1
|
Hjortshoej MH, Aagaard P, Storgaard CD, Juneja H, Lundbye‐Jensen J, Magnusson SP, Couppé C. Hormonal, immune, and oxidative stress responses to blood flow-restricted exercise. Acta Physiol (Oxf) 2023; 239:e14030. [PMID: 37732509 PMCID: PMC10909497 DOI: 10.1111/apha.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Heavy-load free-flow resistance exercise (HL-FFRE) is a widely used training modality. Recently, low-load blood-flow restricted resistance exercise (LL-BFRRE) has gained attention in both athletic and clinical settings as an alternative when conventional HL-FFRE is contraindicated or not tolerated. LL-BFRRE has been shown to result in physiological adaptations in muscle and connective tissue that are comparable to those induced by HL-FFRE. The underlying mechanisms remain unclear; however, evidence suggests that LL-BFRRE involves elevated metabolic stress compared to conventional free-flow resistance exercise (FFRE). AIM The aim was to evaluate the initial (<10 min post-exercise), intermediate (10-20 min), and late (>30 min) hormonal, immune, and oxidative stress responses observed following acute sessions of LL-BFRRE compared to FFRE in healthy adults. METHODS A systematic literature search of randomized and non-randomized studies was conducted in PubMed, Embase, Cochrane Central, CINAHL, and SPORTDiscus. The Cochrane Risk of Bias (RoB2, ROBINS-1) and TESTEX were used to evaluate risk of bias and study quality. Data extractions were based on mean change within groups. RESULTS A total of 12525 hits were identified, of which 29 articles were included. LL-BFRRE demonstrated greater acute increases in growth hormone responses when compared to overall FFRE at intermediate (SMD 2.04; 95% CI 0.87, 3.22) and late (SMD 2.64; 95% CI 1.13, 4.16) post-exercise phases. LL-BFRRE also demonstrated greater increase in testosterone responses compared to late LL-FFRE. CONCLUSION These results indicate that LL-BFRRE can induce increased or similar hormone and immune responses compared to LL-FFRE and HL-FFRE along with attenuated oxidative stress responses compared to HL-FFRE.
Collapse
Affiliation(s)
- M. H. Hjortshoej
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - P. Aagaard
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - C. D. Storgaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - H. Juneja
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - J. Lundbye‐Jensen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - S. P. Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| | - C. Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| |
Collapse
|
2
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
3
|
Kim HY, Jung H, Kweon M, Kim J, Choi SY, Ahn HJ, Park CS, Kim HM, Jeong HJ. Euscaphic acid relieves fatigue by enhancing anti-oxidative and anti-inflammatory effects. Immunopharmacol Immunotoxicol 2023; 45:114-121. [PMID: 36066092 DOI: 10.1080/08923973.2022.2121926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Oxidative stress and inflammation are involved in chronic fatigue. Euscaphic acid (EA) is an active compound of Eriobotrya japonica (Loquat) and has anti-oxidative effect. METHODS The goal of present study is to prove whether EA could relieve fatigue through enhancing anti-oxidant and anti-inflammatory effects in in vitro/in vivo models. RESULTS EA notably improved activity of superoxide dismutase (SOD) and catalase (CAT), while EA reduced levels of malondiadehyde (MDA) and inflammatory cytokines without cytotoxicity in H2O2-stimulated in myoblast cell line, C2C12 cells. EA significantly reduced levels of fatigue-causing factors such as lactate dehydrogenase (LDH) and creatin kinase (CK), while EA significantly incresed levels of anti-fatigue-related factor, glycogen compared to the H2O2-stimulated C2C12 cells. In treadmill stress test (TST), EA significantly enhanced activities of SOD and CAT as well as exhaustive time and decreased levels of MDA and inflammatory cytokines. After TST, levels of free fatty acid, citrate synthase, and muscle glycogen were notably enhanced by oral administration of EA, but EA decreased levels of lactate, LDH, cortisol, aspartate aminotransferase, alanine transaminase, CK, glucose, and blood urea nitrogen compared to the control group. Furthermore, in forced swimming test, EA significantly increased levels of anti-fatigue-related factors and decreased excessive accumulations of fatigue-causing factors. CONCLUSIONS Therefore, the results indicate that potent anti-fatigue effect of EA can be achieved via the improvement of anti-oxidative and anti-inflammatory properties, and this study will provide scientific data for EA to be developed as a novel and efficient component in anti-fatigue health functional food.
Collapse
Affiliation(s)
- Hee-Yun Kim
- BioChip Research Center, Hoseo University, Asan, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | | | - Jungeun Kim
- COSMAX NBT, INC, Seongnam, Republic of Korea
| | | | - Hyun-Jong Ahn
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Cheung-Seog Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Ja Jeong
- BioChip Research Center, Hoseo University, Asan, Republic of Korea.,Department of Food Science & Technology, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
4
|
Jiang J, Ni L, Zhang X, Gokulnath P, Vulugundam G, Li G, Wang H, Xiao J. Moderate-Intensity Exercise Maintains Redox Homeostasis for Cardiovascular Health. Adv Biol (Weinh) 2023; 7:e2200204. [PMID: 36683183 DOI: 10.1002/adbi.202200204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Indexed: 01/24/2023]
Abstract
It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Priyanka Gokulnath
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.,Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Effects of low-intensity training on the brain and muscle in the congenital muscular dystrophy 1D model. Neurol Sci 2022; 43:4493-4502. [DOI: 10.1007/s10072-022-05928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
|
6
|
Costa KB, Leite HR, Garcia BCC, Ottone VO, Mendonça GDR, Cordeiro PJ, Chaves PR, Deus FA, Tossige-Gomes R, Coimbra CC, Rocha-Vieira E. Storage Duration Affects the Quantification of Oxidative Stress Markers in the Gastrocnemius, Heart, and Brain of Mice Submitted to a Maximum Exercise. Biopreserv Biobank 2021; 20:3-11. [PMID: 34252291 DOI: 10.1089/bio.2020.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of sample storage duration on the quantification of oxidative stress markers in the gastrocnemius, heart, and brain of mice submitted to a maximum swimming exercise. Thiobarbituric acid reactive substances (TBARSs), protein carbonyl derivatives, total antioxidant capacity (TAC), and the activity of superoxide dismutase (SOD) and catalase (CAT) were quantified in fresh tissues and in samples stored at -80°C for 1, 3, or 6 months, from exercised (n = 13) and nonexercised mice (n = 13). Except for protein carbonyl derivatives in the heart, the exercise resulted in the modification of all markers in all fresh-evaluated samples (p < 0.001). The storage duration did not modify the effect of exercise on protein carbonyl derivatives and TAC. TBARS was stable for 3 months in the gastrocnemius and for 1 month in frozen heart and brain. Accordingly, the exercise effect on TBARS levels observed in fresh samples was absent in the gastrocnemius frozen for 6 months (p = 0.98) and in the heart and brain frozen for 3 months (p = 0.07 and 0.28, respectively) or more (p = 0.21 for heart and p > 0.99 for brain). In addition, CAT and SOD activities were reduced by storage duration in all tissues evaluated (p < 0.05). Our findings show that sample storage duration alters the quantification of oxidative stress markers in mice submitted to maximum exercise, and its effect is tissue and marker dependent. Some recommendations to achieve more accurate and reproducible data in the exercise physiology and oxidative stress markers field are presented.
Collapse
Affiliation(s)
- Karine B Costa
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Hercules R Leite
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna C C Garcia
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius O Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Gabriela D R Mendonça
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrício J Cordeiro
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrícia R Chaves
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Franciele A Deus
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rosalina Tossige-Gomes
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Candido C Coimbra
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Programa de Pós-graduação em Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
7
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|
8
|
Viña J, Olaso-Gonzalez G, Arc-Chagnaud C, De la Rosa A, Gomez-Cabrera MC. Modulating Oxidant Levels to Promote Healthy Aging. Antioxid Redox Signal 2020; 33:570-579. [PMID: 32008355 DOI: 10.1089/ars.2020.8036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Free radicals although originally thought of as damaging molecules, inevitable side effects of the utilization of oxygen by cells, are now considered as signals that by modifying, among others, the thiol-disulfide balance regulate many cell processes from metabolism to cell cycle. Recent Advances: This review discusses the importance of the modulation of the oxidant levels through physiological strategies such as physical exercise or genetic manipulations such as the overexpression of antioxidant enzymes, in the promotion of healthy aging. Critical Issues: We have divided the review into five different sections. In the first two sections of the article "Oxidants are signals" and "Exercise training is an antioxidant," we discuss the main sources of free radicals during muscle contraction and their role, as hormetic substances, in the regulation of two main muscle adaptations to exercise in skeletal muscle; that is, mitochondrial biogenesis and the endogenous antioxidant defense. In the third section of the review, we deal with "the energy collapse in aging." The increased rate of reactive oxygen species (ROS) production and the low rate of mitochondria biosynthesis in the old cells are examined. Finally, in the fourth and fifth sections entitled "Overexpression of antioxidants enzymes in healthy aging" and "Exercise, longevity, and frailty," we consider the importance of the potentiation of the cellular defenses in health span and in life span. Future Directions: A correct manipulation of the ROS generation, directing these species to their physiological signaling role and preventing their deleterious effects, would allow the promotion of healthy aging. Antioxid. Redox Signal. 33, 570-579.
Collapse
Affiliation(s)
- Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Coralie Arc-Chagnaud
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.,Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Adrián De la Rosa
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
9
|
Niazi R, Peeri M, Azarbayjani MA. Antiapoptotic and antioxidant effects of resistance training with berberine consumption on diazinon induced cardiotoxicity in rats. JOURNAL OF MEDICINAL PLANTS 2020; 1:71-81. [DOI: 10.29252/jmp.1.73.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
10
|
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:24-32. [PMID: 35782463 PMCID: PMC9219277 DOI: 10.1016/j.smhs.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Corresponding author. Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
11
|
Saovieng S, Wu J, Huang CY, Kao CL, Higgins MF, Chuanchaiyakul R, Kuo CH. Deep Ocean Minerals Minimize Eccentric Exercise-Induced Inflammatory Response of Rat Skeletal Muscle. Front Physiol 2018; 9:1351. [PMID: 30323766 PMCID: PMC6172318 DOI: 10.3389/fphys.2018.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Background: We have previously shown an accelerated recovery from muscle fatigue in men challenged by prolonged exercise after oral deep ocean minerals (DOM) supplementation. Here, we hypothesized a decrease in eccentric exercise-induced muscle inflammation in rats regularly consuming DOM-containing drinks (hardness 600 mg/L and fructose 11%). Methods: Forty-seven male Sprague Dawley rats were randomized into 4 groups: Control (C, N = 12), Fructose (F, N = 12), Fructose+Exercise (FE, N = 12), and Fructose+Exercise+DOM (FED, N = 11). Since fructose is a commonly used ingredient in beverages, 11% of fructose was added as a vehicle of the study. Soleus muscles of rats were analyzed 24 h after an acute bout of downhill running following 9 weeks of DOM supplementation. Results: Leukocyte infiltration and TNF-α mRNA of muscle in the FE group were 5 times and 4 times greater the F group, respectively, (P < 0.05). Both markers in the FED group were significantly lower than those in the FE group (P < 0.05). IL-10 mRNA of muscle in the F group was >eight fold greater than the C group (P < 0.05). The reduced glutathione (GSH) of muscle in the F group was 34% lower than that in the C group (P < 0.05). However, GSH levels were similar for the C and FED groups. Conclusion: Prolonged fructose supplementation modulates inflammatory balance of rat skeletal muscle. The results of the study suggest that DOM can minimize eccentric exercise-induced inflammatory cytokine responses in rat skeletal muscle.
Collapse
Affiliation(s)
- Suchada Saovieng
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jinfu Wu
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chung-Lan Kao
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Matthew F Higgins
- Department of Life Sciences, University of Derby, Derby, United Kingdom
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
12
|
Huang Q, Ma S, Tominaga T, Suzuki K, Liu C. An 8-Week, Low Carbohydrate, High Fat, Ketogenic Diet Enhanced Exhaustive Exercise Capacity in Mice Part 2: Effect on Fatigue Recovery, Post-Exercise Biomarkers and Anti-Oxidation Capacity. Nutrients 2018; 10:E1339. [PMID: 30241310 PMCID: PMC6212995 DOI: 10.3390/nu10101339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 01/25/2023] Open
Abstract
A low-carbohydrate, high-fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. In our previous study, we found that an eight-week ketogenic high-fat, low-carbohydrate diet increased the capacity of endurance exercise in mice without aggravated muscle injury, despite the decrease of absolute muscle volume. The potential mechanism is most possibly to be enhanced capacity to mobilize and utilize fat. In the present study, we investigated whether a ketogenic diet influences post-exercise recovery by measuring blood biomarkers, muscle and liver oxidative state as well as fatigue recovery 24 h post exercise by employing an open-field locomotion test. Several biochemistry markers indicating exercise-induced injury after exhaustive exercise were improved by KD, followed by a 24-h rest with free feed access, including lactate. No aggravated hepatic oxidative damage was observed, whereas muscular oxidative stress was increased by KD. Accelerated recovery induced by exhaustive exercise was also observed from blood biomarkers of injury. For fatigue recovery, lactate concentration, a marker often employed as exhaustion index was lowered by KD, whereas an open field test showed that KD application contributed to increased locomotion after exhaustive exercise, followed by a 24-h rest. These results suggest that KD has the potential to be used as a fatigue-preventing and/or recovery-promoting diet approach in endurance athletes.
Collapse
Affiliation(s)
- Qingyi Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| | - Sihui Ma
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan.
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
13
|
Nemes R, Koltai E, Taylor AW, Suzuki K, Gyori F, Radak Z. Reactive Oxygen and Nitrogen Species Regulate Key Metabolic, Anabolic, and Catabolic Pathways in Skeletal Muscle. Antioxidants (Basel) 2018; 7:antiox7070085. [PMID: 29976853 PMCID: PMC6071245 DOI: 10.3390/antiox7070085] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) are important cellular regulators of key physiological processes in skeletal muscle. In this review, we explain how RONS regulate muscle contraction and signaling, and why they are important for membrane remodeling, protein turnover, gene expression, and epigenetic adaptation. We discuss how RONS regulate carbohydrate uptake and metabolism of skeletal muscle, and how they indirectly regulate fat metabolism through silent mating type information regulation 2 homolog 3 (SIRT3). RONS are causative/associative signaling molecules, which cause sarcopenia or muscle hypertrophy. Regular exercise influences redox biology, metabolism, and anabolic/catabolic pathways in skeletal muscle in an intensity dependent manner.
Collapse
Affiliation(s)
- Roland Nemes
- Faculty of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan.
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
| | - Albert W Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON N6G 1H1, Canada.
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| | - Ferenc Gyori
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary.
- Institute of Sport Science, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
14
|
Vereshchaka IV, Bulgakova NV, Maznychenko AV, Gonchar OO, Prylutskyy YI, Ritter U, Moska W, Tomiak T, Nozdrenko DM, Mishchenko IV, Kostyukov AI. C 60 Fullerenes Diminish Muscle Fatigue in Rats Comparable to N-acetylcysteine or β-Alanine. Front Physiol 2018; 9:517. [PMID: 29867560 PMCID: PMC5962757 DOI: 10.3389/fphys.2018.00517] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to detect the effects of C60 fullerenes, which possess pronounced antioxidant properties, in comparison with the actions of the known exogenous antioxidants N-acetylcysteine (NAC) and β-Alanine in terms of exercise tolerance and contractile property changes of the m. triceps surae (TS) during development of the muscle fatigue in rats. The electrical stimulation of the TS muscle during four 30 min series in control rats led to total reduction of the muscle contraction force. Furthermore, the effects of prior intraperitoneal (i.p.) or oral C60FAS application and preliminary i.p. injection of NAC or β-Alanine on muscle contraction force under fatigue development conditions is studied. In contrast to control rats, animals with C60FAS, NAC, or β-Alanine administration could maintain a constant level of muscle effort over five stimulation series. The accumulation of secondary products and changes in antioxidant levels in the muscle tissues were also determined after the fatigue tests. The increased levels of lactic acid, thiobarbituric acid reactive substances and H2O2 after stimulation were statistically significant with respect to intact muscles. In the working muscle, there was a significant (p < 0.05) increase in the activity of endogenous antioxidants: reduced glutathione, catalase, glutathione peroxidase, and superoxide dismutase. Treated animal groups showed a decrease in endogenous antioxidant activity relative to the fatigue-induced animals (P < 0.05). Oral C60FAS administration clearly demonstrated an action on skeletal muscle fatigue development similar to the effects of i.p. injections of the exogenous antioxidants NAC or β-Alanine. This creates opportunities to oral use of C60FAS as a potential therapeutic agent. Due to the membranotropic activity of C60 fullerenes, non-toxic C60FAS has a more pronounced effect on the prooxidant-antioxidant homeostasis of muscle tissues in rats.
Collapse
Affiliation(s)
- Inna V. Vereshchaka
- The Unit of the Theory of Physical Education, The Chair of Physical Education, Gdansk University of Physical Education and SportGdańsk, Poland
| | - Nataliya V. Bulgakova
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| | - Andriy V. Maznychenko
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| | - Olga O. Gonchar
- Department of Hypoxic States Investigation, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| | - Yuriy I. Prylutskyy
- ESC “Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Ilmenau, Germany
| | - Waldemar Moska
- The Unit of the Theory of Physical Education, The Chair of Physical Education, Gdansk University of Physical Education and SportGdańsk, Poland
| | - Tomasz Tomiak
- The Unit of the Theory of Physical Education, The Chair of Physical Education, Gdansk University of Physical Education and SportGdańsk, Poland
| | - Dmytro M. Nozdrenko
- ESC “Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Alexander I. Kostyukov
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Kyiv, Ukraine
| |
Collapse
|
15
|
Moayeri A, Mokhtari T, Hedayatpour A, Abbaszadeh HA, Mohammadpour S, Ramezanikhah H, Shokri S. Impact of melatonin supplementation in the rat spermatogenesis subjected to forced swimming exercise. Andrologia 2017; 50. [DOI: 10.1111/and.12907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- A. Moayeri
- Department of Anatomical Sciences; School of Medicine; Ilam University of Medical Sciences; Ilam Iran
| | - T. Mokhtari
- Department of Anatomy; School of Medicine; Semnan University of Medical Sciences; Semnan Iran
| | - A. Hedayatpour
- Department of Anatomical Sciences; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - H.-A. Abbaszadeh
- Hearing Disorders Research Center & Department of Biology and Anatomical Sciences; School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - S. Mohammadpour
- Department of Anatomical Sciences; School of Medicine; Ilam University of Medical Sciences; Ilam Iran
| | - H. Ramezanikhah
- Department of Anatomical Sciences; School of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| | - S. Shokri
- Department of Anatomical Sciences; School of Medicine; Zanjan University of Medical Sciences; Zanjan Iran
| |
Collapse
|
16
|
Abstract
Oxidative stress is an imbalance of the oxidant-to-antioxidant ratio in the body. Increases in oxidative stress and changes in antioxidant status have been shown during endurance and intense exercise and eventing competition in horses. Antioxidants include vitamins, minerals, enzymes, and proteins that must be synthesized in the body or obtained from the diet. Therefore, exercise level and diet are both factors that play a role in influencing the oxidative stress and antioxidant status of the equine athlete. Along with exercise intensity and duration, diet, age, and training program can also affect oxidative stress in the horse. Several studies using exogenous supplementation of vitamin E, vitamin C, and alpha-lipoic acid have shown positive results in decreasing the effects of exercise (endurance and intense exercise)-induced oxidative stress and increasing the antioxidant status based on the markers and antioxidants measured, whereas other studies using superoxide dismutase showed little effects on the exercise horse. The "free radical theory of aging" states that long-term effects of the degenerative changes associated with aging may induce oxidative stress. However, in old horses (22 ± 2 yr), lipid peroxidation levels and blood antioxidant concentrations were similar to those found in younger but mature (12 ± 2 yr) horses both at rest and during exercise. Other studies found that yearlings (18 ± 2.4 mo) that are novel to forced exercise had less lipid peroxidation and greater antioxidant status than mature mares (13 ± 2.1 yr) prior to exercise training. Exercise training reduced oxidative stress markers and improved antioxidant status in mares, whereas few effects were seen in yearlings. This indicates that youth provided more defense against oxidative stress due to exercise than the exercise training program. Other studies during competition (endurance, jumping, eventing, and racing) have investigated the influence on oxidative stress with varying results. Despite the multitude of studies examining the levels of lipid peroxidation, antioxidant status, and other related metabolites in the horse during exercise, we still have a long way to go before we fully understand the large variation in results both with and without antioxidant supplementation.
Collapse
|
17
|
Joksimović J, Selaković D, Jakovljević V, Mihailović V, Katanić J, Boroja T, Rosić G. Alterations of the oxidative status in rat hippocampus and prodepressant effect of chronic testosterone enanthate administration. Mol Cell Biochem 2017; 433:41-50. [DOI: 10.1007/s11010-017-3014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
18
|
Parker L, Shaw CS, Stepto NK, Levinger I. Exercise and Glycemic Control: Focus on Redox Homeostasis and Redox-Sensitive Protein Signaling. Front Endocrinol (Lausanne) 2017; 8:87. [PMID: 28529499 PMCID: PMC5418238 DOI: 10.3389/fendo.2017.00087] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Physical inactivity, excess energy consumption, and obesity are associated with elevated systemic oxidative stress and the sustained activation of redox-sensitive stress-activated protein kinase (SAPK) and mitogen-activated protein kinase signaling pathways. Sustained SAPK activation leads to aberrant insulin signaling, impaired glycemic control, and the development and progression of cardiometabolic disease. Paradoxically, acute exercise transiently increases oxidative stress and SAPK signaling, yet postexercise glycemic control and skeletal muscle function are enhanced. Furthermore, regular exercise leads to the upregulation of antioxidant defense, which likely assists in the mitigation of chronic oxidative stress-associated disease. In this review, we explore the complex spatiotemporal interplay between exercise, oxidative stress, and glycemic control, and highlight exercise-induced reactive oxygen species and redox-sensitive protein signaling as important regulators of glucose homeostasis.
Collapse
Affiliation(s)
- Lewan Parker
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- *Correspondence: Lewan Parker, ,
| | - Christopher S. Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Nigel K. Stepto
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St. Albans, VIC, Australia
| | - Itamar Levinger
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St. Albans, VIC, Australia
| |
Collapse
|
19
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Mankowski RT, Anton SD, Buford TW, Leeuwenburgh C. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise. Med Sci Sports Exerc 2016; 47:1857-68. [PMID: 25606815 DOI: 10.1249/mss.0000000000000620] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Adaptive responses to exercise training (ET) are crucial in maintaining physiologic homeostasis and health span. Exercise-induced aerobic bioenergetic reactions in the mitochondria and cytosol increase production of reactive oxygen species, where excess of reactive oxygen species can be scavenged by enzymatic and nonenzymatic antioxidants (AO) to protect against deleterious oxidative stress. Free radicals, however, have recently been recognized as crucial signaling agents that promote adaptive mechanisms to ET, such as mitochondrial biogenesis, AO enzyme activity defense system upregulation, insulin sensitivity, and glucose uptake in the skeletal muscle. Commonly used nonenzymatic AO supplements, such as vitamins C and E, α-lipoic acid, and polyphenols, in combination with ET, have been proposed as ways to prevent exercise-induced oxidative stress and hence improve adaptation responses to endurance training. METHODS During the PubMed search, we selected studies that examined and compared ET effects with and without administration of commonly used AO supplements. RESULTS Preclinical and clinical studies to date have shown inconsistent results indicating either positive or negative effects of endurance training combined with different blends of AO supplements (mostly vitamins C and E and α-lipoic acid) on redox status, mitochondrial biogenesis pathways, and insulin sensitivity. Preclinical reports on ET combined with resveratrol, however, have shown consistent positive effects on exercise performance, mitochondrial biogenesis, and insulin sensitivity, with clinical trials reporting mixed effects. Relevant clinical studies have been few and have used inconsistent results and methodology (types of compounds, combinations, and supplementation time). CONCLUSIONS The future studies should investigate the effects of specific AO and other popular supplements, such as α-lipoic acid and resveratrol, on training effects in humans. Of particular importance are older adults who may be at higher risk of age-related increased oxidative stress, an impaired AO enzyme defense system, and comorbidities such as hypertension, insulin resistance, and diabetes.
Collapse
Affiliation(s)
- Robert T Mankowski
- 1Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL; and 2Department of Rehabilitation Medicine, Erasmus University Medical Centre, Rotterdam, THE NETHERLANDS
| | | | | | | |
Collapse
|
21
|
Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8381242. [PMID: 27143996 PMCID: PMC4842079 DOI: 10.1155/2016/8381242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/24/2016] [Indexed: 11/24/2022]
Abstract
Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α.
Collapse
|
22
|
Active paraplegics are protected against exercise-induced oxidative damage through the induction of antioxidant enzymes. Spinal Cord 2016; 54:830-837. [PMID: 26882488 DOI: 10.1038/sc.2016.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/12/2015] [Accepted: 12/13/2015] [Indexed: 12/24/2022]
Abstract
STUDY DESIGN Experimental study. OBJECTIVES Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. SETTING The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. METHODS Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. RESULTS We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. CONCLUSIONS These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.
Collapse
|
23
|
Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7239639. [PMID: 26823952 PMCID: PMC4707375 DOI: 10.1155/2016/7239639] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
Abstract
Despite the wealth of epidemiological and experimental studies indicating the protective role of regular physical activity/exercise training against the sequels of aging and cardiovascular diseases, the molecular transducers of exercise/physical activity benefits are not fully identified but should be further investigated in more integrative and innovative approaches, as they bear the potential for transformative discoveries of novel therapeutic targets. As aging and cardiovascular diseases are associated with a chronic state of oxidative stress and inflammation mediated via complex and interconnected pathways, we will focus in this review on the antioxidant and anti-inflammatory actions of exercise, mainly exerted on adipose tissue, skeletal muscles, immune system, and cardiovascular system by modulating anti-inflammatory/proinflammatory cytokines profile, redox-sensitive transcription factors such as nuclear factor kappa B, activator protein-1, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha, antioxidant and prooxidant enzymes, and repair proteins such as heat shock proteins, proteasome complex, oxoguanine DNA glycosylase, uracil DNA glycosylase, and telomerase. It is important to note that the effects of exercise vary depending on the type, intensity, frequency, and duration of exercise as well as on the individual's characteristics; therefore, the development of personalized exercise programs is essential.
Collapse
|
24
|
Somkuwar SS, Staples MC, Fannon MJ, Ghofranian A, Mandyam CD. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior. Brain Plast 2015; 1:63-81. [PMID: 29765835 PMCID: PMC5928557 DOI: 10.3233/bpl-150007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
25
|
Baskaran R, Kalaiselvi P, Huang CY, Padma VV. Neferine, a bisbenzylisoquinoline alkaloid, offers protection against cobalt chloride-mediated hypoxia-induced oxidative stress in muscle cells. Integr Med Res 2015; 4:231-241. [PMID: 28664130 PMCID: PMC5481801 DOI: 10.1016/j.imr.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022] Open
Abstract
Background Neferine, a bisbenzylisoquinoline alkaloid, isolated from Nelumbo nucifera has a wide range of biological activities. Cobalt chloride (CoCl2) was known to mimic hypoxic condition. In the present study, we assessed the cytoprotective effect of neferine against CoCl2-induced oxidative stress in muscle cells. Methods Rhabdomyosarcoma cells were exposed to different concentrations of CoCl2, and the IC50 value was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Lactate dehydrogenase and NO assays were performed in order to determine the cytotoxic effect of CoCl2. Reactive oxygen species generation and cellular antioxidant status were determined for evaluating oxidative stress. For analyzing the effect of neferine on CoCl2-induced apoptosis, propidium iodide staining was performed. Results The results of the present study indicate that CoCl2 induces cell death in a dose-dependent manner. Neferine pretreatment at 700 nM concentration offers better cytoprotection in the cells exposed to CoCl2. Lactate dehydrogenase and NO release in the culture medium were restored after neferine pretreatment. CoCl2 triggers time-dependent reactive oxygen species generation in muscle cells. Further, results of propidium iodide staining, mitochondrial membrane potential, and intracellular calcium accumulation confirm that neferine offers protection against CoCl2-induced hypoxic injury. Depleted activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase due to CoCl2 exposure were also reinstated in the group that received neferine pretreatment. Conclusion Our study suggests that neferine from N. nucifera offers protection to muscle cells by counteracting the oxidative stress induced by CoCl2.
Collapse
Affiliation(s)
- Rathinasamy Baskaran
- DRDO BU Center for Life Science, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Palanisamy Kalaiselvi
- Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Viswanadha Vijaya Padma
- DRDO BU Center for Life Science, Bharathiar University, Coimbatore, Tamil Nadu, India.,Translational Research Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015; 5:356-77. [PMID: 25866921 PMCID: PMC4496677 DOI: 10.3390/biom5020356] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
It is well established that muscle contractions during exercise lead to elevated levels of reactive oxygen species (ROS) in skeletal muscle. These highly reactive molecules have many deleterious effects, such as a reduction of force generation and increased muscle atrophy. Since the discovery of exercise-induced oxidative stress several decades ago, evidence has accumulated that ROS produced during exercise also have positive effects by influencing cellular processes that lead to increased expression of antioxidants. These molecules are particularly elevated in regularly exercising muscle to prevent the negative effects of ROS by neutralizing the free radicals. In addition, ROS also seem to be involved in the exercise-induced adaptation of the muscle phenotype. This review provides an overview of the evidences to date on the effects of ROS in exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects, the role of antioxidants, and the present evidence on ROS-dependent adaptations of muscle cells in response to physical exercise.
Collapse
|
27
|
Buresh R, Berg K. A tutorial on oxidative stress and redox signaling with application to exercise and sedentariness. SPORTS MEDICINE-OPEN 2015; 1:3. [PMID: 27747840 PMCID: PMC4532704 DOI: 10.1186/s40798-014-0003-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2023]
Abstract
Oxidative stress has been shown to play a role in the etiology of several chronic diseases, including cardiovascular disease, diabetes mellitus, and cancer. Free radicals and, most prominently, the superoxide radical, result from oxidative metabolism and several enzyme-catalyzed reactions, and endogenous cellular antioxidants dismutate many reactive oxygen species (ROS). Under certain conditions, ROS production can outpace dismutation (e.g., long-term sedentariness and positive energy balance) and the result is oxidative stress, with proteins, lipids, and DNA the most common targets of radicals. However, the molecules that contribute to oxidative stress also appear to participate in vital cell signaling activity that supports health and stimulates favorable adaptations to exercise training, such that inhibiting ROS formation prevents common adaptations to training. Furthermore, researchers have recently suggested that some proteins are not as readily formed when the redox state of the cell is insufficiently oxidative. Exercise training appears to optimize the redox environment by dramatically enhancing the capacity of the cell to neutralize ROS while regularly creating oxidative environments in which membrane and secretory proteins can be synthesized. The role that exercise plays in enhancing management of ROS likely explains many of the associated health benefits.
Collapse
Affiliation(s)
- Robert Buresh
- Department of Exercise Science and Sport Management, Kennesaw State University, 520 Parliament Garden Way NW, Kennesaw, GA, 30144, USA.
| | - Kris Berg
- School of Health, Physical Education, and Recreation, University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
28
|
Sanchis-Gomar F, Pareja-Galeano H, Gomez-Cabrera MC, Candel J, Lippi G, Salvagno GL, Mann GE, Viña J. Allopurinol prevents cardiac and skeletal muscle damage in professional soccer players. Scand J Med Sci Sports 2014; 25:e110-5. [PMID: 24690021 DOI: 10.1111/sms.12213] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
Abstract
Xanthine oxidase (XO), a free radical-generating enzyme, is involved in tissue damage produced during exhaustive exercise. Our aim was to test whether allopurinol, a powerful inhibitor of XO, may be effective in preventing exercise-induced tissue damage in soccer players. Twelve soccer players were randomized into two experimental groups. One received allopurinol, before a match of the premier Spanish Football League, and the other placebo. Allopurinol prevented the exercise-induced increase in all the markers of skeletal muscle damage analyzed: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and myoglobin. Creatine kinase-MB isoenzyme and highly sensitive troponin T, specific biomarkers of myocardial injury, increased significantly in the placebo but not in the allopurinol-treated group after the football match. We also found that the exercise-induced lipid peroxidation, as reflected by malondialdehyde measurements, was prevented after allopurinol administration. However, inhibition of XO did not prevent the increment in the activity of alanine aminotransferase found after the match. No changes in the serum gamma glutamyltransferase activity was found after the match on either the placebo and the allopurinol groups. These two enzymes were determined as biomarkers of liver injury. Allopurinol represents an effective and inexpensive pharmacological agent to prevent tissue damage in soccer players.
Collapse
Affiliation(s)
- F Sanchis-Gomar
- Department of Physiology, University of Valencia, Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Radak Z, Ihasz F, Koltai E, Goto S, Taylor AW, Boldogh I. The redox-associated adaptive response of brain to physical exercise. Free Radic Res 2013; 48:84-92. [PMID: 23870001 DOI: 10.3109/10715762.2013.826352] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated during metabolism. ROS are involved in redox signaling, but in significant concentrations they can greatly elevate oxidative damage leading to neurodegeneration. Because of the enhanced sensitivity of brain to ROS, it is especially important to maintain a normal redox state in brain and spinal cord cell types. The complex effects of exercise benefit brain function, including functional enhancement as well as its preventive and therapeutic roles. Exercise can induce neurogenesis via neurotrophic factors, increase capillarization, decrease oxidative damage, and enhance repair of oxidative damage. Exercise is also effective in attenuating age-associated loss in brain function, which suggests that physical activity-related complex metabolic and redox changes are important for a healthy neural system.
Collapse
Affiliation(s)
- Z Radak
- Faculty of Physical Education and Sport Sciences, Institute of Sport Science, Semmelweis University , Budapest , Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats. J Physiol Biochem 2013; 69:799-809. [PMID: 23661316 DOI: 10.1007/s13105-013-0256-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
L-carnitine (LC) plays a central role in fatty acid metabolism and in skeletal muscle bioenergetics. LC supplementation is known to improve physical performance and has become widespread in recent years without any unequivocal support to this practice. A scientific-based knowledge is needed, to understand the implications of LC supplementation on physical fatigue. In current study, we have explored synergistic effects of dietary LC and fat content against physical fatigue in rats. Ninety male Wistar rats were supplemented with different concentrations of LC (0.15, 0.3, and 0.5 %) and fat content (5, 10, and 15 %) through diet in different combinations. Our results elucidated that LC (0.5 %) along with 10 and 15 % fat diet supplemented rats showed significant ergogenic effect. The swimming time until exhaustion was increased by ~2- and ~1.5-fold in rats fed with 10 and 15 % fat diet containing LC (0.5 %). LC supplementation improved the energy charge by increasing the levels of ATP, tissue glycogen, reduced GSH, plasma triglyceride, plasma glucose levels, and enzymatic antioxidant status, i.e., superoxide dismutase, catalase, and glutathione peroxidase. LC supplementation also significantly reduced lipid peroxidation, lactic acid, plasma urea nitrogen, creatinine, creatinekinase, and lactate dehydrogenase levels in various tissues compared to its respective control group. Thus the present study indicates that LC ameliorates the various impairments associated with physical endurance in rats.
Collapse
|
31
|
Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 2013; 18:1208-46. [PMID: 22978553 PMCID: PMC3579386 DOI: 10.1089/ars.2011.4498] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein-protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling.
Collapse
Affiliation(s)
- Zsolt Radak
- Faculty of Physical Education and Sport Science, Institute of Sport Science, Semmelweis University, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
32
|
Vasilaki A, Simpson D, McArdle F, McLean L, Beynon RJ, Van Remmen H, Richardson AG, McArdle A, Faulkner JA, Jackson MJ. Formation of 3-nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle. Proteomics Clin Appl 2012; 1:362-72. [PMID: 21136689 DOI: 10.1002/prca.200600702] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidation of skeletal muscle proteins has been reported to occur following contractions, with ageing, and with a variety of disease states, but the nature of the oxidised proteins has not been identified. A proteomics approach was utilised to identify major proteins that contain carbonyls and/or 3-nitrotyrosine (3-NT) groups in the gastrocnemius (GTN) muscles of adult (5-11 months of age) and old (26-28 months of age) wild type (WT) mice and adult mice lacking copper, zinc superoxide dismutase (Sod1(-/-) mice), manganese superoxide dismutase (Sod2(+/-) mice) or glutathione peroxidase 1 (GPx1(-/-) mice). In quiescent GTN muscles of adult and old WT mice, protein carbonylation and/or formation of 3-NT occurred in several proteins involved in glycolysis, as well as creatine kinase and carbonic anhydrase III. Following contractions, the 3-NT intensity was increased in specific protein bands from GTN muscles of both adult and old WT mice. In quiescent GTN muscles from adult Sod1(-/-) , Sod2(+/-) or GPx1(-/-) mice compared with age-matched WT mice only carbonic anhydrase III showed a greater 3-NT content. We conclude that formation of 3-NT occurs readily in response to oxidative stress in carbonic anhydrase III and this may provide a sensitive measure of oxidative damage to muscle proteins.
Collapse
Affiliation(s)
- Aphrodite Vasilaki
- Division of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lima MCD, Marks G, Silva IS, Silva BAKD, Cônsolo LZZ, Nogueira GB. Evaluation of oxidative stress in mice subjected to aerobic exercise. Acta Cir Bras 2012; 27:544-51. [DOI: 10.1590/s0102-86502012000800005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/11/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To evaluate the influence of aerobic exercise on oxidative stress in mice. METHODS: The study included twenty female mice Mus musculus-Swiss divided into two groups: sedentary control (GA) and exercise (GB), each containing ten animals. All animals underwent an adaptation period of seven days isolated in individual boxes. After this period, the animals in the exercise group (GB) were trained in angled running wheel with circumference of 25 cm assembled on an articulated axle during five minutes for three consecutive days. On the fourth day, they underwent an exercise program of one session lasting 45 minutes. The evaluation of oxidative stress was performed by determining the levels of malondialhyde derived of lipid peroxidation by the TBA method. The samples were read in a spectrophotometer at 535 nm. RESULTS: No significant difference was observed in the intergroup comparison of MDA levels in the tissues evaluated. A significant difference was observed in the intragroup comparison of MDA levels in the control group (p = 0.0201).The Tukeys' post hoc test indicated significantly lower values of MDA in the smooth muscle in relation to plasma. In the analysis of variance in the exercise group, a significant difference between tissues (p = 0.0009), with significantly lower values in the smooth muscle in relation to plasma (p<0.001) and higher in striated muscle in relation to smooth muscle (p<0.05) was observed. CONCLUSION: There was no change in the analysis of oxidative stress in mice which were undergone a single session of aerobic exercise.
Collapse
|
34
|
Slattery KM, Wallace LK, Bentley DJ, Coutts AJ. Effect of training load on simulated team sport match performance. Appl Physiol Nutr Metab 2012; 37:315-22. [DOI: 10.1139/h2012-001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Katie May Slattery
- Human Performance Laboratory, University of Technology Sydney, Lindfield, NSW 2070, Australia
- Sports Knowledge Australia, Sydney Olympic Park, NSW, Australia
| | - Lee Kenneth Wallace
- Human Performance Laboratory, University of Technology Sydney, Lindfield, NSW 2070, Australia
| | - David John Bentley
- School of Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Aaron James Coutts
- Human Performance Laboratory, University of Technology Sydney, Lindfield, NSW 2070, Australia
| |
Collapse
|
35
|
McNeilly AM, McClean C, Murphy M, McEneny J, Trinick T, Burke G, Duly E, McLaughlin J, Davison G. Exercise training and impaired glucose tolerance in obese humans. J Sports Sci 2012; 30:725-32. [DOI: 10.1080/02640414.2012.671952] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Veskoukis AS, Tsatsakis AM, Kouretas D. Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 2012; 17:11-21. [PMID: 21956695 PMCID: PMC3227848 DOI: 10.1007/s12192-011-0293-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic cells generally function in a reduced state, but an amount of reactive species is essential for several biochemical processes. The antioxidant network is the defensive mechanism that occurs when the concentration of reactive species exceeds a threshold. Polyphenolic compounds present in plant extracts are potent antioxidants in vitro, but they may promote oxidative stress when administered in animals and humans, especially when given as supplements in exercise, a modality usually adopted as an oxidant stimulus. This is mainly observed when antioxidant molecules are administered separately and not as part of a diet. Exercise is usually adopted as a physiological model for examining the effects of reactive species in human or animal physiology. The use of exercise as a model demonstrates that reactive species do not always have adverse effects, but are necessary in physiological processes that are beneficial for human health. This review summarizes what is known about antioxidant supplementation and demonstrates the need for a meticulous examination of the in vitro findings before applying them to in vivo models. The term "antioxidant" seems elusive, and it is more appropriate to characterize a compound as "antioxidant" if we know in which concentration it is used, when it is used, and under which conditions.
Collapse
Affiliation(s)
- Aristidis S. Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221 Greece
| | - Aristidis M. Tsatsakis
- Forensic Sciences and Toxicology Department, Medical School, University of Crete, 71003 Heraklion, Crete P.O. Box 1393, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41221 Greece
| |
Collapse
|
37
|
Olek RA, Safranow K, Jakubowska K, Olszewska M, Chlubek D, Laskowski R. Allopurinol intake does not modify the slow component of V(.)O(2) kinetics and oxidative stress induced by severe intensity exercise. Physiol Res 2011; 61:89-96. [PMID: 22188105 DOI: 10.33549/physiolres.932136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to test the hypothesis that allopurinol ingestion modifies the slow component of V(.)O(2) kinetics and changes plasma oxidative stress markers during severe intensity exercise. Six recreationally active male subjects were randomly assigned to receive a single dose of allopurinol (300 mg) or a placebo in a double-blind, placebo-controlled crossover design, with at least 7 days washout period between the two conditions. Two hours following allopurinol or placebo intake, subjects completed a 6-min bout of cycle exercise with the power output corresponding to 75 % V(.)O(2)max. Blood samples were taken prior to commencing the exercise and then 5 minutes upon completion. Allopurinol intake caused increase in resting xanthine and hypoxanthine plasma concentrations, however it did not affect the slow component of oxygen uptake during exercise. Exercise elevated plasma inosine, hypoxanthine, and xanthine. Moreover, exercise induced a decrease in total antioxidant status, and sulfhydryl groups. However, no interaction treatment x time has been observed. Short term severe intensity exercise induces oxidative stress, but xanthine oxidase inhibition does not modify either the kinetics of oxygen consumption or reactive oxygen species overproduction.
Collapse
Affiliation(s)
- R A Olek
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland.
| | | | | | | | | | | |
Collapse
|
38
|
Smith AE, Stout JR, Kendall KL, Fukuda DH, Cramer JT. Exercise-induced oxidative stress: the effects of β-alanine supplementation in women. Amino Acids 2011; 43:77-90. [DOI: 10.1007/s00726-011-1158-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
39
|
Effects of grape seed extract supplementation on exercise-induced oxidative stress in rats. Br J Nutr 2011; 108:249-56. [PMID: 22011589 DOI: 10.1017/s0007114511005496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present study was to investigate the effects of grape seed extract (GSE) supplementation on exercise performance and oxidative stress in acutely and chronically exercised rats. A total of sixty-four male rats were used in the study. Rats were divided into six groups: control, chronic exercise control, acute exercise control (AEC), GSE-supplemented control, GSE-supplemented chronic exercise and GSE-supplemented acute exercise groups. Chronic exercise consisted of treadmill running at 25 m/min, 45 min/d, 5 d a week for 6 weeks. Rats in the acute exercise groups were run on the treadmill at 30 m/min until exhaustion. GSE were given at 100 mg/kg of body weight with drinking water for 6 weeks. Plasma was separated from blood samples for the analysis of oxidative stress markers. There was no significant difference in time of exhaustion between the acute exercise groups. Plasma malondialdehyde (MDA) levels were higher in the acute exercise groups and lower in the chronic exercise groups. GSE supplementation decreased MDA levels. Xanthine oxidase and adenosine deaminase activities were higher in the AEC group compared to all the other groups. NO levels were increased with both chronic exercise and GSE supplementation. Superoxide dismutase and glutathione peroxidase activities were lower in the acute exercised groups and higher in the chronic exercised groups. GSE supplementation caused an increase in antioxidant enzyme activities. In conclusion, GSE supplementation prevents exercise-induced oxidative stress by preventing lipid peroxidation and increasing antioxidant enzyme activities.
Collapse
|
40
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
41
|
Barrios C, Hadala M, Almansa I, Bosch-Morell F, Palanca JM, Romero FJ. Metabolic muscle damage and oxidative stress markers in an America’s Cup yachting crew. Eur J Appl Physiol 2010; 111:1341-50. [DOI: 10.1007/s00421-010-1762-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2010] [Indexed: 11/30/2022]
|
42
|
Lappalainen J, Lappalainen Z, Oksala NKJ, Laaksonen DE, Khanna S, Sen CK, Atalay M. Alpha-lipoic acid does not alter stress protein response to acute exercise in diabetic brain. Cell Biochem Funct 2010; 28:644-50. [PMID: 21104931 DOI: 10.1002/cbf.1702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (HSPs) are molecular chaperones which may act protective in cerebrovascular insults and peripheral diabetic neuropathy. We hypothesized that alpha-lipoic acid (LA), a natural thiol antioxidant, may enhance brain HSP response in diabetes. Rats with or without streptozotocin-induced diabetes were treated with LA or saline for 8 weeks. Half of the rats were subjected to exhaustive exercise to investigate HSP induction, and the brain tissue was analyzed. Diabetes increased constitutive HSC70 mRNA, and decreased HSP90 and glucose-regulated protein 75 (GRP75) mRNA without affecting protein levels. Exercise increased HSP90 protein and mRNA, and also GRP75 and heme oxygenase-1 (HO-1) mRNA only in non-diabetic animals. LA had no significant effect on brain HSPs, although LA increased HSC70 and HO-1 mRNA in diabetic animals and decreased HSC70 mRNA in non-diabetic animals. Eukaryotic translation elongation factor-2, essential for protein synthesis, was decreased by diabetes and suggesting a mechanism for the impaired HSP response related to translocation of the nascent chain during protein synthesis. LA supplementation does not offset the adverse effects of diabetes on brain HSP mRNA expression. Diabetes may impair HSP translation through elongation factors related to nascent chain translocation and subsequent responses to acute stress.
Collapse
Affiliation(s)
- Jani Lappalainen
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
Çakir-Atabek H, Demir S, PinarbaŞili RD, Gündüz N. Effects of Different Resistance Training Intensity on Indices of Oxidative Stress. J Strength Cond Res 2010; 24:2491-7. [DOI: 10.1519/jsc.0b013e3181ddb111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Pinheiro CHJ, Vitzel KF, Curi R. Effect of N-acetylcysteine on markers of skeletal muscle injury after fatiguing contractile activity. Scand J Med Sci Sports 2010; 22:24-33. [PMID: 20673252 DOI: 10.1111/j.1600-0838.2010.01143.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of N-Acetylcysteine (NAC), an unspecific antioxidant, on fatiguing contractile activity-induced injury were investigated. Twenty-four male Wistar rats were randomly assigned to two groups. The placebo group (N=12) received one injection of phosphate buffer (PBS) 1 h prior to contractile activity induced by electrical stimulation. The NAC group (NAC; N=12) received electrical stimulation for the same time period and NAC (500 mg/kg, i.p.) dissolved in PBS 1 h prior to electrical stimulation. The contralateral hindlimb was used as a control, except in the analysis of plasma enzyme activities, when a control group (rats placebo group not electrically stimulated and not treated) was included. The following parameters were measured: tetanic force, muscle fatigue, plasma activities of creatine kinase (CK) and lactate dehydrogenase (LDH), changes in muscle vascular permeability using Evans blue dye (EBD), muscle content of reactive oxygen species (ROS) and thiobarbituric acid-reactive substances (TBARS) and myeloperoxidase (MPO) activity. Muscle fatigue was delayed and tetanic force was preserved in NAC-treated rats. NAC treatment decreased plasma CK and LDH activities. The content of muscle-derived ROS, TBARS, EBD and MPO activity in both gastrocnemius and soleus muscles were also decreased by NAC pre-treatment. Thus, NAC has a protective effect against injury induced by fatiguing contractile activity in skeletal muscle.
Collapse
Affiliation(s)
- C H J Pinheiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | |
Collapse
|
45
|
Huang CC, Lin WT, Hsu FL, Tsai PW, Hou CC. Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises. Eur J Appl Physiol 2009; 108:557-66. [DOI: 10.1007/s00421-009-1247-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2009] [Indexed: 01/19/2023]
|
46
|
Gomez-Cabrera MC, Close GL, Kayani A, McArdle A, Viña J, Jackson MJ. Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation. Am J Physiol Regul Integr Comp Physiol 2009; 298:R2-8. [PMID: 19828843 PMCID: PMC2806206 DOI: 10.1152/ajpregu.00142.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Skeletal muscle contractions increase superoxide anion in skeletal muscle extracellular space. We tested the hypotheses that 1) after an isometric contraction protocol, xanthine oxidase (XO) activity is a source of superoxide anion in the extracellular space of skeletal muscle and 2) the increase in XO-derived extracellular superoxide anion during contractions affects skeletal muscle contractile function. Superoxide anion was monitored in the extracellular space of mouse gastrocnemius muscles by following the reduction of cytochrome c in muscle microdialysates. A 15-min protocol of nondamaging isometric contractions increased the reduction of cytochrome c in microdialysates, indicating an increase in superoxide anion. Mice treated with the XO inhibitor oxypurinol showed a smaller increase in superoxide anions in muscle microdialysates following contractions than in microdialysates from muscles of vehicle-treated mice. Intact extensor digitorum longus (EDL) and soleus muscles from mice were also incubated in vitro with oxypurinol or polyethylene glycol-tagged Cu,Zn-SOD. Oxypurinol decreased the maximum tetanic force produced by EDL and soleus muscles, and polyethylene glycol-tagged Cu,Zn-SOD decreased the maximum force production by the EDL muscles. Neither agent influenced the rate of decline in force production when EDL or soleus muscles were repeatedly electrically stimulated using a 5-min fatiguing protocol (stimulation at 40 Hz for 0.1 s every 5 s). Thus these studies indicate that XO activity contributes to the increased superoxide anion detected within the extracellular space of skeletal muscles during nondamaging contractile activity and that XO-derived superoxide anion or derivatives of this radical have a positive effect on muscle force generation during isometric contractions of mouse skeletal muscles.
Collapse
Affiliation(s)
- M C Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Maaty WS, Wiedenheft B, Tarlykov P, Schaff N, Heinemann J, Robison-Cox J, Valenzuela J, Dougherty A, Blum P, Lawrence CM, Douglas T, Young MJ, Bothner B. Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress. PLoS One 2009; 4:e6964. [PMID: 19759909 PMCID: PMC2739297 DOI: 10.1371/journal.pone.0006964] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/06/2009] [Indexed: 11/18/2022] Open
Abstract
To avoid molecular damage of biomolecules due to oxidation, all cells have evolved constitutive and responsive systems to mitigate and repair chemical modifications. Archaea have adapted to some of the most extreme environments known to support life, including highly oxidizing conditions. However, in comparison to bacteria and eukaryotes, relatively little is known about the biology and biochemistry of archaea in response to changing conditions and repair of oxidative damage. In this study transcriptome, proteome, and chemical reactivity analyses of hydrogen peroxide (H(2)O(2)) induced oxidative stress in Sulfolobus solfataricus (P2) were conducted. Microarray analysis of mRNA expression showed that 102 transcripts were regulated by at least 1.5 fold, 30 minutes after exposure to 30 microM H(2)O(2). Parallel proteomic analyses using two-dimensional differential gel electrophoresis (2D-DIGE), monitored more than 800 proteins 30 and 105 minutes after exposure and found that 18 had significant changes in abundance. A recently characterized ferritin-like antioxidant protein, DPSL, was the most highly regulated species of mRNA and protein, in addition to being post-translationally modified. As expected, a number of antioxidant related mRNAs and proteins were differentially regulated. Three of these, DPSL, superoxide dismutase, and peroxiredoxin were shown to interact and likely form a novel supramolecular complex for mitigating oxidative damage. A scheme for the ability of this complex to perform multi-step reactions is presented. Despite the central role played by DPSL, cells maintained a lower level of protection after disruption of the dpsl gene, indicating a level of redundancy in the oxidative stress pathways of S. solfataricus. This work provides the first "omics" scale assessment of the oxidative stress response for an archeal organism and together with a network analysis using data from previous studies on bacteria and eukaryotes reveals evolutionarily conserved pathways where complex and overlapping defense mechanisms protect against oxygen toxicity.
Collapse
Affiliation(s)
- Walid S. Maaty
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Blake Wiedenheft
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Plant Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Pavel Tarlykov
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Nathan Schaff
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Joshua Heinemann
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Jim Robison-Cox
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Jacob Valenzuela
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Amanda Dougherty
- George Beadle Center for Genetics, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Paul Blum
- George Beadle Center for Genetics, University of Nebraska, Lincoln, Nebraska, United States of America
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Trevor Douglas
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
| | - Mark J. Young
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
- Department of Plant Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Thermal Biology Institute, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. DYNAMIC MEDICINE : DM 2009; 8:1. [PMID: 19144121 PMCID: PMC2642810 DOI: 10.1186/1476-5918-8-1] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The topic of exercise-induced oxidative stress has received considerable attention in recent years, with close to 300 original investigations published since the early work of Dillard and colleagues in 1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress. This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise mode, intensity, and duration, as well as the subject population tested, all can impact the extent of oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single bout of exercise often leads to an acute oxidative stress, in accordance with the principle of hormesis, such an increase appears necessary to allow for an up-regulation in endogenous antioxidant defenses. This review presents a comprehensive summary of original investigations focused on exercise-induced oxidative stress. This should provide the reader with a well-documented account of the research done within this area of science over the past 30 years.
Collapse
Affiliation(s)
- Kelsey Fisher-Wellman
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, The University of Memphis, 161F Elma Neal Roane Fieldhouse, Memphis, TN 38152, USA
| | - Richard J Bloomer
- Cardiorespiratory/Metabolic Laboratory, Department of Health and Sport Sciences, The University of Memphis, 161F Elma Neal Roane Fieldhouse, Memphis, TN 38152, USA
| |
Collapse
|
49
|
Sheikholeslami-Vatani D, Gaeini AA, Rahnama N. Effect of acute and prolonged sprint training and a detraining period on lipid peroxidation and antioxidant response in rats. SPORT SCIENCES FOR HEALTH 2008. [DOI: 10.1007/s11332-008-0072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Abstract
Acute bouts of aerobic and anaerobic exercise can induce a state of oxidative stress, as indicated by an increase in oxidized molecules in a variety of tissues and body fluids. The extent of oxidation is dependent on the exercise mode, intensity, and duration, and is specifically related to the degree of oxidant production. Findings of increased oxidative stress have been reported for both healthy and diseased subjects following single bouts of exercise. While acute exercise has the ability to induce an oxidative stress, this same exercise stimulus appears necessary to allow for an upregulation in endogenous antioxidant defenses. This chapter presents a summary of exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Richard J Bloomer
- Department of Health and Sport Sciences, The University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|