 4 and glutamate to glutamine, in the inner mantle. Taken together, these results explained observations reported elsewhere that light induced a significant increase in pH and a significant decrease in ammonia concentration in the extrapallial fluid, as well as a significant increase in the glutamine concentration in the inner mantle, of T. squamosa. Exposure of T. squamosa to light also led to a significant decrease in the N-ethylmaleimide (NEM)-sensitive-V-H(+)-ATPase (VATPase) in the inner mantle, and significant increases in the Na(+)/K(+)-activated-NKA, H(+)/NH(+) 4-activated-H(+)/K(+)-ATPase, and NEM-sensitive-VATPase activities in ctenidia, indicating that light-enhanced calcification might perturb Na(+) homeostasis and acid/base balance in the hemolymph, and might involve the active uptake of NH(+) 4 from the environment. This is the first report on light having direct enhancing effects on activities of certain transporters/enzymes related to light-enhanced calcification in the inner mantle and ctenidia of T. squamosa.
Collapse
Affiliation(s)
- Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, SingaporeSingapore
- The Tropical Marine Science Institute, National University of Singapore, SingaporeSingapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, SingaporeSingapore
- The Tropical Marine Science Institute, National University of Singapore, SingaporeSingapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, SingaporeSingapore
- The Tropical Marine Science Institute, National University of Singapore, SingaporeSingapore
| | - Celine Y. L. Choo
- Department of Biological Sciences, National University of Singapore, SingaporeSingapore
- The Tropical Marine Science Institute, National University of Singapore, SingaporeSingapore
| | - Mel V. Boo
- Department of Biological Sciences, National University of Singapore, SingaporeSingapore
- The Tropical Marine Science Institute, National University of Singapore, SingaporeSingapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, SingaporeSingapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, SingaporeSingapore
| |
Collapse
|
3
|
Bishop JM, Lee HW, Handlogten ME, Han KH, Verlander JW, Weiner ID. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia. Am J Physiol Renal Physiol 2013; 304:F422-31. [PMID: 23220726 PMCID: PMC3566498 DOI: 10.1152/ajprenal.00301.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022] Open
Abstract
The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K(+)-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.
Collapse
Affiliation(s)
- Jesse M Bishop
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
4
|
Abstract
Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4(+) and 2 HCO3(-) for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3(-)-consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4(+) trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4(+)-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K(+), and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis.
Collapse
Affiliation(s)
- I David Weiner
- Nephrology and Hypertension Section, NF/SGVHS, Gainesville, Florida, USA.
| | | |
Collapse
|
5
|
Loong AM, Chew SF, Wong WP, Lam SH, Ip YK. Both seawater acclimation and environmental ammonia exposure lead to increases in mRNA expression and protein abundance of Na⁺:K⁺:2Cl⁻ cotransporter in the gills of the climbing perch, Anabas testudineus. J Comp Physiol B 2011; 182:491-506. [PMID: 22179410 DOI: 10.1007/s00360-011-0634-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 01/18/2023]
Abstract
The freshwater climbing perch, Anabas testudineus, is an obligatory air-breathing teleost which can acclimate to seawater, survive long period of emersion, and actively excrete ammonia against high concentrations of environmental ammonia. This study aimed to clone and sequence the Na⁺:K⁺:2Cl⁻ cotransporter (nkcc) from the gills of A. testudineus, and to determine the effects of seawater acclimation or exposure to 100 mmol l⁻¹ NH₄Cl in freshwater on its branchial mRNA expression. The complete coding cDNA sequence of nkcc from the gills of A. testudineus consisted of 3,495 bp, which was translated into a protein with 1,165 amino acid residues and an estimated molecular mass of 127.4 kDa. A phylogenetic analysis revealed that the translated Nkcc of A. testudineus was closer to fish Nkcc1a than to fish Nkcc1b or Nkcc2. After a progressive increase in salinity, there were significant increases in the mRNA expression and protein abundance of nkcc1a in the gills of fish acclimated to seawater as compared with that of the freshwater control. Hence, it can be concluded that similar to marine teleosts, Cl⁻ excretion through basolateral Nkcc1 of mitochondrion-rich cells (MRCs) was essential to seawater acclimation in A. testudineus. Exposure of A. testudineus to 100 mmol l⁻¹ NH₄Cl for 1 or 6 days also resulted in significant increases in the mRNA expression of nkcc1a in the gills, indicating a functional role of Nkcc1a in active ammonia excretion. It is probable that NH₄⁺ enter MRCs through basolateral Nkcc1a before being actively transported across the apical membrane. Since the operation of Nkcc1a would lead to an increase in the intracellular Na⁺ concentration, it can be deduced that an upregulation of basolateral Na⁺/K⁺-ATPase (Nka) activity would be necessary to compensate for the increased influx of Na⁺ into MRCs during active NH₄⁺ excretion. This would imply that the main function of Nka in active NH₄⁺ excretion is to maintain intracellular Na⁺ and K⁺ homeostasis instead of transporting NH₄⁺ directly into MRCs as proposed previously. In conclusion, active salt secretion during seawater acclimation and active NH₄⁺ excretion during exposure to ammonia in freshwater could involve similar transport mechanisms in the gills of A. testudineus.
Collapse
Affiliation(s)
- Ai M Loong
- Department of Biological Science, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
6
|
The hyperpolarization-activated cyclic nucleotide-gated HCN2 channel transports ammonium in the distal nephron. Kidney Int 2011; 80:832-40. [PMID: 21796099 DOI: 10.1038/ki.2011.230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have identified Rhesus proteins as important molecules for ammonia transport in acid-secreting intercalated cells in the distal nephron. Here, we provide evidence for an additional molecule that can mediate NH3/NH4 excretion, the subtype 2 of the hyperpolarization-activated cyclic nucleotide-gated channel family (HCN2), in collecting ducts in rat renal cortex and medulla. Chronic metabolic acidosis in rats did not alter HCN2 protein expression but downregulated the relative abundance of HCN2 mRNA. Its cDNA was identical to the homolog from the brain and the protein was post-translationally modified by N-type glycosylation. Electrophysiological recordings in Xenopus oocytes injected with HCN2 cRNA found that potassium was transported better than ammonium, each of which was transported significantly better than sodium, criteria that are compatible with a role for HCN2 in ammonium transport. In microperfused rat outer medullary collecting duct segments, the initial rate of acidification, upon exposure to a basolateral ammonium chloride pulse, was higher in intercalated than in principal cells. A specific inhibitor of HCN2 (ZD7288) decreased acidification only in intercalated cells from control rats. In rats with chronic metabolic acidosis, the rate of acidification doubled in both intercalated and principal cells; however, ZD7288 had no significant inhibitory effect. Thus, HCN2 is a basolateral ammonium transport pathway of intercalated cells and may contribute to the renal regulation of body pH under basal conditions.
Collapse
|
7
|
Weiner ID, Verlander JW. Role of NH3 and NH4+ transporters in renal acid-base transport. Am J Physiol Renal Physiol 2011; 300:F11-23. [PMID: 21048022 PMCID: PMC3023229 DOI: 10.1152/ajprenal.00554.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/01/2010] [Indexed: 11/22/2022] Open
Abstract
Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
8
|
Bishop JM, Verlander JW, Lee HW, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID. Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol Renal Physiol 2010; 299:F1065-77. [PMID: 20719974 DOI: 10.1152/ajprenal.00277.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rh B glycoprotein (Rhbg) is a member of the Rh glycoprotein family of ammonia transporters. In the current study, we examine Rhbg's role in basal and acidosis-stimulated acid-base homeostasis. Metabolic acidosis induced by HCl administration increased Rhbg expression in both the cortex and outer medulla. To test the functional significance of increased Rhbg expression, we used a Cre-loxP approach to generate mice with intercalated cell-specific Rhbg knockout (IC-Rhbg-KO). On normal diet, intercalated cell-specific Rhbg deletion did not alter urine ammonia excretion, pH, or titratable acid excretion significantly, but it did decrease glutamine synthetase expression in the outer medulla significantly. After metabolic acidosis was induced, urinary ammonia excretion was significantly less in IC-Rhbg-KO than in control (C) mice on days 2-4 of acid loading, but not on day 5. Urine pH and titratable acid excretion and dietary acid intake did not differ significantly between acid-loaded IC-Rhcg-KO and C mice. In IC-Rhbg-KO mice, acid loading increased connecting segment (CNT) cell and outer medullary collecting duct principal cell Rhbg expression. In both C and IC-Rhbg-KO mice, acid loading decreased glutamine synthetase in both the cortex and outer medulla; the decrease on day 3 was similar in IC-Rhbg-KO and C mice, but on day 5 it was significantly greater in IC-Rhbg-KO than in C mice. We conclude 1) intercalated cell Rhbg contributes to acidosis-stimulated renal ammonia excretion, 2) Rhbg in CNT and principal cells may contribute to renal ammonia excretion, and 3) decreased glutamine synthetase expression may enable normal rates of ammonia excretion under both basal conditions and on day 5 of acid loading in IC-Rhbg-KO mice.
Collapse
Affiliation(s)
- Jesse M Bishop
- Div. of Nephrology, Hypertension, and Transplantation, P.O. Box 100224, Univ. of Florida College of Medicine, Gainesville, FL 32610-0224, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee HW, Verlander JW, Bishop JM, Igarashi P, Handlogten ME, Weiner ID. Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion. Am J Physiol Renal Physiol 2009; 296:F1364-75. [PMID: 19321595 PMCID: PMC2692449 DOI: 10.1152/ajprenal.90667.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 03/24/2009] [Indexed: 11/22/2022] Open
Abstract
NH3 movement across plasma membranes has traditionally been ascribed to passive, lipid-phase diffusion. However, ammonia-specific transporters, Mep/Amt proteins, are present in primitive organisms and mammals express orthologs of Mep/Amt proteins, the Rh glycoproteins. These findings suggest that the mechanisms of NH3 movement in mammalian tissues should be reexamined. Rh C glycoprotein (Rhcg) is expressed in the collecting duct, where NH3 secretion is necessary for both basal and acidosis-stimulated ammonia transport. To determine whether the collecting duct secretes NH3 via Rhcg or via lipid-phase diffusion, we generated mice with collecting duct-specific Rhcg deletion (CD-KO). CD-KO mice had loxP sites flanking exons 5 and 9 of the Rhcg gene (Rhcg(fl/fl)) and expressed Cre-recombinase under control of the Ksp-cadherin promoter (Ksp-Cre). Control (C) mice were Rhcg(fl/fl) but Ksp-Cre negative. We confirmed kidney-specific genomic recombination using PCR analysis and collecting duct-specific Rhcg deletion using immunohistochemistry. Under basal conditions, urinary ammonia excretion was less in KO vs. C mice; urine pH was unchanged. After acid-loading for 7 days, CD-KO mice developed more severe metabolic acidosis than did C mice. Urinary ammonia excretion did not increase significantly on the first day of acidosis in CD-KO mice, despite an intact ability to increase urine acidification, whereas it increased significantly in C mice. On subsequent days, urinary ammonia excretion slowly increased in CD-KO mice, but was always significantly less than in C mice. We conclude that collecting duct Rhcg expression contributes to both basal and acidosis-stimulated renal ammonia excretion, indicating that collecting duct ammonia secretion is, at least in part, mediated by Rhcg and not solely by lipid diffusion.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- University of Florida College of Medicine, PO Box 100224, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kim HY, Verlander JW, Bishop JM, Cain BD, Han KH, Igarashi P, Lee HW, Handlogten ME, Weiner ID. Basolateral expression of the ammonia transporter family member Rh C glycoprotein in the mouse kidney. Am J Physiol Renal Physiol 2009; 296:F543-55. [PMID: 19129254 DOI: 10.1152/ajprenal.90637.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ammonia metabolism and transport are critical for acid-base homeostasis. The ammonia transporter family member Rh C glycoprotein (Rhcg) is expressed in distal renal tubular segments, and its expression is regulated in parallel with renal ammonia metabolism. However, there are inconsistencies in its reported subcellular distribution, with both apical and basolateral Rhcg reported in rat and human kidney and only apical expression in mouse kidney. Because the membrane location of Rhcg is critical for understanding its physiological role, we reassessed mouse Rhcg localization using refined immunolocalization methods. Two antibodies directed against different Rhcg-specific epitopes identified both apical and basolateral Rhcg immunolabel in mouse kidney. Immunogold electron microscopy both confirmed basolateral plasma membrane Rhcg expression and showed that apical immunolabel represented expression in both the apical plasma membrane and in subapical cytoplasmic vesicles. Immunoblots and Northern blots identified similar bands in Balb/c and C57BL/6 kidneys, suggesting basolateral Rhcg may result from alternative trafficking. Basolateral Rhcg intensity was strain dependent, with less basolateral Rhcg expression in the Balb/c mouse compared with the C57BL/6 mouse. In mice with collecting duct-specific Rhcg gene deletion, generated using Cre-loxP techniques, neither apical nor basolateral Rhcg immunolabel was identified in the collecting duct, confirming that basolateral Rhcg was the product of the same gene product as apical Rhcg. Although basolateral Rhcg expression differed between C57BL/6 and Balb/c mice, Rh B glycoprotein, which is exclusively basolateral, was expressed at similar levels in the two strains. We conclude that Rhcg is present in both the apical and basolateral plasma membrane in the mouse kidney, where it is likely to contribute to renal ammonia metabolism.
Collapse
Affiliation(s)
- Hye-Young Kim
- Division of Nephrology, Hypertension, and Transplantation, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Acid-base homeostasis to a great extent relies on renal ammonia metabolism. In the past several years, seminal studies have generated important new insights into the mechanisms of renal ammonia transport. In particular, the theory that ammonia transport occurs almost exclusively through nonionic NH(3) diffusion and NH(4)(+) trapping has given way to a model postulating that a variety of proteins specifically transport NH(3) and NH(4)(+) and that this transport is critical for normal ammonia metabolism. Many of these proteins transport primarily H(+) or K(+) but also transport NH(4)(+). Nonerythroid Rh glycoproteins transport ammonia and may represent critical facilitators of ammonia transport in the kidney. This review discusses the underlying aspects of renal ammonia transport as well as specific proteins with important roles in renal ammonia transport.
Collapse
Affiliation(s)
- I. David Weiner
- Nephrology Section, North Florida/South Georgia Veterans Health System, University of Florida, Gainesville, Florida 32608
- Division of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, Florida 32608
| | - L. Lee Hamm
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
12
|
Handlogten ME, Hong SP, Westhoff CM, Weiner ID. Apical ammonia transport by the mouse inner medullary collecting duct cell (mIMCD-3). Am J Physiol Renal Physiol 2005; 289:F347-58. [PMID: 15798090 DOI: 10.1152/ajprenal.00253.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The collecting duct is the primary site of urinary ammonia secretion; the current study determines whether apical ammonia transport in the mouse inner medullary collecting duct cell (mIMCD-3) occurs via nonionic diffusion or a transporter-mediated process and, if the latter, presents the characteristics of this apical ammonia transport. We used confluent cells on permeable support membranes and examined apical uptake of the ammonia analog [14C]methylammonia ([14C]MA). mIMCD-3 cells exhibited both diffusive and saturable, transporter-mediated, nondiffusive apical [14C]MA transport. Transporter-mediated [14C]MA uptake had a Kmof 7.0 ± 1.5 mM and was competitively inhibited by ammonia with a Kiof 4.3 ± 2.0 mM. Transport activity was stimulated by both intracellular acidification and extracellular alkalinization, and it was unaltered by changes in membrane voltage, thereby functionally identifying an apical, electroneutral NH4+/H+exchange activity. Transport was bidirectional, consistent with a role in ammonia secretion. In addition, transport was not altered by Na+or K+removal, not inhibited by luminal K+, and not mediated by apical H+-K+-ATPase, Na+-K+-ATPase, or Na+/H+exchange. Finally, mIMCD-3 cells express the recently identified ammonia transporter family member Rh C glycoprotein (RhCG) at its apical membrane. These studies indicate that the renal collecting duct cell mIMCD-3 has a novel apical, electroneutral Na+- and K+-independent NH4+/H+exchange activity, possibly mediated by RhCG, that is likely to mediate important components of collecting duct ammonia secretion.
Collapse
Affiliation(s)
- Mary E Handlogten
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine, Gainesville, 32610-0224, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Vacuolar H(+)-ATPases are ubiquitous multisubunit complexes mediating the ATP-dependent transport of protons. In addition to their role in acidifying the lumen of various intracellular organelles, vacuolar H(+)-ATPases fulfill special tasks in the kidney. Vacuolar H(+)-ATPases are expressed in the plasma membrane in the kidney almost along the entire length of the nephron with apical and/or basolateral localization patterns. In the proximal tubule, a high number of vacuolar H(+)-ATPases are also found in endosomes, which are acidified by the pump. In addition, vacuolar H(+)-ATPases contribute to proximal tubular bicarbonate reabsorption. The importance in final urinary acidification along the collecting system is highlighted by monogenic defects in two subunits (ATP6V0A4, ATP6V1B1) of the vacuolar H(+)-ATPase in patients with distal renal tubular acidosis. The activity of vacuolar H(+)-ATPases is tightly regulated by a variety of factors such as the acid-base or electrolyte status. This regulation is at least in part mediated by various hormones and protein-protein interactions between regulatory proteins and multiple subunits of the pump.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, Univ. of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
14
|
Handlogten ME, Hong SP, Westhoff CM, Weiner ID. Basolateral ammonium transport by the mouse inner medullary collecting duct cell (mIMCD-3). Am J Physiol Renal Physiol 2004; 287:F628-38. [PMID: 15149971 DOI: 10.1152/ajprenal.00363.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal collecting duct is the primary site for the ammonia secretion necessary for acid-base homeostasis. Recent studies have identified the presence of putative ammonia transporters in the collecting duct, but whether the collecting duct has transporter-mediated ammonia transport is unknown. The purpose of this study was to examine basolateral ammonia transport in the mouse collecting duct cell (mIMCD-3). To examine mIMCD-3 basolateral ammonia transport, we used cells grown to confluence on permeable support membranes and quantified basolateral uptake of the radiolabeled ammonia analog [14C]methylammonia ([14C]MA). mIMCD-3 cell basolateral MA transport exhibited both diffusive and transporter-mediated components. Transporter-mediated uptake exhibited a Kmfor MA of 4.6 ± 0.2 mM, exceeded diffusive uptake at MA concentrations below 7.0 ± 1.8 mM, and was competitively inhibited by ammonia with a Kiof 2.1 ± 0.6 mM. Transporter-mediated uptake was not altered by inhibitors of Na+-K+-ATPase, Na+-K+-2Cl−cotransporter, K+channels or KCC proteins, by excess potassium, by extracellular sodium or potassium removal or by varying membrane potential, suggesting the presence of a novel, electroneutral ammonia-MA transport mechanism. Increasing the outwardly directed transmembrane H+gradient increased transport activity by increasing Vmax. Finally, mIMCD-3 cells express mRNA and protein for the putative ammonia transporter Rh B-glycoprotein (RhBG), and they exhibit basolateral RhBG immunoreactivity. We conclude that mIMCD-3 cells express a basolateral electroneutral NH4+/H+exchange activity that may be mediated by RhBG.
Collapse
Affiliation(s)
- Mary E Handlogten
- Division of Nephrology, Hypertension and Transplantation, University of Florida College of Medicine,Gainesville, FL 32610-0224, USA
| | | | | | | |
Collapse
|
15
|
Wall SM, Fischer MP, Kim GH, Nguyen BM, Hassell KA. In rat inner medullary collecting duct, NH uptake by the Na,K-ATPase is increased during hypokalemia. Am J Physiol Renal Physiol 2002; 282:F91-102. [PMID: 11739117 DOI: 10.1152/ajprenal.0141.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat terminal inner medullary collecting duct (tIMCD), the Na,K-ATPase mediates NH uptake, which increases secretion of net H(+) equivalents. K(+) and NH compete for a common binding site on the Na,K-ATPase. Therefore, NH uptake should increase during hypokalemia because interstitial K(+) concentration is reduced. We asked whether upregulation of the Na,K-ATPase during hypokalemia also increases basolateral NH uptake. To induce hypokalemia, rats ate a diet with a low K(+) content. In tIMCD tubules from rats given 3 days of dietary K(+) restriction, Na,K-ATPase beta(1)-subunit (NK-beta(1)) protein expression increased although NK-alpha(1) protein expression and Na,K-ATPase activity were unchanged relative to K(+)-replete controls. However, after 7 days of K(+) restriction, both NK-alpha(1) and NK-beta(1) subunit protein expression and Na,K-ATPase activity increased. The magnitude of Na,K-ATPase-mediated NH uptake across the basolateral membrane (J) was determined in tIMCD tubules perfused in vitro from rats after 3 days of a normal or a K(+)-restricted diet. J was the same in tubules from rats on either diet when measured at the same extracellular K(+) concentration. However, in either treatment group, increasing K(+) concentration from 10 to 30 mM reduced J >60%. In conclusion, with 3 days of K(+) restriction, NH uptake by Na,K-ATPase is increased in the tIMCD primarily from the reduced interstitial K(+) concentration.
Collapse
Affiliation(s)
- Susan M Wall
- University of Texas, Medical School at Houston, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|