1
|
Schary N, Edemir B, Todorov VT. A Possible Link between Cell Plasticity and Renin Expression in the Collecting Duct: A Narrative Review. Int J Mol Sci 2024; 25:9549. [PMID: 39273497 PMCID: PMC11395489 DOI: 10.3390/ijms25179549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The hormone renin is produced in the kidney by the juxtaglomerular cells. It is the rate-limiting factor in the circulating renin-angiotensin-aldosterone system (RAAS), which contributes to electrolyte, water, and blood pressure homeostasis. In the kidneys, the distal tubule and the collecting duct are the key target segments for RAAS. The collecting duct is important for urine production and also for salt, water, and acid-base homeostasis. The critical functional role of the collecting duct is mediated by the principal and the intercalated cells and is regulated by different hormones like aldosterone and vasopressin. The collecting duct is not only a target for hormones but also a place of hormone production. It is accepted that renin is produced in the collecting duct at a low level. Several studies have described that the cells in the collecting duct exhibit plasticity properties because the ratio of principal to intercalated cells can change under specific circumstances. This narrative review focuses on two aspects of the collecting duct that remain somehow aside from mainstream research, namely the cell plasticity and the renin expression. We discuss the link between these collecting duct features, which we see as a promising area for future research given recent findings.
Collapse
Affiliation(s)
- Nicole Schary
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health-School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Bayram Edemir
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health-School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Department of Internal Medicine IV, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Vladimir T Todorov
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health-School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
2
|
Vecchiola A, Uslar T, Friedrich I, Aguirre J, Sandoval A, Carvajal CA, Tapia-Castillo A, Martínez-García A, Fardella CE. The role of sex hormones in aldosterone biosynthesis and their potential impact on its mineralocorticoid receptor. Cardiovasc Endocrinol Metab 2024; 13:e0305. [PMID: 38846628 PMCID: PMC11155591 DOI: 10.1097/xce.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024]
Abstract
Blood pressure (BP) regulation is a complex process involving various hormones, including aldosterone and its mineralocorticoid receptor. Mineralocorticoid receptor is expressed in several tissues, including the kidney, and plays a crucial role in regulating BP by controlling the sodium and water balance. During different stages of life, hormonal changes can affect mineralocorticoid receptor activity and aldosterone levels, leading to changes in BP. Increasing evidence suggests that sex steroids modulate aldosterone levels. Estrogens, particularly estradiol, mediate aldosterone biosynthesis by activating classical estrogen receptors and the G protein-coupled receptor. Progesterone acts as an anti-mineralocorticoid by inhibiting the binding of aldosterone to the mineralocorticoid receptor. Moreover, progesterone inhibits aldosterone synthase enzymes. The effect of testosterone on aldosterone synthesis is still a subject of debate. However, certain studies show that testosterone downregulates the mRNA levels of aldosterone synthase, leading to decreased plasma aldosterone levels.
Collapse
Affiliation(s)
- Andrea Vecchiola
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Thomas Uslar
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Isidora Friedrich
- Departamento de Endocrinologìa, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago
| | - Joaquin Aguirre
- Departamento de Endocrinologìa, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago
| | - Alejandra Sandoval
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristian A. Carvajal
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Alejandra Tapia-Castillo
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Alejandra Martínez-García
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| | - Carlos E. Fardella
- Departamento de Endocrinología, Facultad de Medicina, Centro Traslacional de Endocrinología UC (CETREN), Pontificia Universidad Católica de Chile
| |
Collapse
|
3
|
Ayasse N, Berg P, Svendsen SL, Rousing AQ, Sørensen MV, Fedosova NU, Leipziger J. Trimethoprim inhibits renal H +-K +-ATPase in states of K + depletion. Am J Physiol Renal Physiol 2024; 326:F143-F151. [PMID: 37942538 DOI: 10.1152/ajprenal.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/10/2023] Open
Abstract
There is growing consensus that under physiological conditions, collecting duct H+ secretion is independent of epithelial Na+ channel (ENaC) activity. We have recently shown that the direct ENaC inhibitor benzamil acutely impairs H+ excretion by blocking renal H+-K+-ATPase. However, the question remains whether inhibition of ENaC per se causes alterations in renal H+ excretion. To revisit this question, we studied the effect of the antibiotic trimethoprim (TMP), which is well known to cause K+ retention by direct ENaC inhibition. The acute effect of TMP (5 µg/g body wt) was assessed in bladder-catheterized mice, allowing real-time measurement of urinary pH, electrolyte, and acid excretion. Dietary K+ depletion was used to increase renal H+-K+-ATPase activity. In addition, the effect of TMP was investigated in vitro using pig gastric H+-K+-ATPase-enriched membrane vesicles. TMP acutely increased natriuresis and decreased kaliuresis, confirming its ENaC-inhibiting property. Under control diet conditions, TMP had no effect on urinary pH or acid excretion. Interestingly, K+ depletion unmasked an acute urine alkalizing effect of TMP. This finding was corroborated by in vitro experiments showing that TMP inhibits H+-K+-ATPase activity, albeit at much higher concentrations than benzamil. In conclusion, under control diet conditions, TMP inhibited ENaC function without changing urinary H+ excretion. This finding further supports the hypothesis that the inhibition of ENaC per se does not impair H+ excretion in the collecting duct. Moreover, TMP-induced urinary alkalization in animals fed a low-K+ diet highlights the importance of renal H+-K+-ATPase-mediated H+ secretion in states of K+ depletion.NEW & NOTEWORTHY The antibiotic trimethoprim (TMP) often mediates K+ retention and metabolic acidosis. We suggest a revision of the underlying mechanism that causes metabolic acidosis. Our results indicate that TMP-induced metabolic acidosis is secondary to epithelial Na+ channel-dependent K+ retention. Under control dietary conditions, TMP does not per se inhibit collecting duct H+ secretion. These findings add further argument against a physiologically relevant voltage-dependent mechanism of collecting duct H+ excretion.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | | | - Natalya U Fedosova
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Wouda RD, Gritter M, Karsten M, Michels EH, Nieuweboer TM, Danser AJ, de Borst MH, Hoorn EJ, Rotmans JI, Vogt L. Kaliuresis and Intracellular Uptake of Potassium with Potassium Citrate and Potassium Chloride Supplements: A Randomized Controlled Trial. Clin J Am Soc Nephrol 2023; 18:1260-1271. [PMID: 37382933 PMCID: PMC10578626 DOI: 10.2215/cjn.0000000000000228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND A potassium replete diet is associated with lower cardiovascular risk but may increase the risk of hyperkalemia, particularly in people using renin-angiotensin-aldosterone system inhibitors. We investigated whether intracellular uptake and potassium excretion after an acute oral potassium load depend on the accompanying anion and/or aldosterone and whether this results in altered plasma potassium change. METHODS In this placebo-controlled interventional cross-over trial including 18 healthy individuals, we studied the acute effects of one oral load of potassium citrate (40 mmol), potassium chloride (40 mmol), and placebo in random order after overnight fasting. Supplements were administered after a 6-week period with and without lisinopril pretreatment. Linear mixed effect models were used to compare blood and urine values before and after supplementation and between the interventions. Univariable linear regression was used to determine the association between baseline variables and change in blood and urine values after supplementation. RESULTS During the 4-hour follow-up, the rise in plasma potassium was similar for all interventions. After potassium citrate, both red blood cell potassium-as measure of the intracellular potassium-and transtubular potassium gradient (TTKG)-reflecting potassium secretory capacity-were higher than after potassium chloride or potassium citrate with lisinopril pretreatment. Baseline aldosterone was significantly associated with TTKG after potassium citrate, but not after potassium chloride or potassium citrate with lisinopril pretreatment. The observed TTKG change after potassium citrate was significantly associated with urine pH change during this intervention ( R =0.60, P < 0.001). CONCLUSIONS With similar plasma potassium increase, red blood cell potassium uptake and kaliuresis were higher after an acute load of potassium citrate as compared with potassium chloride alone or pretreatment with lisinopril. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Potassium supplementation in patients with chronic kidney disease and healthy subjects: effects on potassium and sodium balance, NL7618.
Collapse
Affiliation(s)
- Rosa D. Wouda
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Micky Karsten
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Erik H.A. Michels
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Tamar M. Nieuweboer
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - A.H. Jan Danser
- Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joris I. Rotmans
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dębczyński M, Gorrieri G, Mojsak D, Guida F, Zara F, Scudieri P. ATP12A Proton Pump as an Emerging Therapeutic Target in Cystic Fibrosis and Other Respiratory Diseases. Biomolecules 2023; 13:1455. [PMID: 37892136 PMCID: PMC10605105 DOI: 10.3390/biom13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
ATP12A encodes the catalytic subunit of the non-gastric proton pump, which is expressed in many epithelial tissues and mediates the secretion of protons in exchange for potassium ions. In the airways, ATP12A-dependent proton secretion contributes to complex mechanisms regulating the composition and properties of the fluid and mucus lining the respiratory epithelia, which are essential to maintain the airway host defense and the respiratory health. Increased expression and activity of ATP12A in combination with the loss of other balancing activities, such as the bicarbonate secretion mediated by CFTR, leads to excessive acidification of the airway surface liquid and mucus dysfunction, processes that play relevant roles in the pathogenesis of cystic fibrosis and other chronic inflammatory respiratory disorders. In this review, we summarize the findings dealing with ATP12A expression, function, and modulation in the airways, which led to the consideration of ATP12A as a potential therapeutic target for the treatment of cystic fibrosis and other airway diseases; we also highlight the current advances and gaps regarding the development of therapeutic strategies aimed at ATP12A inhibition.
Collapse
Affiliation(s)
- Michał Dębczyński
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Giulia Gorrieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Damian Mojsak
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Floriana Guida
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Paolo Scudieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
6
|
Zhu KJ, Feng W, Ma XN, Liao PL, Lin CS, Huang JY, Wei JCC, Xu Q. Proton pump inhibitor use associated with an increased risk of gout: A population-based case-control study. Int J Rheum Dis 2023; 26:1799-1806. [PMID: 37470673 DOI: 10.1111/1756-185x.14834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVES In previous reports, proton pump inhibitor (PPI) use increased the risk of gout. However, there is no epidemiological study investigating this association. We aimed to examine the potential impact of PPI treatment on the risk of developing gout. METHODS A population-based case-control study was performed using a Longitudinal Health Insurance Database 2000 from Taiwan (population 23 million). We identified gout cases and non-gout controls through propensity score matching at 1:1, which was matched by sex and age. We used a conditional logistic regression model to estimate an odds ratio and 95% confidence intervals (CI) for gout population versus controls. RESULTS Esomeprazole increased the risk of gout after adjusting confounding variables (adjusted odds ratio [aOR] 1.3; 95% CI 1.0-1.6). The risk of gout was highest within 30 days of PPI treatment (aOR 1.7; 95% CI 1.4-1.9) and attenuated thereafter. The risk of gout was increased among female users of PPI compared with male users (aOR 2.2; 95% CI 1.7-2.8). The aOR of gout in people with PPI use was higher in middle-aged individuals (41-60 years: aOR 2.1; 95% CI 1.7-2.7) than in the older group (≥60 years: aOR 1.8; 95% CI 1.5-2.2). CONCLUSIONS Our findings provide population-level evidence for the hypothesis that PPI treatment is positively associated with the risk of developing gout. Further research on the mechanism underlying this association is warranted.
Collapse
Affiliation(s)
- Kai-Jun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, Zhengzhou Second Hospital, Zhengzhou, China
| | - Wei Feng
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Na Ma
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Lun Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chang-Song Lin
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Qiang Xu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Jutrić D, Đikić D, Boroš A, Odeh D, Gračan R, Beletić A, Jurčević IL. Combined effects of valproate and naringin on kidney antioxidative markers and serum parameters of kidney function in C57BL6 mice. Arh Hig Rada Toksikol 2023; 74:218-223. [PMID: 37791674 PMCID: PMC10549880 DOI: 10.2478/aiht-2023-74-3764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/01/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Valproate is known to disturb the kidney function, and high doses or prolonged intake may cause serum ion imbalance, kidney tubular acidosis, proteinuria, hyperuricosuria, polyuria, polydipsia, and dehydration. The aim of this in vivo study was to see whether naringin would counter the adverse effects of high-dose valproate in C57Bl/6 mice and to which extent. As expected, valproate (150 mg/kg bw a day for 10 days) caused serum hyperkalaemia, more in male than female mice. Naringin reversed (25 mg/kg bw a day for 10 days) the hyperkalaemia and activated antioxidative defence mechanisms (mainly catalase and glutathione), again more efficiently in females. In males naringin combined with valproate was not as effective and even showed some prooxidative effects.
Collapse
Affiliation(s)
- David Jutrić
- University of Zagreb Faculty of Science, Zagreb, Croatia
- Regionshospitalet Gødstrup, Herning, Denmark
| | - Domagoj Đikić
- University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Almoš Boroš
- University of Zagreb Faculty of Science, Zagreb, Croatia
- Czech Academy of Sciences, Institute of Physiology, Prague, Czechia
| | - Dyana Odeh
- University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Romana Gračan
- University of Zagreb Faculty of Science, Zagreb, Croatia
| | - Anđelo Beletić
- Genos Ltd., Glycoscience Research Laboratory, Zagreb, Croatia
| | | |
Collapse
|
8
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
9
|
Stavniichuk A, Pyrshev K, Zaika O, Tomilin VN, Kordysh M, Lakk M, Križaj D, Pochynyuk O. TRPV4 expression in the renal tubule is necessary for maintaining whole body K + homeostasis. Am J Physiol Renal Physiol 2023; 324:F603-F616. [PMID: 37141145 PMCID: PMC10281785 DOI: 10.1152/ajprenal.00278.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023] Open
Abstract
The Ca2+-permeable transient receptor potential vanilloid type 4 (TRPV4) channel serves as the sensor of tubular flow, thus being well suited to govern mechanosensitive K+ transport in the distal renal tubule. Here, we directly tested whether the TRPV4 function is significant in affecting K+ balance. We used balance metabolic cage experiments and systemic measurements with different K+ feeding regimens [high (5% K+), regular (0.9% K+), and low (<0.01% K+)] in newly created transgenic mice with selective TRPV4 deletion in the renal tubule (TRPV4fl/fl-Pax8Cre) and their littermate controls (TRPV4fl/fl). Deletion was verified by the absence of TRPV4 protein expression and lack of TRPV4-dependent Ca2+ influx. There were no differences in plasma electrolytes, urinary volume, and K+ levels at baseline. In contrast, plasma K+ levels were significantly elevated in TRPV4fl/fl-Pax8Cre mice on high K+ intake. K+-loaded knockout mice exhibited lower urinary K+ levels than TRPV4fl/fl mice, which was accompanied by higher aldosterone levels by day 7. Moreover, TRPV4fl/fl-Pax8Cre mice had more efficient renal K+ conservation and higher plasma K+ levels in the state of dietary K+ deficiency. H+-K+-ATPase levels were significantly increased in TRPV4fl/fl-Pax8Cre mice on a regular diet and especially on a low-K+ diet, pointing to augmented K+ reabsorption in the collecting duct. Consistently, we found a significantly faster intracellular pH recovery after intracellular acidification, as an index of H+-K+-ATPase activity, in split-opened collecting ducts from TRPV4fl/fl-Pax8Cre mice. In summary, our results demonstrate an indispensable prokaliuretic role of TRPV4 in the renal tubule in controlling K+ balance and urinary K+ excretion during variations in dietary K+ intake. NEW & NOTEWORTHY The mechanoactivated transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in distal tubule segments, where it controls flow-dependent K+ transport. Global TRPV4 deficiency causes impaired adaptation to variations in dietary K+ intake. Here, we demonstrate that renal tubule-specific TRPV4 deletion is sufficient to recapitulate the phenotype by causing antikaliuresis and higher plasma K+ levels in both states of K+ load and deficiency.
Collapse
Affiliation(s)
- Anna Stavniichuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States
| | - Kyrylo Pyrshev
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States
| | - Mariya Kordysh
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
10
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
11
|
The Effect of Aldosterone on Cardiorenal and Metabolic Systems. Int J Mol Sci 2023; 24:ijms24065370. [PMID: 36982445 PMCID: PMC10049192 DOI: 10.3390/ijms24065370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Aldosterone, a vital hormone of the human body, has various pathophysiological roles. The excess of aldosterone, also known as primary aldosteronism, is the most common secondary cause of hypertension. Primary aldosteronism is associated with an increased risk of cardiovascular disease and kidney dysfunction compared to essential hypertension. Excess aldosterone can lead to harmful metabolic and other pathophysiological alterations, as well as cause inflammatory, oxidative, and fibrotic effects in the heart, kidney, and blood vessels. These alterations can result in coronary artery disease, including ischemia and myocardial infarction, left ventricular hypertrophy, heart failure, arterial fibrillation, intracarotid intima thickening, cerebrovascular disease, and chronic kidney disease. Thus, aldosterone affects several tissues, especially in the cardiovascular system, and the metabolic and pathophysiological alterations are related to severe diseases. Therefore, understanding the effects of aldosterone on the body is important for health maintenance in hypertensive patients. In this review, we focus on currently available evidence regarding the role of aldosterone in alterations of the cardiovascular and renal systems. We also describe the risk of cardiovascular events and renal dysfunction in hyperaldosteronism.
Collapse
|
12
|
Johnston JG, Wingo CS. Potassium Homeostasis and WNK Kinases in the Regulation of the Sodium-Chloride Cotransporter: Hyperaldosteronism and Its Metabolic Consequences. KIDNEY360 2022; 3:1823-1828. [PMID: 36514400 PMCID: PMC9717643 DOI: 10.34067/kid.0005752022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022]
Affiliation(s)
- Jermaine G. Johnston
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Veterans Administration Medical Center, North Florida/South Georgia Veterans Health Administration, Gainesville, Florida
| | - Charles S. Wingo
- Department of Medicine, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Veterans Administration Medical Center, North Florida/South Georgia Veterans Health Administration, Gainesville, Florida
| |
Collapse
|
13
|
Yoo MH, Lee SJ, Kim W, Kim Y, Kim YB, Moon KS, Lee BS. Bisphenol A impairs renal function by reducing Na +/K +-ATPase and F-actin expression, kidney tubule formation in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114141. [PMID: 36206637 DOI: 10.1016/j.ecoenv.2022.114141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
The kidney proximal tubule is responsible for reabsorbing water and NaCl to maintain the homeostasis of the body fluids, electrolytes, and nutrients. Thus, abnormal functioning of the renal proximal tubule can lead to life-threatening imbalances. Bisphenol A (BPA) has been used for decades as a representative chemical in household plastic products, but studies on its effects on the kidney proximal tubule are insufficient. In this study, immunocytochemical and cytotoxicity tests were performed using two- and three-dimensional human renal proximal tubular epithelial cell (hRPTEC) cultures to investigate the impact of low-dose BPA (1-10 μM) exposure. BPA was found to interfere with straight tubule formation as observed by low filamentous actin formation and reduced Na+/K+-ATPase expression in the tubules of hRPTEC 3D cultures. Similar results were observed in rat pup kidneys following oral administration of 250 mg/kg BPA. Moreover, the expression of HO-1 and 8-OHdG, key markers for oxidative stress, was increased in vitro and in vivo following BPA administration, whereas that of OAT1 and OAT, important transporters of the renal proximal tubules, was not altered. Overall, no-observed-adverse-effect-level (NOAEL)-dose BPA exposure can decrease renal function by promoting abnormal tubular formation both in vitro and in vivo. Therefore, we propose that although it does not exhibit life-threatening toxicity, exposure to low levels of BPA can negatively affect homeostasis in the body by means of long-term deterioration of renal proximal tubular function in humans.
Collapse
Affiliation(s)
- Min Heui Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Seung-Jin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Gallic and Hesperidin Ameliorate Electrolyte Imbalances in AlCl3-Induced Nephrotoxicity in Wistar Rats. Biochem Res Int 2022; 2022:6151684. [PMID: 36263197 PMCID: PMC9576448 DOI: 10.1155/2022/6151684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Nephrotoxicity is usually characterized by inefficiency of the kidney, thereby causing disruptions to electrolyte balance and blood acidity. This study aimed to evaluate the effect of hesperidin and gallic acid on serum electrolytes and ion pumps in Wistar rats subjected to aluminum chloride (AlCl3)-induced nephrotoxicity. Thirty Wistar rats were randomly divided into six groups of five animals apiece. Group one served as the negative control and received distilled water while the study lasted. Animals in groups 2–4 received 100 mg/kg/day AlCl3 throughout the study. Animals in groups 3 and 4 were also administered 100 mg/kg/day gallic acid and 100 mg/kg/day hesperidin, respectively. Groups 5 and 6 were treated with 100 mg/kg/day gallic acid only and 100 mg/kg/day hesperidin only, respectively. Treatments were administered orally via gavage for 28 days with distilled water as the vehicle. Animals were sacrificed after which levels of potassium, calcium, magnesium, phosphate, chloride, and bicarbonate ions were evaluated in the serum, while activities of Na+/K+ and Ca2+/Mg2+ ATPases were determined in kidney homogenate. Results showed that AlCl3 significantly (p < 0.05) inhibited activities of Na+/K+ and Ca2+/Mg2+ ATPases in addition to increasing serum levels of potassium, calcium, phosphate, and chloride, with concomitant decrease in serum levels of magnesium and bicarbonate. However, coadministration of AlCl3 with either gallic acid or hesperidin ameliorated all the disruptions caused by AlCl3. It could be concluded that gallic acid and hesperidin could be relevant in managing electrolyte imbalances and acidosis occasioned by kidney dysfunction.
Collapse
|
15
|
Maddah E, Hallow KM. A quantitative systems pharmacology model of plasma potassium regulation by the kidney and aldosterone. J Pharmacokinet Pharmacodyn 2022; 49:471-486. [PMID: 35776281 DOI: 10.1007/s10928-022-09815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Plasma potassium regulation within a narrow range is vital for life. The risk for hyperkalemia increases when kidney function is impaired and with therapeutic interventions such as mineralocorticoid receptor antagonists (MRAs). The kidney maintains potassium homeostasis by matching potassium intake and excretion, in part through the action of aldosterone. A mechanistic mathematical model was developed and used to investigate the effect of renal impairment and MRAs on plasma potassium levels. The model describes renal potassium filtration, reabsorption, and secretion along the nephron; potassium-aldosterone regulatory feedbacks; whole body potassium balance; and the pharmacologic effects of MRAs. The model was calibrated by fitting (1) the plasma potassium and aldosterone response to potassium infusion in humans on high/low potassium diets, and (2) the acute potassium excretion response to spironolactone. The model was validated by predicting steady-state plasma potassium with sustained spironolactone treatment in hyperaldosteronism patients. The model was then used to demonstrate that (1) declining renal function alone has a small effect on plasma potassium for GFR > 30 ml/min, but an increasing effect as GFR approaches end stage renal disease (GFR ~ 15 ml/min) (2) the effect of increasing potassium intake has minimal effect at normal GFRs but increasing effect on plasma potassium as GFR declines, and 3) MRAs have a minor effect on plasma potassium when GFR is normal, but cause larger increases as GFR falls below 60 ml/min. This model provides a quantitative framework for investigating integrated impacts of diseases and therapies in this complex system.
Collapse
Affiliation(s)
- Erfan Maddah
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - K Melissa Hallow
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
| |
Collapse
|
16
|
Hati A, Chakraborty U, Chandra A, Biswas P. Hypokalaemia with Guillain-Barré syndrome: a diagnostic and therapeutic challenge. BMJ Case Rep 2022; 15:e249473. [PMID: 35760510 PMCID: PMC9237892 DOI: 10.1136/bcr-2022-249473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/03/2022] Open
Abstract
Acute-onset quadriparesis is not only debilitating and a grave concern for the patient but also perturbs the clinician as it demands early diagnosis and prompt management to prevent catastrophic outcome due to respiratory failure. Guillain-Barré syndrome (GBS) and hypokalaemia are notorious causes of acute-onset lower motor neuron (LMN) quadriparesis and warrant a rapid evaluation to necessitate early management. However, coexistence of these two entities is extremely rare and may pose a diagnostic and therapeutic challenge and mandates exclusion of either condition to avoid a poor outcome. We hereby report a case of a young woman who presented with an acute-onset LMN quadriparesis, initially found to have significant hypokalaemia with poor response to supplementation and was further evaluated to have an axonal variant of GBS.
Collapse
Affiliation(s)
- Arkapravo Hati
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Uddalak Chakraborty
- Neurology, Institute of Postgraduate Medical Education and Research Bangur Institute of Neurology, Kolkata, India
| | - Atanu Chandra
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Purbasha Biswas
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
17
|
Chow KL, O'Donnell JL. Severe distal renal tubular acidosis secondary to primary Sjögren syndrome: response to rituximab. Intern Med J 2022; 52:334-335. [DOI: 10.1111/imj.15683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Ke L. Chow
- Department of Immunology Canterbury Health Laboratories Christchurch New Zealand
| | - John L. O'Donnell
- Department of Immunology Canterbury Health Laboratories Christchurch New Zealand
| |
Collapse
|
18
|
Favia M, Gerbino A, Notario E, Tragni V, Sgobba MN, Dell’Aquila ME, Pierri CL, Guerra L, Ciani E. The Non-Gastric H+/K+ ATPase (ATP12A) Is Expressed in Mammalian Spermatozoa. Int J Mol Sci 2022; 23:ijms23031048. [PMID: 35162971 PMCID: PMC8835340 DOI: 10.3390/ijms23031048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific β subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the β1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.
Collapse
|
19
|
Tsilosani A, Gao C, Zhang W. Aldosterone-Regulated Sodium Transport and Blood Pressure. Front Physiol 2022; 13:770375. [PMID: 35197862 PMCID: PMC8859437 DOI: 10.3389/fphys.2022.770375] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aldosterone is a major mineralocorticoid steroid hormone secreted by glomerulosa cells in the adrenal cortex. It regulates a variety of physiological responses including those to oxidative stress, inflammation, fluid disruption, and abnormal blood pressure through its actions on various tissues including the kidney, heart, and the central nervous system. Aldosterone synthesis is primarily regulated by angiotensin II, K+ concentration, and adrenocorticotrophic hormone. Elevated serum aldosterone levels increase blood pressure largely by increasing Na+ re-absorption in the kidney through regulating transcription and activity of the epithelial sodium channel (ENaC). This review focuses on the signaling pathways involved in aldosterone synthesis and its effects on Na+ reabsorption through ENaC.
Collapse
Affiliation(s)
- Akaki Tsilosani
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Chao Gao
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| | - Wenzheng Zhang
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
20
|
Evolving concepts of TRPV4 in controlling flow-sensitivity of the renal nephron. CURRENT TOPICS IN MEMBRANES 2022; 89:75-94. [DOI: 10.1016/bs.ctm.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Ray EC, Carrisoza-Gaytan R, Al-Bataineh M, Marciszyn AL, Nkashama LJ, Chen J, Winfrey A, Griffiths S, Lam TR, Flores D, Wu P, Wang W, Huang CL, Subramanya AR, Kleyman TR, Satlin LM. L-WNK1 is required for BK channel activation in intercalated cells. Am J Physiol Renal Physiol 2021; 321:F245-F254. [PMID: 34229479 PMCID: PMC8424664 DOI: 10.1152/ajprenal.00472.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
Large-conductance K+ (BK) channels expressed in intercalated cells (ICs) in the aldosterone-sensitive distal nephron (ASDN) mediate flow-induced K+ secretion. In the ASDN of mice and rabbits, IC BK channel expression and activity increase with a high-K+ diet. In cell culture, the long isoform of with-no-lysine kinase 1 (L-WNK1) increases BK channel expression and activity. Apical L-WNK1 expression is selectively enhanced in ICs in the ASDN of rabbits on a high-K+ diet, suggesting that L-WNK1 contributes to BK channel regulation by dietary K+. We examined the role of IC L-WNK1 expression in enhancing BK channel activity in response to a high-K+ diet. Mice with IC-selective deletion of L-WNK1 (IC-L-WNK1-KO) and littermate control mice were placed on a high-K+ (5% K+, as KCl) diet for 10 or more days. IC-L-WNK1-KO mice exhibited reduced IC apical + subapical α-subunit expression and BK channel-dependent whole cell currents compared with controls. Six-hour urinary K+ excretion in response a saline load was similar in IC-L-WNK1-KO mice and controls. The observations that IC-L-WNK1-KO mice on a high-K+ diet have higher blood K+ concentration and reduced IC BK channel activity are consistent with impaired urinary K+ secretion, demonstrating that IC L-WNK1 has a role in the renal adaptation to a high-K+ diet.NEW & NOTEWORTHY When mice are placed on a high-K+ diet, genetic disruption of the long form of with no lysine kinase 1 (L-WNK1) in intercalated cells reduced relative apical + subapical localization of the large-conductance K+ channel, blunted large-conductance K+ channel currents in intercalated cells, and increased blood K+ concentration. These data confirm an in vivo role of L-WNK1 in intercalated cells in adaptation to a high-K+ diet.
Collapse
Affiliation(s)
- Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaliyah Winfrey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shawn Griffiths
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tracey R Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
22
|
Wang G, Jia Y, Ye Y, Kang E, Chen H, Wang J, He X. Identification of key methylation differentially expressed genes in posterior fossa ependymoma based on epigenomic and transcriptome analysis. J Transl Med 2021; 19:174. [PMID: 33902636 PMCID: PMC8077736 DOI: 10.1186/s12967-021-02834-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Posterior fossa ependymoma (EPN-PF) can be classified into Group A posterior fossa ependymoma (EPN-PFA) and Group B posterior fossa ependymoma (EPN-PFB) according to DNA CpG island methylation profile status and gene expression. EPN-PFA usually occurs in children younger than 5 years and has a poor prognosis. Methods Using epigenome and transcriptome microarray data, a multi-component weighted gene co-expression network analysis (WGCNA) was used to systematically identify the hub genes of EPN-PF. We downloaded two microarray datasets (GSE66354 and GSE114523) from the Gene Expression Omnibus (GEO) database. The Limma R package was used to identify differentially expressed genes (DEGs), and ChAMP R was used to analyze the differential methylation genes (DMGs) between EPN-PFA and EPN-PFB. GO and KEGG enrichment analyses were performed using the Metascape database. Results GO analysis showed that enriched genes were significantly enriched in the extracellular matrix organization, adaptive immune response, membrane raft, focal adhesion, NF-kappa B pathway, and axon guidance, as suggested by KEGG analysis. Through WGCNA, we found that MEblue had a significant correlation with EPN-PF (R = 0.69, P = 1 × 10–08) and selected the 180 hub genes in the blue module. By comparing the DEGs, DMGs, and hub genes in the co-expression network, we identified five hypermethylated, lower expressed genes in EPN-PFA (ATP4B, CCDC151, DMKN, SCN4B, and TUBA4B), and three of them were confirmed by IHC. Conclusion ssGSEA and GSVA analysis indicated that these five hub genes could lead to poor prognosis by inducing hypoxia, PI3K-Akt-mTOR, and TNFα-NFKB pathways. Further study of these dysmethylated hub genes in EPN-PF and the pathways they participate in may provides new ideas for EPN-PF treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02834-1.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yibin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.,Department of Neurosurgery, PLA 163Rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, 410000, China
| | - Enming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Huijun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jiayou Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
23
|
Downie ML, Lopez Garcia SC, Kleta R, Bockenhauer D. Inherited Tubulopathies of the Kidney: Insights from Genetics. Clin J Am Soc Nephrol 2021; 16:620-630. [PMID: 32238367 PMCID: PMC8092065 DOI: 10.2215/cjn.14481119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kidney tubules provide homeostasis by maintaining the external milieu that is critical for proper cellular function. Without homeostasis, there would be no heartbeat, no muscle movement, no thought, sensation, or emotion. The task is achieved by an orchestra of proteins, directly or indirectly involved in the tubular transport of water and solutes. Inherited tubulopathies are characterized by impaired function of one or more of these specific transport molecules. The clinical consequences can range from isolated alterations in the concentration of specific solutes in blood or urine to serious and life-threatening disorders of homeostasis. In this review, we focus on genetic aspects of the tubulopathies and how genetic investigations and kidney physiology have crossfertilized each other and facilitated the identification of these disorders and their molecular basis. In turn, clinical investigations of genetically defined patients have shaped our understanding of kidney physiology.
Collapse
Affiliation(s)
- Mallory L. Downie
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sergio C. Lopez Garcia
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
24
|
Ayasse N, Berg P, Andersen JF, Svendsen SL, Sørensen MV, Fedosova NU, Lynch IJ, Wingo CS, Leipziger J. Benzamil-mediated urine alkalization is caused by the inhibition of H +-K +-ATPases. Am J Physiol Renal Physiol 2021; 320:F596-F607. [PMID: 33554781 DOI: 10.1152/ajprenal.00444.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Epithelial Na+ channel (ENaC) blockers elicit acute and substantial increases of urinary pH. The underlying mechanism remains to be understood. Here, we evaluated if benzamil-induced urine alkalization is mediated by an acute reduction in H+ secretion via renal H+-K+-ATPases (HKAs). Experiments were performed in vivo on HKA double-knockout and wild-type mice. Alterations in dietary K+ intake were used to change renal HKA and ENaC activity. The acute effects of benzamil (0.2 µg/g body wt, sufficient to block ENaC) on urine flow rate and urinary electrolyte and acid excretion were monitored in anesthetized, bladder-catheterized animals. We observed that benzamil acutely increased urinary pH (ΔpH: 0.33 ± 0.07) and reduced NH4+ and titratable acid excretion and that these effects were distinctly enhanced in animals fed a low-K+ diet (ΔpH: 0.74 ± 0.12), a condition when ENaC activity is low. In contrast, benzamil did not affect urine acid excretion in animals kept on a high-K+ diet (i.e., during high ENaC activity). Thus, urine alkalization appeared completely uncoupled from ENaC function. The absence of benzamil-induced urinary alkalization in HKA double-knockout mice confirmed the direct involvement of these enzymes. The inhibitory effect of benzamil was also shown in vitro for the pig α1-isoform of HKA. These results suggest a revised explanation of the benzamil effect on renal acid-base excretion. Considering the conditions used here, we suggest that it is caused by a direct inhibition of HKAs in the collecting duct and not by inhibition of the ENaC function.NEW & NOTEWORTHY Bolus application of epithelial Na+ channel (EnaC) blockers causes marked and acute increases of urine pH. Here, we provide evidence that the underlying mechanism involves direct inhibition of the H+-K+ pump in the collecting duct. This could provide a fundamental revision of the previously assumed mechanism that suggested a key role of ENaC inhibition in this response.
Collapse
Affiliation(s)
- Niklas Ayasse
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | | | | | - Mads V Sørensen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Natalya U Fedosova
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - I Jeanette Lynch
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida.,North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, Florida.,North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Baratta VM, Norz V, Barahona MJ, Gisinger TM, Mulligan D, Geibel JP. Penicillin G Induces H+, K+-ATPase via a Nitric Oxide-Dependent Mechanism in the Rat Colonic Crypt. Cell Physiol Biochem 2020; 54:1132-1142. [PMID: 33175479 PMCID: PMC8095381 DOI: 10.33594/000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND/AIMS The colonic H+, K+ ATPase (HKA2) is a heterodimeric membrane protein that exchanges luminal K+ for intracellular H+ and is involved in maintaining potassium homeostasis. Under homeostatic conditions, the colonic HKA2 remains inactive, since most of the potassium is absorbed by the small intestine. In diarrheal states, potassium is secreted and compensatory potassium absorption becomes necessary. This study proposes a novel mechanism whereby the addition of penicillin G sodium salt (penG) to colonic crypts stimulates potassium uptake in the presence of intracellular nitric oxide (NO), under sodium-free (0-Na+) conditions. METHODS Sprague Dawley rat colonic crypts were isolated and pHi changes were monitored through the ammonium prepulse technique. Increased proton extrusion in 0-Na+ conditions reflected heightened H+, K+ ATPase activity. Colonic crypts were exposed to penG, L-arginine (a NO precursor), and N-nitro l-arginine methyl ester (L-NAME, a NO synthase inhibitor). RESULTS Isolated administration of penG significantly increased H+, K+ ATPase activity from baseline, p 0.0067. Co-administration of arginine and penG in 0-Na+ conditions further upregulated H+, K+ ATPase activity, p <0.0001. Crypt perfusion with L-NAME and penG demonstrated a significant reduction in H+, K+ ATPase activity, p 0.0058. CONCLUSION Overall, acute exposure of colonic crypts to penG activates the H+, K+ ATPase in the presence of NO. This study provides new insights into colonic potassium homeostasis.
Collapse
Affiliation(s)
- Vanessa M Baratta
- Yale University, School of Medicine, Department of Surgery, New Haven, CT, USA
| | - Valentina Norz
- Yale University, School of Medicine, Department of Surgery, New Haven, CT, USA
- Paracelsus Medical University, School of Medicine, Salzburg, Austria
| | - Maria J Barahona
- Yale University, School of Medicine, Department of Surgery, New Haven, CT, USA
| | - Teresa M Gisinger
- Yale University, School of Medicine, Department of Surgery, New Haven, CT, USA
- Paracelsus Medical University, School of Medicine, Salzburg, Austria
| | - David Mulligan
- Yale University, School of Medicine, Department of Surgery, New Haven, CT, USA
| | - John P Geibel
- Yale University, School of Medicine, Department of Surgery, New Haven, CT, USA,
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, New Haven, CT, USA
| |
Collapse
|
26
|
Barnawi EA, Doherty JE, Ferreira PG, Wilson JM. Extra-gastric expression of the proton pump H +/K +-ATPase in the gills and kidney of the teleost Oreochromis niloticus. J Exp Biol 2020; 223:jeb214890. [PMID: 32611790 DOI: 10.1242/jeb.214890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Potassium regulation is essential for the proper functioning of excitable tissues in vertebrates. The H+/K+-ATPase (HKA), which is composed of the HKα1 (gene: atp4a) and HKβ (gene: atp4b) subunits, has an established role in potassium and acid-base regulation in mammals and is well known for its role in gastric acidification. However, the role of HKA in extra-gastric organs such as the gill and kidney is less clear, especially in fishes. In the present study in Nile tilapia, Oreochromis niloticus, uptake of the K+ surrogate flux marker rubidium (Rb+) was demonstrated in vivo; however, this uptake was not inhibited with omeprazole, a potent inhibitor of the gastric HKA. This contrasts with gill and kidney ex vivo preparations, where tissue Rb+ uptake was significantly inhibited by omeprazole and SCH28080, another gastric HKA inhibitor. The cellular localization of this pump in both the gill and kidney was demonstrated using immunohistochemical techniques with custom-made antibodies specific for Atp4a and Atp4b. Antibodies against the two subunits showed the same apical ionocyte distribution pattern in the gill and collecting tubules/ducts in the kidney. Atp4a antibody specificity was confirmed by western blotting. RT-PCT was used to confirm the expression of both subunits in the gill and kidney. Taken together, these results indicate for the first time K+ (Rb+) uptake in O. niloticus and that HKA is implicated, as shown through the ex vivo uptake inhibition by omeprazole and SCH28080, verifying a role for HKA in K+ absorption in the gill's ionocytes and collecting tubule/duct segments of the kidney.
Collapse
Affiliation(s)
- Ebtesam Ali Barnawi
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Justine E Doherty
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | | | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
- Molecular Physiology, Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal
| |
Collapse
|
27
|
Affiliation(s)
- Biff F Palmer
- From the Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (B.F.P.); and the College of Nursing and Health Professions, Drexel University, Philadelphia (D.J.C.)
| | - Deborah J Clegg
- From the Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (B.F.P.); and the College of Nursing and Health Professions, Drexel University, Philadelphia (D.J.C.)
| |
Collapse
|
28
|
McCormick CA, Samuels TL, Battle MA, Frolkis T, Blumin JH, Bock JM, Wells C, Yan K, Altman KW, Johnston N. H+/K+ATPase Expression in the Larynx of Laryngopharyngeal Reflux and Laryngeal Cancer Patients. Laryngoscope 2020; 131:130-135. [PMID: 32250454 DOI: 10.1002/lary.28643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The gastric H+/K+ ATPase proton pump has previously been shown to be expressed in the human larynx, however its contribution to laryngopharyngeal reflux (LPR) signs, symptoms and associated diseases such as laryngeal cancer is unknown. Proton pump expression in the larynx of patients with LPR and laryngeal cancer was investigated herein. A human hypopharyngeal cell line expressing the proton pump was generated to investigate its effects. STUDY DESIGN In-vitro translational. METHODS Laryngeal biopsies were obtained from three LPR and eight LSCC patients. ATP4A, ATP4B and HRPT1 were assayed via qPCR. Human hypopharyngeal FaDu cell lines stably expressing proton pump were created using lentiviral transduction and examined via transmission electron microscopy and qPCR for genes associated with inflammation or laryngeal cancer. RESULTS Expression of ATP4A and ATP4B was detected in 3/3 LPR, 4/8 LSCC-tumor and 3/8 LSCC-adjacent specimens. Expression of ATP4A and ATP4B in FaDu elicited mitochondrial damage and expression of IL1B, PTGS2, and TNFA (P < .0001); expression of ATP4B alone did not. CONCLUSIONS Gastric proton pump subunits are expressed in the larynx of LPR and LSCC patients. Mitochondrial damage and changes in gene expression observed in cells expressing the full proton pump, absent in those expressing a single subunit, suggest that acid secretion by functional proton pumps expressed in upper airway mucosa may elicit local cell and molecular changes associated with inflammation and cancer. LEVEL OF EVIDENCE NA Laryngoscope, 131:130-135, 2021.
Collapse
Affiliation(s)
- Caroline A McCormick
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Tina L Samuels
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Talia Frolkis
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joel H Blumin
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Jonathan M Bock
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Clive Wells
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Kenneth W Altman
- Department of Otolaryngology, Geisinger Health System, Danville, California, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
29
|
Wesson DE, Buysse JM, Bushinsky DA. Mechanisms of Metabolic Acidosis-Induced Kidney Injury in Chronic Kidney Disease. J Am Soc Nephrol 2020; 31:469-482. [PMID: 31988269 DOI: 10.1681/asn.2019070677] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analyses and single-center prospective studies identify chronic metabolic acidosis as an independent and modifiable risk factor for progression of CKD. In patients with CKD, untreated chronic metabolic acidosis often leads to an accelerated reduction in GFR. Mechanisms responsible for this reduction include adaptive responses that increase acid excretion but lead to a decline in kidney function. Metabolic acidosis in CKD stimulates production of intrakidney paracrine hormones including angiotensin II, aldosterone, and endothelin-1 (ET-1) that mediate the immediate benefit of increased kidney acid excretion, but their chronic upregulation promotes inflammation and fibrosis. Chronic metabolic acidosis also stimulates ammoniagenesis that increases acid excretion but also leads to ammonia-induced complement activation and deposition of C3 and C5b-9 that can cause tubule-interstitial damage, further worsening disease progression. These effects, along with acid accumulation in kidney tissue, combine to accelerate progression of kidney disease. Treatment of chronic metabolic acidosis attenuates these adaptive responses; reduces levels of angiotensin II, aldosterone, and ET-1; reduces ammoniagenesis; and diminishes inflammation and fibrosis that may lead to slowing of CKD progression.
Collapse
Affiliation(s)
- Donald E Wesson
- Baylor Scott & White Health and Wellness Center, Dallas, Texas; .,Department of Internal Medicine, Texas A&M College of Medicine, Bryan, Texas
| | | | - David A Bushinsky
- Division of Nephrology, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
30
|
Protective effect of the solvent extracts of Portulacca oleracea against acidified ethanol induced gastric ulcer in rabbits. Drug Chem Toxicol 2019; 45:301-310. [PMID: 31742437 DOI: 10.1080/01480545.2019.1691584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Portulacca oleracea L. has been used for treatment of different ailments. The aim of this study was to investigate the effectiveness and possible mechanism of action involved in the anti gastric ulcerogenic effect of Portulacca oleracea. Methanolic extract & subsequent fractions (100, 200 and 400 mg/kg) of Portulacca oleracea (P. oleracea) were administered orally to experimental rabbits one hour before oral administration of HCl/ethanol (40:60). Anti gastric ulcerogenic potential of P. oleracea was evaluated by assessment of gastric pH, pepsin, free acidity, ulcer index, mucus content and total acidity. For the investigation of possible mechanism of action malondialdehyde (MDA), histamine, and H + K + ATPase content were determined in the stomach homogenate. Histopathological study of stomach tissue was carried out by H&E dye. Ethyl acetate fraction (EAF) of P. oleracea was the most potent fraction among all fractions that exhibited efficient protection against acidified ethanol mediated gastric-ulcer. The ethyl acetate fraction (EAF) significantly increased the pH of gastric juice, while pepsin and histamine was observed to decrease significantly in comparison to acidified ethanol group (***p ≤ 0.001). The EAF showed moderately H + K + ATPase inhibitory activity. Moreover, it was also observed that EAF decreased the malondialdehyde (MDA) level in the stomach tissue homogenate showing antioxidant effect. Histopathological studies showed that among the tested fractions, EAF significantly prevented acidified ethanol induced gastric mucosal damage. These results showed that mechanism of anti gastric ulcerogenic potential of P. oleracea could be associated with the reduction in histamine level, H + K + ATPase inhibition and reduced MDA level.
Collapse
|
31
|
Shaik B, Gupta SP, Sharma S. Quantitative Structure-Activity Relationship and Docking Studies on a series of H+/K+-ATPase inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570178616666190222153819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The Gastric H+/K+-ATPase is also known as proton pump is the enzyme
responsible for the acidification of gastric juice. H+/K+ GastroEsophageal Reflux Disease (GERD)
and other acid related diseases mainly depend on the inhibition of the gastric H+/K+- ATPase which
will finally result in acid secretion in stomach. GERD is one of the diseases that have significant
effect on the quality of human life and are the major burden on health care systems is that leads to
heart burn, acid regurgitation, chest pain, epigastric pain, and respiratory conditions such as chronic
cough. Hence the study of the inhibitors of Gastric H+/K+-ATPase is desired.
Methods:
Research and online content related to imidazo [1, 2-a]pyrazine and heterocyclic ring analogues
(I) that were synthesized and evaluated for their Gastric H+/K+-ATPase inhibitory activity is
reviewed, and in order to design and develop still better and more effective H+/K+-ATPase inhibitors,
we have made Quantitative Structure Activity Relationship (QSAR), docking and ADMET studies
on these compounds.
Results:
The best MLR equation based on four descriptors along with statistical parameters is obtained
using Statistica dataminer software. Using the model expressed by this study we predicted
some new compounds of high H+/K+-ATPase inhibition potency. Each predicted compound has very
high potency with which only a few compounds of existing series can match.
Conclusion:
The QSAR and molecular modelling studies suggested that still better compounds can
be designed if the flexibility of the molecules can be increased for which attempts can be made to
have more saturated atoms in the molecules. Such a compound predicted by us was found to have
interactions with the enzyme H+/K+-ATPase almost in the same manner as the FDA approved compounds,
lansoprazole, pantaprazole.
Collapse
Affiliation(s)
- Basheerulla Shaik
- Department of Applied Sciences, National Institute of Technical Teachers' Training and Research, Bhopal-462002, India
| | - Satya Prakash Gupta
- Department of Applied Sciences, Meerut Institute of Engineering and Technology, Meerut-250005, India
| | - Shweta Sharma
- Department of Chemistry, Career College, Career group of Institutions, Bhopal, Madhya Pradesh, India
| |
Collapse
|
32
|
Poulsen SB, Fenton RA. K
+
and the renin–angiotensin–aldosterone system: new insights into their role in blood pressure control and hypertension treatment. J Physiol 2019; 597:4451-4464. [DOI: 10.1113/jp276844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Søren B. Poulsen
- Department of BiomedicineAarhus University Aarhus DK‐8000 Denmark
| | - Robert A. Fenton
- Department of BiomedicineAarhus University Aarhus DK‐8000 Denmark
| |
Collapse
|
33
|
Abstract
Metabolic acidosis is defined as a pathologic process that, when unopposed, increases the concentration of hydrogen ions (H+) in the body and reduces the bicarbonate (HCO3-) concentration. Metabolic acidosis can be of a kidney origin or an extrarenal cause. Assessment of urinary ammonium excretion by calculating the urine anion gap or osmolal gap is a useful method to distinguish between these two causes. Extrarenal processes include increased endogenous acid production and accelerated loss of bicarbonate from the body. Metabolic acidosis of renal origin is due to a primary defect in renal acidification with no increase in extrarenal hydrogen ion production. This situation can occur because either the renal input of new bicarbonate is insufficient to regenerate the bicarbonate lost in buffering endogenous acid as with distal renal tubular acidosis (RTA) or the RTA of renal insufficiency, or the filtered bicarbonate is lost by kidney wasting as in proximal RTA. In either condition, because of loss of either NaHCO3 (proximal RTA) or NaA (distal RTA), effective extracellular volume is reduced and as a result the avidity for chloride reabsorption derived from the diet is increased and results in a hyperchloremic normal gap metabolic acidosis. The RTA of renal insufficiency is also characterized by a normal gap acidosis, however, with severe reductions in the glomerular filtration rate an anion gap metabolic acidosis eventually develops.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA -
| | - Deborah J Clegg
- Department of Health Studies, College of Arts and Sciences, American University, Washington, DC, USA.,Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
34
|
Russ M, Ott S, Bedarf JR, Kirschfink M, Hiebl B, Unger JK. Increased compensatory kidney workload results in cellular damage in a short time porcine model of mixed acidemia - Is acidemia a 'first hit' in acute kidney injury? PLoS One 2019; 14:e0218308. [PMID: 31206554 PMCID: PMC6576776 DOI: 10.1371/journal.pone.0218308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) corrupts the outcome of about 50% of all critically ill patients. We investigated the possible contribution of the pathology acidemia on the development of AKI. Pigs were exposed to acidemia, acidemia plus hypoxemia or a normal acid-base balance in an experimental setup, which included mechanical ventilation and renal replacement therapy to facilitate biotrauma caused by extracorporeal therapies. Interestingly, extensive histomorphological changes like a tubular loss of cell barriers occurred in the kidneys after just 5 hours exposure to acidemia. The additional exposure to hypoxemia aggravated these findings. These ‘early’ microscopic pathologies opposed intra vitam data of kidney function. They did not mirror cellular or systemic patterns of proinflammatory molecules (like TNF-α or IL 18) nor were they detectable by new, sensitive markers of AKI like Neutrophil gelatinase-associated lipocalin. Instead, the data suggest that the increased renal proton excretion during acidemia could be an ‘early’ first hit in the multifactorial pathogenesis of AKI.
Collapse
Affiliation(s)
- Martin Russ
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité–Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Sascha Ott
- Department of Experimental Medicine, Campus Virchow-Klinikum, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Janis R. Bedarf
- Department of Neurology, University of Bonn, Bonn, Germany
- German Centre for Neurodegenerative Disease Research (DZNE), Bonn, Germany
| | - Michael Kirschfink
- Institute for Clinical Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernhard Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour and Virtual Center for Replacement–Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Juliane K. Unger
- Department of Experimental Medicine, Campus Virchow-Klinikum, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Giesecke T, Himmerkus N, Leipziger J, Bleich M, Koshimizu TA, Fähling M, Smorodchenko A, Shpak J, Knappe C, Isermann J, Ayasse N, Kawahara K, Schmoranzer J, Gimber N, Paliege A, Bachmann S, Mutig K. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J Am Soc Nephrol 2019; 30:946-961. [PMID: 31097611 DOI: 10.1681/asn.2018080816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Antagonists of the V1a vasopressin receptor (V1aR) are emerging as a strategy for slowing progression of CKD. Physiologically, V1aR signaling has been linked with acid-base homeostasis, but more detailed information is needed about renal V1aR distribution and function. METHODS We used a new anti-V1aR antibody and high-resolution microscopy to investigate Va1R distribution in rodent and human kidneys. To investigate whether V1aR activation promotes urinary H+ secretion, we used a V1aR agonist or antagonist to evaluate V1aR function in vasopressin-deficient Brattleboro rats, bladder-catheterized mice, isolated collecting ducts, and cultured inner medullary collecting duct (IMCD) cells. RESULTS Localization of V1aR in rodent and human kidneys produced a basolateral signal in type A intercalated cells (A-ICs) and a perinuclear to subapical signal in type B intercalated cells of connecting tubules and collecting ducts. Treating vasopressin-deficient Brattleboro rats with a V1aR agonist decreased urinary pH and tripled net acid excretion; we observed a similar response in C57BL/6J mice. In contrast, V1aR antagonist did not affect urinary pH in normal or acid-loaded mice. In ex vivo settings, basolateral treatment of isolated perfused medullary collecting ducts with the V1aR agonist or vasopressin increased intracellular calcium levels in ICs and decreased luminal pH, suggesting V1aR-dependent calcium release and stimulation of proton-secreting proteins. Basolateral treatment of IMCD cells with the V1aR agonist increased apical abundance of vacuolar H+-ATPase in A-ICs. CONCLUSIONS Our results show that activation of V1aR contributes to urinary acidification via H+ secretion by A-ICs, which may have clinical implications for pharmacologic targeting of V1aR.
Collapse
Affiliation(s)
- Torsten Giesecke
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Shpak
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Knappe
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Isermann
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Niklas Ayasse
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jan Schmoranzer
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Niclas Gimber
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kerim Mutig
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russian Federation
| |
Collapse
|
36
|
Tomilin V, Mamenko M, Zaika O, Wingo CS, Pochynyuk O. TRPV4 deletion protects against hypokalemia during systemic K + deficiency. Am J Physiol Renal Physiol 2019; 316:F948-F956. [PMID: 30838874 DOI: 10.1152/ajprenal.00043.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tight regulation of K+ balance is fundamental for normal physiology. Reduced dietary K+ intake, which is common in Western diets, often leads to hypokalemia and associated cardiovascular- and kidney-related pathologies. The distal nephron, and, specifically, the collecting duct (CD), is the major site of controlled K+ reabsorption via H+-K+-ATPase in the state of dietary K+ deficiency. We (Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. Kidney Int 91: 1398-1409, 2017) have previously demonstrated that the transient receptor potential vanilloid type 4 (TRPV4) Ca2+ channel, abundantly expressed in the CD, contributes to renal K+ handling by promoting flow-induced K+ secretion. Here, we investigated a potential role of TRPV4 in controlling H+-K+-ATPase-dependent K+ reabsorption in the CD. Treatment with a K+-deficient diet (<0.01% K+) for 7 days reduced serum K+ levels in wild-type (WT) mice from 4.3 ± 0.2 to 3.3 ± 0.2 mM but not in TRPV4-/- mice (4.3 ± 0.1 and 4.2 ± 0.3 mM, respectively). Furthermore, we detected a significant reduction in 24-h urinary K+ levels in TRPV4-/- compared with WT mice upon switching to K+-deficient diet. TRPV4-/- animals also had significantly more acidic urine on a low-K+ diet, but not on a regular (0.9% K+) or high-K+ (5% K+) diet, which is consistent with increased H+-K+-ATPase activity. Moreover, we detected a greatly accelerated H+-K+-ATPase-dependent intracellular pH extrusion in freshly isolated CDs from TRPV4-/- compared with WT mice fed a K+-deficient diet. Overall, our results demonstrate a novel kaliuretic role of TRPV4 by inhibiting H+-K+-ATPase-dependent K+ reabsorption in the CD. We propose that TRPV4 inhibition could be a novel strategy to manage certain hypokalemic states in clinical settings.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Transplantation, Department of Medicine, University of Florida , Gainesville, Florida.,North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston , Houston, Texas
| |
Collapse
|
37
|
Kohansal P, Rajai N, Dehpour AR, Rashidian A, Shafaroodi H. The protective effect of acute pantoprazole pretreatment on renal ischemia/reperfusion injury in rats. Fundam Clin Pharmacol 2019; 33:405-411. [DOI: 10.1111/fcp.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Parichehr Kohansal
- Department of Pharmacology and Toxicology Pharmaceutical Sciences Branch Islamic Azad University Tehran Iran
| | - Nazanin Rajai
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| | - Amir Rashidian
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamed Shafaroodi
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
38
|
Kamel KS, Schreiber M, Halperin ML. Renal potassium physiology: integration of the renal response to dietary potassium depletion. Kidney Int 2018; 93:41-53. [PMID: 29102372 DOI: 10.1016/j.kint.2017.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/30/2023]
Abstract
We summarize the current understanding of the physiology of the renal handling of potassium (K+), and present an integrative view of the renal response to K+ depletion caused by dietary K+ restriction. This renal response involves contributions from different nephron segments, and aims to diminish the rate of excretion of K+ as a result of: decreasing the rate of electrogenic (and increasing the rate of electroneutral) reabsorption of sodium in the aldosterone-sensitive distal nephron (ASDN), decreasing the abundance of renal outer medullary K+ channels in the luminal membrane of principal cells in the ASDN, decreasing the flow rate in the ASDN, and increasing the reabsorption of K+ in the cortical and medullary collecting ducts. The implications of this physiology for the association between K+ depletion and hypertension, and K+ depletion and formation of calcium kidney stones are discussed.
Collapse
Affiliation(s)
- Kamel S Kamel
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | - Martin Schreiber
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mitchell L Halperin
- Renal Division, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Adenylyl cyclase 6 is required for maintaining acid-base homeostasis. Clin Sci (Lond) 2018; 132:1779-1796. [PMID: 29941522 DOI: 10.1042/cs20180060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
Adenylyl cyclase (AC) isoform 6 (AC6) is highly expressed throughout the renal tubule and collecting duct (CD), catalyzes the synthesis of cAMP and contributes to various aspects of renal transport. Several proteins involved in acid-base homeostasis are regulated by cAMP. In the present study, we assess the relative contribution of AC6 to overall acid-base regulation using mice with global deletion of AC6 (AC6-/-) or newly generated mice lacking AC6 in the renal tubule and CD (AC6loxloxPax8Cre). Higher energy expenditure in AC6-/- relative to wild-type (WT) mice, was associated with lower urinary pH, mild alkalosis in conjunction with elevated blood HCO3- concentrations, and significantly higher renal abundance of the H+-ATPase B1 subunit. In contrast with WT mice, AC6-/- mice have a less pronounced increase in urinary pH after 8 days of HCO3- challenge, which is associated with increased blood pH and HCO3- concentrations. Immunohistochemistry demonstrated that AC6 was expressed in intercalated cells (IC), but subcellular distribution of the H+-ATPase B1 subunit, pendrin, and the anion exchangers 1 and 2 in AC6-/- mice was normal. In the AC6-/- mice, H+-ATPase B1 subunit levels after HCO3- challenge were greater, which correlated with a higher number of type A IC. In contrast with the AC6-/- mice, AC6loxloxPax8Cre mice had normal urinary pH under baseline conditions but higher blood HCO3- than controls after HCO3- challenge. In conclusion, AC6 is required for maintaining normal acid-base homeostasis and energy expenditure. Under baseline conditions, renal AC6 is redundant for acid-base balance but becomes important under alkaline conditions.
Collapse
|
40
|
Malik S, Lambert E, Zhang J, Wang T, Clark HL, Cypress M, Goldman BI, Porter GA, Pena S, Nino W, Gray DA. Potassium conservation is impaired in mice with reduced renal expression of Kir4.1. Am J Physiol Renal Physiol 2018; 315:F1271-F1282. [PMID: 30110571 DOI: 10.1152/ajprenal.00022.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 "knockdown" mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.
Collapse
Affiliation(s)
- Sundeep Malik
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester , Rochester, New York
| | - Emily Lambert
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Junhui Zhang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Tong Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut
| | - Heather L Clark
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Michael Cypress
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Bruce I Goldman
- Pathology and Laboratory Medicine, University of Rochester , Rochester, New York
| | - George A Porter
- Cardiology Division, Department of Pediatrics, University of Rochester , Rochester, New York
| | - Salvador Pena
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Wilson Nino
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| | - Daniel A Gray
- Nephrology Division, Department of Medicine, University of Rochester , Rochester, New York
| |
Collapse
|
41
|
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018; 19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct). Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na⁺, Cl- and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.
Collapse
Affiliation(s)
- Lletta Lewis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
42
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
43
|
Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect 2018; 7:R135-R146. [PMID: 29540487 PMCID: PMC5881435 DOI: 10.1530/ec-18-0109] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Hypokalemia is a common electrolyte disturbance, especially in hospitalized patients. It can have various causes, including endocrine ones. Sometimes, hypokalemia requires urgent medical attention. The aim of this review is to present updated information regarding: (1) the definition and prevalence of hypokalemia, (2) the physiology of potassium homeostasis, (3) the various causes leading to hypokalemia, (4) the diagnostic steps for the assessment of hypokalemia and (5) the appropriate treatment of hypokalemia depending on the cause. Practical algorithms for the optimal diagnostic, treatment and follow-up strategy are presented, while an individualized approach is emphasized.
Collapse
Affiliation(s)
- Efstratios Kardalas
- Department of Endocrinology and DiabetesEvangelismos Hospital, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes'Aghia Sophia' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Anagnostis
- Unit of Reproductive EndocrinologyFirst Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanna Muscogiuri
- Division of EndocrinologyDepartment of Clinical Medicine and Surgery, 'Federico II' University of Naples, Naples, Italy
| | - Gerasimos Siasos
- First Department of CardiologyHippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and DiabetesHellenic Red Cross Hospital, Athens, Greece
| |
Collapse
|
44
|
Ozkan TA, Karakoyunlu N, Polat R, Sarıbaş GS, Şener NC, Özdemir S, Peker K, Ünal D, Tuygun C. An evaluation of the protective effect of esomeprazole in an experimental model of renal ischemia–reperfusion. Int Urol Nephrol 2017; 50:217-223. [DOI: 10.1007/s11255-017-1775-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
|
45
|
Peter MS, Simi S. Hypoxia Stress Modifies Na +/K +-ATPase, H +/K +-ATPase, [Formula: see text], and nkaα1 Isoform Expression in the Brain of Immune-Challenged Air-Breathing Fish. J Exp Neurosci 2017; 11:1179069517733732. [PMID: 29238219 PMCID: PMC5721975 DOI: 10.1177/1179069517733732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022] Open
Abstract
Fishes are equipped to sense stressful stimuli and are able to respond to environmental stressor such as hypoxia with varying pattern of stress response. The functional attributes of brain to hypoxia stress in relation to ion transport and its interaction during immune challenge have not yet delineated in fish. We, therefore, explored the pattern of ion transporter functions and messenger RNA (mRNA) expression of α1-subunit isoforms of Na+/K+-ATPase (NKA) in the brain segments, namely, prosencephalon (PC), mesencephalon (MC), and metencephalon (MeC) in an obligate air-breathing fish exposed either to hypoxia stress (30 minutes forced immersion in water) or challenged with zymosan treatment (25-200 ng g−1 for 24 hours) or both. Zymosan that produced nonspecific immune responses evoked differential regulation of NKA, H+/K+-ATPase (HKA), and Na+/NH4+-ATPase (NNA) in the varied brain segments. On the contrary, hypoxia stress that demanded activation of NKA in PC and MeC showed a reversed NKA activity pattern in MeC of immune-challenged fish. A compromised HKA and NNA regulation during hypoxia stress was found in immune-challenged fish, indicating the role of these brain ion transporters to hypoxia stress and immune challenges. The differential mRNA expression of α1-subunit isoforms of NKA, nkaα1a, nkaα1b, and nkaα1c, in hypoxia-stressed brain showed a shift in its expression pattern during hypoxia stress-immune interaction in PC and MC. Evidence is thus presented for the first time that ion transporters such as HKA and NNA along with NKA act as functional brain markers which respond differentially to both hypoxia stress and immune challenges. Taken together, the data further provide evidence for a differential Na+, K+, H+, and NH4+ ion signaling that exists in brain neuronal clusters during hypoxia stress-immune interaction as a result of modified regulations of NKA, HKA, and NNA transporter functions and nkaα1 isoform regulation.
Collapse
Affiliation(s)
- Mc Subhash Peter
- Department of Zoology, University of Kerala, Thiruvananthapuram, India.,Inter-University Centre for Evolutionary and Integrative Biology, University of Kerala, Thiruvananthapuram, India
| | - Satheesan Simi
- Department of Zoology, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
46
|
Lovett R, Banta M, Shkarni N, Chen X, Nakamura S. Role of sex hormone on morphological and histological changes in benign prostatic hypertrophy rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10821-10829. [PMID: 31966425 PMCID: PMC6965861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/08/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND The prostate, the key secondary male reproductive organ, serves an important function of alkalizing seminal fluid and protecting genetic information in the acidity of the vaginal tract. As males age, the most common urologic condition manifests as an enlargement of the prostate known as benign prostatic hypertrophy (BPH). The purpose of this study is to examine the relationship between hormonal regulation and the morphological changes in BPH. Furthermore, we examine whether the ion-transport pump, H-K-ATPase (HKA), mediates such hormonal regulation. The experiments were designed to test the effects of the primary male androgen, testosterone propionate (TP), as well as the female hormone, estradiol (E2). METHODS The rats were divided into three groups; control group, TP group, and TP+E2 group. Both the TP and the E2 were diluted in vegetable oil and covered to eliminate light exposure. A subcutaneous injection of TP at 3 mg/mL was administered to induce BPH in each rat. After 6 weeks of TP-induced BPH, we divided these rats into two groups. In one group of BPH rats, we injected 60 µg of E2, and in another group of BPH rats, we injected 120 µg of E2 subcutaneously. The rats were sacrificed under anesthesia, and the prostate specimens were dissected. The rat's body weight and the prostate tissue weight were measured as the organ quotient. RESULTS The data indicate significant hypertrophy of the luminal cells in rats with 3 mg TP compared to the control (524.542 ± 4.637 vs. 350.583 ± 1.996, P-value < 0.005). Whereas, the group with 60 µg E2 on TP-induced BPH showed significant inhibitory effects compared to TP-induced BPH (385.571 ± 7.265 vs. 524.542 ± 4.637, P-value < 0.005). The experimental group with 120 µg E2 on TP-induced BPH also showed significant inhibitory effects compared to TP-induced BPH (465.857 ± 8.259 vs. 524.542 ± 4.637, P-value < 0.005). The inhibitory effects of the 60 µg E2 group were more significant than the inhibitory effects of the 120 µg E2 group (385.571 ± 7.265 vs. 465.857 ± 8.259, P-value < 0.005), suggesting the importance of maintaining a proper E2:TP ratio. Western blot analysis shows up-regulation of specific bands for HKA alpha subunit at ~97 kDa for TP-induced BPH and down-regulation of HKA in the TP+E2 treatment groups. CONCLUSIONS The results show that TP induces benign prostate hypertrophy. Whereas, E2 is shown to inhibit BPH; the effect of E2 inhibition on BPH requires the optimal ratio between E2 and TP. If such a ratio is not reached, then BPH inhibition will not occur or will be less effective by E2. Both the induction and inhibition of hypertrophic cells suggest that the prostate is under hormonal regulation. The proper E2:TP ratio plays a crucial role in the pathogenesis of BPH. The ratio of E2:TP may lead to new approaches to preventing and treating BPH disease in the future.
Collapse
Affiliation(s)
- Renn Lovett
- Department of Biological Sciences, Murray State University Murray, KY, USA
| | - Michael Banta
- Department of Biological Sciences, Murray State University Murray, KY, USA
| | - Nidal Shkarni
- Department of Biological Sciences, Murray State University Murray, KY, USA
| | - Xeuying Chen
- Department of Biological Sciences, Murray State University Murray, KY, USA
| | - Suguru Nakamura
- Department of Biological Sciences, Murray State University Murray, KY, USA
| |
Collapse
|
47
|
Rajesh R, Manikandan A, Sivakumar A, Ramasubbu C, Nagaraju N. Substituted methoxybenzyl-sulfonyl-1H-benzo[d]imidazoles evaluated as effective H +/K +-ATPase inhibitors and anti-ulcer therapeutics. Eur J Med Chem 2017; 139:454-460. [PMID: 28818769 DOI: 10.1016/j.ejmech.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/29/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022]
Abstract
Efforts were made to synthesize a series of substituted methoxybenzyl-sulfonyl-1H-benzo[d]imidazole derivatives (8a-l) and investigate their anti-ulcer therapeutics. Prior to evaluating antiulcer potentials of 8a-l, a preliminary binding assay against H+/K+-ATPase from goat gastric mucosa was carried out, since it plays an important role in the ulcer development. In order to get more insight into the binding mode of the compounds to H+/K+-ATPase, a molecular docking study was carried out and the best binding affinities were unveiled. Many of the substituted methoxybenzyl-sulfonyl-1H-benzo[d]imidazole derivatives (8a-l) were active for the proposed activity. The key finding was that, least inhibitory constant (ki) values of 8a-l were found between 0.02 and 1.8 μM in the molecular docking study. Almost the same range was reflected/correlated in the H+/K+-ATPase inhibition assay (IC50 0.14-1.29 μM). Remarkably, compounds 8a-l showed a relative activity percentage range of 72-92%. Efficient HRBC membrane stabilization activity of 8a-l ensured the non-harm/safety and the suitability/alternative towards anti-ulcer therapy.
Collapse
Affiliation(s)
- R Rajesh
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India; Department of Chemistry, St. Joseph's College, Bangalore 560 027, India
| | - A Manikandan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - A Sivakumar
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - C Ramasubbu
- Sai Supreme Chemicals Ltd., SIPCOT Industrial Estate, Gummidipoondi, Chennai 601 201, India
| | - N Nagaraju
- Department of Chemistry, St. Joseph's College, Bangalore 560 027, India.
| |
Collapse
|
48
|
|
49
|
Wang SL, Jiang K, Chen X, Jiao GH, Wang BM. Acute gouty arthritis induced by proton pump inhibitors: Clinical characteristics and possible mechanisms. Shijie Huaren Xiaohua Zazhi 2017; 25:852-856. [DOI: 10.11569/wcjd.v25.i9.852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the clinical characteristics and possible mechanisms of acute gouty arthritis induced by proton pump inhibitors (PPIs).
METHODS Clinical data for patients with refractory gout after treatment with PPIs from July 2009 to November 2016 in Tianjin Medical University General Hospital were retrospectively analyzed. Eight cases with acute gouty arthritis without usage of diuretics were enrolled for further analysis.
RESULTS Eight male patients with acute gouty arthritis after treatment with PPIs were initially diagnosed with peptic ulcer (75.0%) or erosive gastritis (25.0%), accompanied by hyperuricemia and urine pH equal to or less than 6. Mean time from PPI prescription to arthritis onset was 6.67 days. Acute gout led to redness, swelling, pain and limited function in the damaged single joint or several joints, which was often accompanied by fever (62.5%). According to laboratory examinations, leukocyte count, percentage of neutrophils, and serum uric acid increased in 6 (75%) patients, while decreased creatinine and urea were found in 7 (87.5%) patients after treatment with PPIs. Serum K+ concentrations decreased (P < 0.05) in all the 8 patients, while serum Na+ and Cl- concentrations increased in 5 (62.5%) patients. Pain may be relieved after withdrawal of PPIs, symptomatic treatment, or treatment with nonsteroidal anti-inflammatory drugs or steroids.
CONCLUSION PPIs can sometimes induce refractory gout, which may result from inhibitory effects of PPIs on H+-K+-ATPase existing in the kidneys or from the reduction of blood volume.
Collapse
|
50
|
Abstract
Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4+, are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.
Collapse
Affiliation(s)
- I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; and Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|