1
|
Khalilpour J, Soltani Zangbar H, Alipour MR, Shahabi P. The hypoxic respiratory response of the pre-Bötzinger complex. Heliyon 2024; 10:e34491. [PMID: 39114066 PMCID: PMC11305331 DOI: 10.1016/j.heliyon.2024.e34491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Since the discovery of the pre-Bötzinger Complex (preBötC) as a crucial region for generating the main respiratory rhythm, our understanding of its cellular and molecular aspects has rapidly increased within the last few decades. It is now apparent that preBötC is a highly flexible neuronal network that reconfigures state-dependently to produce the most appropriate respiratory output in response to various metabolic challenges, such as hypoxia. However, the responses of the preBötC to hypoxic conditions can be varied based on the intensity, pattern, and duration of the hypoxic challenge. This review discusses the preBötC response to hypoxic challenges at the cellular and network level. Particularly, the involvement of preBötC in the classical biphasic response of the respiratory network to acute hypoxia is illuminated. Furthermore, the article discusses the functional and structural changes of preBötC neurons following intermittent and sustained hypoxic challenges. Accumulating evidence shows that the preBötC neural circuits undergo substantial changes following hypoxia and contribute to several types of the respiratory system's hypoxic ventilatory responses.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Farra SD, Cheung SS, Thomas SG, Jacobs I. Rate dependent influence of arterial desaturation on self-selected exercise intensity during cycling. PLoS One 2017; 12:e0171119. [PMID: 28257415 PMCID: PMC5336231 DOI: 10.1371/journal.pone.0171119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to clarify if Ratings of Perceived Exertion (RPE) and self-selected exercise intensity are sensitive not only to alterations in the absolute level of arterial saturation (SPO2) but also the rate of change in SPO2. Twelve healthy participants (31.6 ± 3.9 y, 175.5 ± 7.7 cm, 73.3 ± 10.3 kg, 51 ± 7 mL·kg-1·min-1 [Formula: see text]) exercised four times on a cycle ergometer, freely adjusting power output (PO) to maintain RPE at 5 on Borg's 10-point scale with no external feedback to indicate their exercise intensity. The fraction of inspired oxygen (FIO2) was reduced during three of those trials such that SPO2 decreased during exercise from starting values (>98%) to 70%. These trials were differentiated by the time over which the desaturation occurred: 3.9 ± 1.4 min, -8.7 ± 4.2%•min-1 (FAST), 11.0 ± 3.7 min, -2.8 ± 1.3%•min-1 (MED), and 19.5 ± 5.8 min, -1.5 ± 0.8%•min-1 (SLOW) (P < 0.001). Compared to stable PO throughout the control condition (no SPO2 manipulation), PO significantly decreased across the experimental conditions (FAST = 2.8 ± 2.1 W•% SPO2-1; MED = 2.5 ± 1.8 W•% SPO2-1; SLOW = 1.8 ± 1.6 W•% SPO2-1; P < 0.001). The rates of decline in PO during FAST and MED were similar, with both greater than SLOW. Our results confirm that decreases in absolute SPO2 impair exercise performance and that a faster rate of oxygen desaturation magnifies that impairment.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Stephen S. Cheung
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- Department of Kinesiology, Brock University, St. Catherines, Ontario, Canada
| | - Scott G. Thomas
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
3
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Gu Z, Januszkiewicz AJ, Mayorga MA, Coleman GD, Morrissette CR. Consequences of brief exposure to high concentrations of carbon monoxide in conscious rats. Inhal Toxicol 2006; 17:755-64. [PMID: 16195211 DOI: 10.1080/08958370500224904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Exposure to high-concentration carbon monoxide (CO) is of concern in military operations. Experimentally, the physiologic manifestations of a brief exposure to elevated levels of CO have not been fully described. This study investigated the development of acute CO poisoning in conscious male Sprague-Dawley rats (220-380 g). Animals were randomly grouped (n = 6) and exposed to either air or 1 of 6 CO concentrations (1000, 3000, 6000, 10,000, 12,000, or 24,000 ppm) in a continuous air/CO dynamic exposure chamber for 5 min. Respiration was recorded prior to and during exposures. Mixed blood carboxyhemoglobin (COHb) and pH were measured before and immediately after exposure. Before exposure the mean baselines of respiratory minute volumes (RMVs) were 312.6 +/- 43.9, 275.2 +/- 40.8, and 302.3 +/- 39.1 ml/min for the 10,000, 12,000 and 24,000 ppm groups, respectively. In the last minute of exposure RMVs were 118.9 +/- 23.7, 62.1 +/- 10.4, and 22.0 +/- 15.1% (p < .05) of their mean baselines in these 3 groups, respectively. Immediately after exposure, blood COHb saturations were elevated to 60.16, 63.42, and 69.37%, and blood pH levels were reduced to 7.43 +/- 0.09, 7.25 +/- 0.05, and 7.13 +/- 0.04 in the 3 groups, respectively. Mortality during exposure was 1/12 in the 12,000 ppm group and 4/12 in the 24,000 ppm group. Deaths occurred close to the end of 5 min exposure. In each animal that died by exposure, pH was <6.87 and COHb saturation was >82%. Blood pH was unaltered and no death occurred in rats exposed to CO at concentrations <6000 ppm, although COHb saturations were elevated to 14.52, 29.94, and 57.24% in the 1000, 3000, and 6000 ppm groups, respectively. These results suggest that brief exposure to CO at concentrations <10,000 ppm may produce some significant physiological changes. However, exposure to CO at concentrations >10,000 ppm for brief periods as short as 5 min may change RMV, resulting in acute respiratory failure, acidemia, and even death.
Collapse
Affiliation(s)
- Zengfa Gu
- Department of Respiratory Research, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA.
| | | | | | | | | |
Collapse
|
5
|
Akay M. Hypoxia silences the neural activities in the early phase of the phrenic neurogram of eupnea in the piglet. J Neuroeng Rehabil 2005; 2:32. [PMID: 16318633 PMCID: PMC1318464 DOI: 10.1186/1743-0003-2-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022] Open
Abstract
Objective We investigated phrenic neurogram patterns during eupnea (normal breathing) and severe hypoxia (gasping) during early maturation in the piglet. Methods We used continuous wavelet transform and short time Fourier transform methods to examine the similarity of breathing patterns in both time and frequency domains during early maturation. The phrenic neurogram was recorded during eupnea, severe hypoxia, and recovery from severe hypoxia in piglets in three different age groups: 3–6 days, 10–15 days and 29–35 days. Results During the first week of postnatal age, respiratory patterns of phrenic activity were marked by frequency components between 30 and 300 Hz during both the early (first half) and late (second half) phases of the neurogram signals during eupnea. The results suggest that there is little difference between the respiratory patterns in both time and frequency domains during eupnea compared to gasping for the first week of postnatal age in piglets. After the first week of postnatal age, the duration of the phrenic neurogram burst significantly increases and the patterns during the early phase of the phrenic neurogram are different from those observed for gasping. However, the patterns that mark the late phase of the phrenic neurograms are still the same as those of gasping. Conclusion Our most significant finding is that hypoxia silences the neural activity in the early phase of phrenic neurogram regardless of maturation.
Collapse
Affiliation(s)
- Metin Akay
- Neural Engineering & Informatics Laboratory, Harrington Department of Bioengineering, Ira A, Fulton School of Engineering, Arizona State University, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
6
|
Stuhmiller JH, Stuhmiller LM. A mathematical model of ventilation response to inhaled carbon monoxide. J Appl Physiol (1985) 2005; 98:2033-44. [PMID: 15691907 DOI: 10.1152/japplphysiol.00034.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comprehensive mathematical model, describing the respiration, circulation, oxygen metabolism, and ventilatory control, is assembled for the purpose of predicting acute ventilation changes from exposure to carbon monoxide in both humans and animals. This Dynamic Physiological Model is based on previously published work, reformulated, extended, and combined into a single model. Model parameters are determined from literature values, fitted to experimental data, or allometrically scaled between species. The model predictions are compared with ventilation-time history data collected in goats exposed to carbon monoxide, with quantitatively good agreement. The model reaffirms the role of brain hypoxia on hyperventilation during carbon monoxide exposures. Improvement in the estimation of total ventilation, through a more complete knowledge of ventilation control mechanisms and validated by animal data, will increase the accuracy of inhalation toxicology estimates.
Collapse
|
7
|
Izumizaki M, Pokorski M, Homma I. Role of the carotid bodies in chemosensory ventilatory responses in the anesthetized mouse. J Appl Physiol (1985) 2004; 97:1401-7. [PMID: 15194670 DOI: 10.1152/japplphysiol.00025.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effects of carotid body denervation on ventilatory responses to normoxia (21% O2 in N2 for 240 s), hypoxic hypoxia (10 and 15% O2 in N2 for 90 and 120 s, respectively), and hyperoxic hypercapnia (5% CO2 in O2 for 240 s) in the spontaneously breathing urethane-anesthetized mouse. Respiratory measurements were made with a whole body, single-chamber plethysmograph before and after cutting both carotid sinus nerves. Baseline measurements in air showed that carotid body denervation was accompanied by lower minute ventilation with a reduction in respiratory frequency. On the basis of measurements with an open-circuit system, no significant differences in O2 consumption or CO2 production before and after chemodenervation were found. During both levels of hypoxia, animals with intact sinus nerves had increased respiratory frequency, tidal volume, and minute ventilation; however, after chemodenervation, animals experienced a drop in respiratory frequency and ventilatory depression. Tidal volume responses during 15% hypoxia were similar before and after carotid body denervation; during 10% hypoxia in chemodenervated animals, there was a sudden increase in tidal volume with an increase in the rate of inspiration, suggesting that gasping occurred. During hyperoxic hypercapnia, ventilatory responses were lower with a smaller tidal volume after chemodenervation than before. We conclude that the carotid bodies are essential for maintaining ventilation during eupnea, hypoxia, and hypercapnia in the anesthetized mouse.
Collapse
Affiliation(s)
- Masahiko Izumizaki
- Dept. of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | |
Collapse
|
8
|
Abstract
Our concepts of oxygen sensing have been transformed over the years. We now appreciate that oxygen sensing is not a unique property limited to “chemoreceptors” but is a common property of tissues and that responses to changes in oxygen levels are not static but can change over time. Respiratory responses initiated at the carotid body are modified by the excitatory and depressant effects of hypoxia at the brain and on the pathways connecting the carotid body to the brain. Equally important is that we are beginning to use our understanding of the cellular and molecular pathways triggered by hypoxia and hyperoxia to identify therapeutic targets to treat diseases such as cancer. We also have a better understanding of the complexities of the human respiratory responses to hypoxia; however, major deficiencies remain in our ability to alter or even measure human ventilatory responses to oxygen deficiency.
Collapse
Affiliation(s)
- Neil S Cherniack
- New Jersey Medical School, The University of Medicine and Dentistry of New Jersey, Newark, NJ 07301, USA.
| |
Collapse
|
9
|
Bavis RW, Mitchell GS. Intermittent hypoxia induces phrenic long-term facilitation in carotid-denervated rats. J Appl Physiol (1985) 2003; 94:399-409. [PMID: 12391138 DOI: 10.1152/japplphysiol.00374.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Episodic hypoxia elicits a long-lasting augmentation of phrenic inspiratory activity known as long-term facilitation (LTF). We investigated the respective contributions of carotid chemoafferent neuron activation and hypoxia to the expression of LTF in urethane-anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats. One hour after three 5-min isocapnic hypoxic episodes [arterial Po(2) (Pa(O(2))) = 40 +/- 5 Torr], integrated phrenic burst amplitude was greater than baseline in both carotid-denervated (n = 8) and sham-operated (n = 7) rats (P < 0.05), indicating LTF. LTF was reduced in carotid-denervated rats relative to sham (P < 0.05). In this and previous studies, rats were ventilated with hyperoxic gas mixtures (inspired oxygen fraction = 0.5) under baseline conditions. To determine whether episodic hyperoxia induces LTF, phrenic activity was recorded under normoxic (Pa(O(2)) = 90-100 Torr) conditions before and after three 5-min episodes of isocapnic hypoxia (Pa(O(2)) = 40 +/- 5 Torr; n = 6) or hyperoxia (Pa(O(2)) > 470 Torr; n = 6). Phrenic burst amplitude was greater than baseline 1 h after episodic hypoxia (P < 0.05), but episodic hyperoxia had no detectable effect. These data suggest that hypoxia per se initiates LTF independently from carotid chemoafferent neuron activation, perhaps through direct central nervous system effects.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, 53706, USA.
| | | |
Collapse
|
10
|
Osanai S, Takahashi T, Enomoto H, Satoh N, Yahara O, Akiba Y, Fujiuchi S, Nakano H, Ohsaki Y, Kikuchi K. Hypoxic ventilatory depression in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. Respirology 2001; 6:163-6. [PMID: 11422897 DOI: 10.1046/j.1440-1843.2001.00318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a case of a 21-year-old man with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) who presented with hypoxic ventilatory depression. He had chronic hypoventilation, which was not explained by weakness of respiratory muscles. His hypercapnic ventilatory response was not impaired. In contrast, hypoxic ventilatory depression was observed in the isocapnic progressive hypoxic response test. After exposure to hypoxic conditions, his respiratory frequency decreased and tidal volume was unchanged. The hypoxic ventilatory depression was partially blocked by pretreatment with aminophylline. In conclusion, we need to be careful with patients with MELAS who are hypoxaemic because a vicious circle of hypoxia and hypoventilation can occur.
Collapse
Affiliation(s)
- S Osanai
- First Department of Medicine, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Miller MJ, Haxhiu MA, Haxhiu-Poskurica B, Dreshaj IA, DiFiore JM, Martin RJ. Recurrent hypoxic exposure and reflex responses during development in the piglet. RESPIRATION PHYSIOLOGY 2000; 123:51-61. [PMID: 10996187 DOI: 10.1016/s0034-5687(00)00149-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of recurrent hypoxia on cardiorespiratory reflexes were characterized in anesthetized piglets at 2-10 d (n=15), 2-3 weeks (n=11) and 8-10 weeks (n=8). Responses of phrenic and hypoglossal electroneurograms (ENG(phr) and ENG (hyp)) to hypoxia (8% 0(2), bal N(2), 5 min), hypercapnia (7% CO(2) bal O(2), 5 min) and intravenous capsaicin were tested before and after recurrent exposure to 11 episodes of hypoxia (8% O(2) bal N(2), 5 min). In piglets 2-10 d, ENG(phr) response to hypoxia declined in proportion to the number of hypoxic exposures; however, ENG (hyp) response to hypoxia was unchanged. In piglets at 2-10 d, intracisternal injection of bicuculline (GABA(A) receptor antagonist) reversed effects of recurrent hypoxia on ENG(phr) hypoxic response, eliminated apnea during hypoxia, as well as the delay in appearance of ENG(phr) after hypoxia. The ENG(phr) response to 7% CO(2) inhalation also decreased after recurrent hypoxia; however, the ENG(phr) response to C-fiber stimulation by capsaicin was unaltered. Piglets at 2-3 and 8-10 weeks were resistant to the depressive effects of recurrent hypoxia on respiratory reflex responses. We conclude that the response of the anesthetized newborn piglet to recurrent hypoxia is dominated by increasing inhibition of phrenic neuroelectrical output during successive hypoxic exposures. Central GABAergic inhibition may contribute significantly to the cumulative effects of repeated hypoxia in the newborn piglet experimental model.
Collapse
Affiliation(s)
- M J Miller
- The Department of Pediatrics, Rainbow Babies and Childrens Hospital and Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Solomon IC. Excitation of phrenic and sympathetic output during acute hypoxia: contribution of medullary oxygen detectors. RESPIRATION PHYSIOLOGY 2000; 121:101-17. [PMID: 10963768 DOI: 10.1016/s0034-5687(00)00122-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe brain hypoxia results in respiratory excitation and an increase in sympathetic nerve activity. Respiratory excitation takes the form of gasping which is characterized by an abrupt onset, high amplitude, short duration burst of inspiratory activity. Recent evidence suggests that centrally-mediated hypoxic respiratory and sympathetic excitation may result from direct hypoxic stimulation of discrete hypoxia chemosensitive sites in the medulla. Thus, medullary regions involved in the generation and modulation of respiratory and sympathetic vasomotor output may contain neurons which function as central oxygen detectors, acting as medullary analogs to the peripheral (arterial) chemoreceptors. This review focuses on the medullary sites and mechanisms proposed to mediate hypoxic respiratory and sympathetic excitation in anesthetized, chemodeafferented animals, and provides the evidence suggesting a role for central oxygen detectors in the control of breathing and sympathetic vasomotor output.
Collapse
Affiliation(s)
- I C Solomon
- Department of Physiology and Biophysics, Health Sciences Center, Basic Science Tower, Level 6, Room 140, State University of New York at Stony Brook, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
13
|
Xiao Q, Suguihara C, Hehre D, Devia C, Huang J, Bancalari E. Effects of GABA receptor blockade on the ventilatory response to hypoxia in hypothermic newborn piglets. Pediatr Res 2000; 47:663-8. [PMID: 10813594 DOI: 10.1203/00006450-200005000-00018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypothermic newborn piglets have a depressed ventilatory response to hypoxia, and this may be due to an increase in CNS gamma-aminobutyric acid (GABA) levels. To evaluate the effects of GABA(A) receptor blockade on the ventilatory response to hypoxia in hypothermic piglets, 31 anesthetized paralyzed mechanically ventilated newborn piglets (2-7 d) were studied at a brain temperature of 38.5 +/- 0.5 degrees C [normothermia (NT), n = 15] or 34 +/- 0.5 degrees C [hypothermia (HT), n = 16]. The central respiratory output was evaluated by measuring burst frequency and moving time average area of phrenic nerve activity. Measurements of minute phrenic output (MPO), arterial blood pressure, heart rate, oxygen consumption, and arterial blood gases were obtained at room air and during 20 min of isocapnic hypoxia [fraction of expired oxygen (FiO2) = 0.10]. After 10 min of hypoxia, a bolus injection of 20 microL of bicuculline methiodide (BM; 10 microg) or Ringer's solution was administered into the cisterna magna over a 1-min period, and the piglets remained in hypoxia for an additional 10 min. There was an initial increase of 50 +/- 6% in MPO during the first minute of hypoxia followed by a decrease to values 24 +/- 8% above baseline at 10 min in the NT group. In contrast, in the HT group, the initial increase in MPO with hypoxia was eliminated, and, at 10 min, there was a decrease to a mean value 35 +/- 4% below baseline level (NT versus HT, p < 0.03). After administration of BM, a significant increase in MPO with hypoxia was observed in both groups compared with their placebo groups (p < 0.002 in NT-BM group, p < 0.0001 in HT-BM group). However, the magnitude of the increase in MPO during hypoxia was significantly greater in the HT group after administration of BM (NT versus HT, p < 0.0001). Changes in oxygen consumption, arterial blood pressure, heart rate, pH, partial pressure of oxygen (PaO2), and base excess with hypoxia were not different between NT and HT groups before and after the administration of BM. The cardiorespiratory response to hypoxia was not modified after administration of Ringer's solution to NT and HT placebo groups. These data suggest that the depression in hypoxic ventilatory response produced by HT is in part modulated by an increased CNS GABA concentration.
Collapse
Affiliation(s)
- Q Xiao
- University of Miami School of Medicine, Department of Pediatrics, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|
14
|
Curran AK, Rodman JR, Eastwood PR, Henderson KS, Dempsey JA, Smith CA. Ventilatory responses to specific CNS hypoxia in sleeping dogs. J Appl Physiol (1985) 2000; 88:1840-52. [PMID: 10797149 DOI: 10.1152/jappl.2000.88.5.1840] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our study was concerned with the effect of brain hypoxia on cardiorespiratory control in the sleeping dog. Eleven unanesthetized dogs were studied; seven were prepared for vascular isolation and extracorporeal perfusion of the carotid body to assess the effects of systemic [and, therefore, central nervous system (CNS)] hypoxia (arterial PO(2) = 52, 45, and 38 Torr) in the presence of a normocapnic, normoxic, and normohydric carotid body during non-rapid eye movement sleep. A lack of ventilatory response to systemic boluses of sodium cyanide during carotid body perfusion demonstrated isolation of the perfused carotid body and lack of other significant peripheral chemosensitivity. Four additional dogs were carotid body denervated and exposed to whole body hypoxia for comparison. In the sleeping dog with an intact and perfused carotid body exposed to specific CNS hypoxia, we found the following. 1) CNS hypoxia for 5-25 min resulted in modest but significant hyperventilation and hypocapnia (minute ventilation increased 29 +/- 7% at arterial PO(2) = 38 Torr); carotid body-denervated dogs showed no ventilatory response to hypoxia. 2) The hyperventilation was caused by increased breathing frequency. 3) The hyperventilatory response developed rapidly (<30 s). 4) Most dogs maintained hyperventilation for up to 25 min of hypoxic exposure. 5) There were no significant changes in blood pressure or heart rate. We conclude that specific CNS hypoxia, in the presence of an intact carotid body maintained normoxic and normocapnic, does not depress and usually stimulates breathing during non-rapid eye movement sleep. The rapidity of the response suggests a chemoreflex meditated by hypoxia-sensitive respiratory-related neurons in the CNS.
Collapse
Affiliation(s)
- A K Curran
- The John Rankin Laboratory of Pulmonary Medicine, Department of Preventive Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Kawai A, Okada Y, Mückenhoff K, Scheid P. Theophylline and hypoxic ventilatory response in the rat isolated brainstem-spinal cord. RESPIRATION PHYSIOLOGY 1995; 100:25-32. [PMID: 7604181 DOI: 10.1016/0034-5687(94)00124-i] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used the isolated brainstem-spinal cord preparation of the neonatal rat to study the effects of theophylline on the ventilatory response to hypoxia. The brainstem-spinal cord was isolated from neonatal rats (0-4 days) and superfused with mock cerebrospinal fluid (CSF), equilibrated with a gas mixture (FO2, 0.90; FCO2, 0.02; FN2, 0.08; control CSF) at 27 degrees C. We recorded phrenic nerve discharge from C4 roots, using suction electrodes, and measured respiratory frequency (fR) and the amplitude of the integrated phrenic neurogram (integral of phr). We examined how theophylline and the specific adenosine antagonist, 8-p-sulfophenyltheophylline (SPT), modify the ventilatory response to hypoxia. The response during superfusion with hypoxic CSF (FO2, 0.06) consisted of a marked decrease in fR (to 60% of control) and a slight decline in integral of phr (to 85% of control). By contrast, in the presence of theophylline (30 mg/L = 165 microM) and SPT (5 mg/L = 15 microM) in the superfusate hypoxia reduced fR only moderately (to 87% of control) and exerted virtually no effect on integral of phr (105% of control). Theophylline and SPT attenuated the rate of decrease in fR and completely blocked the decrease in integral of phr. There was no difference between the effects of theophylline and those of SPT. The results suggest that theophylline attenuates hypoxic respiratory depression, and that this effect is mediated by the blockade of adenosine.
Collapse
Affiliation(s)
- A Kawai
- Institut für Physiologie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
17
|
Severinghaus JW. Hypoxic ventilatory depression may be due to central chemoreceptor cell hyperpolarization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 393:257-60. [PMID: 8629492 DOI: 10.1007/978-1-4615-1933-1_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
By re-examining the results of various studies of HVD, of the localization of medullary CO2 chemosensory cells, and of their acid secretion, an hypothesis has been developed suggesting that the neurones which detect increased CO2 or CSF acid respond to decreased transmembrane H+ gradient, i.e. a greater fall in ECF than in ICF pH. Hypoxic lactic acid generated within these cells depresses activity, which can be restored by an appropriate rise of Paco2, disclosing both normal peripheral chemoreceptor hypoxic sensitivity and normal medullary integrative response.
Collapse
Affiliation(s)
- J W Severinghaus
- Department of Anesthesia, University of California San Francisco, USA
| |
Collapse
|
18
|
Kalhoff H, Kiwull-Schöne H, Kiwull P. Pulmonary vagal afferents versus central chemosensitivity in the ventilatory response to hypoxia and lactic acidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 345:121-7. [PMID: 8079697 DOI: 10.1007/978-1-4615-2468-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- H Kalhoff
- Department of Physiology, Ruhr-University, Bochum, Germany
| | | | | |
Collapse
|
19
|
Bałkowiec A, Revenko S, Szulczyk P. Reflex carotid body chemoreceptor control of phrenic sympathetic neurons. RESPIRATION PHYSIOLOGY 1993; 92:91-100. [PMID: 8390088 DOI: 10.1016/0034-5687(93)90122-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reflex reaction of phrenic sympathetic neurons to stimulation of carotid body chemoreceptors was tested in chloralose-anesthetized and paralyzed cats with both vago-aortic nerves cut. During systemic hypoxia (animals ventilated with 10% O2 in N2) the sympathetic phrenic nerve activity increased from 100% in the control to 269%. This increase was markedly attenuated after cutting both sinus nerves. Reflex excitatory response in phrenic sympathetic neurons with the latency of 150 msec was evoked by electrical stimulation of the right carotid sinus nerve (3 pulses of 0.2 msec, 333 Hz). The central transmission time of the reflex was about 90 msec. Injecting 0.1 ml of 1 M NaHCO3 saturated with CO2 (in order to activate carotid body chemoreceptors) into the right or left carotid sinus, evoked excitatory responses in sympathetic neurons regardless of the side. The stimulation of carotid body chemoreceptors also increased somatic phrenic nerve activity. The three methods applied to the stimulation of carotid body chemoreceptors produced increase of phrenic nerve sympathetic activity.
Collapse
Affiliation(s)
- A Bałkowiec
- I. Faculty of Medicine, Department of Physiology, Warsaw, Poland
| | | | | |
Collapse
|
20
|
Petrozzino JJ, Scardella AT, Edelman NH, Santiago TV. Respiratory muscle acidosis stimulates endogenous opioids during inspiratory loading. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1993; 147:607-15. [PMID: 8442594 DOI: 10.1164/ajrccm/147.3.607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Activation of endogenous opioid pathways during intense inspiratory flow-resistive loading (IRL) results in greater inhibition of EMG activity in the external oblique (EMGeo) relative to the diaphragm (EMGdi). Dichloroacetate (DCA) abolishes opioid-mediated inhibitory influences upon these muscles, suggesting a causal relationship between respiratory muscle lactic acidosis and activation of endogenous opioid pathways, during IRL. We tested the hypothesis that a more intense acidosis of the external oblique relative to the diaphragm may be the signal that determines the differential inhibitory opioid-mediated effect upon the respiratory muscles during IRL. Unanesthetized goats were exposed to IRL (50 cm H2O/1/s) for 120 min, before and after intravenous pretreatment with DCA (50 mg/kg) or saline. We measured peak phasic EMGdi and EMGeo, and respective muscle interstitial pH (pHdi, pHeo) using flexible pH probes. After 120 min IRL with saline, pHdi, and pHeo declined by -0.12 +/- 0.03 (mean +/- SEM) and -0.20 +/- 0.04 units, respectively (p < 0.05, pHdi versus pHeo). Naloxone (NLX), 0.3 mg/kg given intravenously at this time, increased EMGdi by 26.5 +/- 6.1%, but EMGeo by 81.9 +/- 13.3% (p < 0.05, EMGdi versus EMGeo). DCA blunted both the change in pHdi and pHeo during IRL (to -0.01 +/- 0.01 and -0.08 +/- 0.03 units, respectively) (p < 0.05, DCA versus saline) and the increase in EMGdi and EMGeo with NLX (to -1.0 +/- 2.6% and 5.7 +/- 5.8%, respectively) (p < 0.05, DCA versus saline).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Petrozzino
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903-0019
| | | | | | | |
Collapse
|
21
|
Neubauer JA, Gonsalves SF, Chou W, Geller HM, Edelman NH. Chemosensitivity of medullary neurons in explant tissue cultures. Neuroscience 1991; 45:701-8. [PMID: 1775243 DOI: 10.1016/0306-4522(91)90282-s] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To determine whether cultured medulla contains chemosensitive neurons which are excited by CO2 and fixed acid and whether this function is specific to the ventral medulla, tissue explants of ventral and dorsal medulla were prepared from neonatal rats and incubated for two to three weeks. Cultures were superfused with artificial cerebrospinal fluid, maintained at 37 degrees C, and pH of the superfusate was varied either with PCO2 (14-71 Torr) at constant HCO3- (22 mM) or HCO3- (10-30 mM) at constant PCO2 (35 Torr). Spontaneous action potentials were recorded extracellularly in 51 ventral and 23 dorsal medullary neurons. Ventral medullary neurons exhibited a steady baseline firing frequency of 4 +/- 0.8 Hz. In contrast, dorsal medullary neurons exhibited two different patterns of spontaneous activity: 11 fired continuously (7.2 +/- 1.4 Hz) while 12 fired with a bursting pattern. Burst duration was 0.80 +/- 0.14 min and cycle time was 1.74 +/- 0.43 min. Decreasing pH with CO2 caused an increase in the activity of 10 of 27 ventral medullary neurons and two of six dorsal medullary neurons with a mean response of 7.5 Hz/pH unit. Varying pH by changing HCO3- had no effect on firing frequency. These results demonstrate that: (i) chemosensitive neurons are present in both ventral and dorsal medullary explant cultures; (ii) these cells only respond to changes in pH induced with CO2; and (iii) about half of the dorsal medullary neurons fire spontaneously with a regular bursting pattern of activity.
Collapse
Affiliation(s)
- J A Neubauer
- Department of Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick 08903-0019
| | | | | | | | | |
Collapse
|
22
|
Georgopoulos D, Berezanski D, Anthonisen NR. Effect of dichloroacetate on ventilatory response to sustained hypoxia in normal adults. RESPIRATION PHYSIOLOGY 1990; 82:115-22. [PMID: 2270358 DOI: 10.1016/0034-5687(90)90028-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In adult humans, the ventilatory response to acute sustained hypoxia is biphasic, characterized by an initial brisk increase followed by a decline to an intermediate plateau. Recently, it has been shown that hypoxic lactate formation in the brain depresses ventilation in peripherally chemodenervated animals, and postulated that this formation might mediate the hypoxic ventilatory decline observed in adult humans. To investigate this hypothesis, the ventilatory response to 25 min of acute isocapnic hypoxia (SaO2 = 80%) was evaluated in adult humans after pretreatment with intravenous dichloroacetate (DCA), a drug that crosses the blood-brain barrier and reduces lactate formation. Ten subjects were pretreated with DCA (50 mg.kg-1.h-1) or normal saline infusion on two days in a double blind manner. The infusion started 35 min before the institution of hypoxia and continued throughout the experiment. Independent of pretreatment, the ventilatory response to acute sustained hypoxia was biphasic; an increase followed by a decline. Ventilation during hypoxia declined significantly and the magnitude of the decline did not differ between the DCA and placebo pretreatments, averaging 3.32 +/- 0.45 and 3.17 +/- 0.58 L/min, respectively (mean +/- SE). With and without DCA infusion the hypoxic ventilatory decline was due to significant decrease in tidal volume and mean inspiratory flow without changes in breathing frequency. We conclude that brain lactic acidosis is unlikely to be involved in the ventilatory response to sustained hypoxia of adult humans, at least in the range of hypoxia studied.
Collapse
Affiliation(s)
- D Georgopoulos
- Department of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
23
|
Abstract
Dichloroacetate (DCA) exerts multiple effects on pathways of intermediary metabolism. It stimulates peripheral glucose utilization and inhibits gluconeogeneis, thereby reducing hyperglycemia in animals and humans with diabetes mellitus. It inhibits lipogenesis and cholesterolgenesis, thereby decreasing circulating lipid and lipoprotein levels in short-term studies in patients with acquired or hereditary disorders of lipoprotein metabolism. By stimulating the activity of pyruvate dehydrogenase, DCA facilitates oxidation of lactate and decreases morbidity in acquired and congenital forms of lactic acidosis. The drug improves cardiac output and left ventricular mechanical efficiency under conditions of myocardial ischemia or failure, probably by facilitating myocardial metabolism of carbohydrate and lactate as opposed to fat. DCA may also enhance regional lactate removal and restoration of brain function in experimental states of cerebral ischemia. DCA appears to inhibit its own metabolism, which may influence the duration of its pharmacologic actions and lead to toxicity. DCA can cause a reversible peripheral neuropathy that may be related to thiamine deficiency and may be ameliorated or prevented with thiamine supplementation. Other toxic effects of DCA may be species-specific and reflect marked interspecies variation in pharmacokinetics. Despite its potential toxicity and limited clinical experience, DCA and its derivatives may prove to be useful in probing regulatory aspects of intermediary metabolism and in the acute or chronic treatment of several metabolic disorders.
Collapse
Affiliation(s)
- P W Stacpoole
- Department of Medicine, University of Florida, College of Medicine, Gainesville 32610
| |
Collapse
|