1
|
DeLorey DS, Clifford PS. Does sympathetic vasoconstriction contribute to metabolism: Perfusion matching in exercising skeletal muscle? Front Physiol 2022; 13:980524. [PMID: 36171966 PMCID: PMC9510655 DOI: 10.3389/fphys.2022.980524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
The process of matching skeletal muscle blood flow to metabolism is complex and multi-factorial. In response to exercise, increases in cardiac output, perfusion pressure and local vasodilation facilitate an intensity-dependent increase in muscle blood flow. Concomitantly, sympathetic nerve activity directed to both exercising and non-active muscles increases as a function of exercise intensity. Several studies have reported the presence of tonic sympathetic vasoconstriction in the vasculature of exercising muscle at the onset of exercise that persists through prolonged exercise bouts, though it is blunted in an exercise-intensity dependent manner (functional sympatholysis). The collective evidence has resulted in the current dogma that vasoactive molecules released from skeletal muscle, the vascular endothelium, and possibly red blood cells produce local vasodilation, while sympathetic vasoconstriction restrains vasodilation to direct blood flow to the most metabolically active muscles/fibers. Vascular smooth muscle is assumed to integrate a host of vasoactive signals resulting in a precise matching of muscle blood flow to metabolism. Unfortunately, a critical review of the available literature reveals that published studies have largely focused on bulk blood flow and existing experimental approaches with limited ability to reveal the matching of perfusion with metabolism, particularly between and within muscles. This paper will review our current understanding of the regulation of sympathetic vasoconstriction in contracting skeletal muscle and highlight areas where further investigation is necessary.
Collapse
Affiliation(s)
- Darren S. DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren S. DeLorey,
| | - Philip S. Clifford
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Habets LE, Bartels B, Asselman FL, Hulzebos EHJ, Stegeman DF, Jeneson JAL, van der Pol WL. Motor Unit and Capillary Recruitment During Fatiguing Arm-Cycling Exercise in Spinal Muscular Atrophy Types 3 and 4. J Neuromuscul Dis 2022; 9:397-409. [PMID: 35466947 DOI: 10.3233/jnd-210765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exercise intolerance is an important impairment in patients with SMA, but little is known about the mechanisms underlying this symptom. OBJECTIVE To investigate if reduced motor unit- and capillary recruitment capacity in patients with SMA contribute to exercise intolerance. METHODS Adolescent and adult patients with SMA types 3 and 4 (n = 15) and age- and gender matched controls (n = 15) performed a maximal upper body exercise test. We applied respiratory gas analyses, non-invasive surface electromyography (sEMG) and continuous wave near-infrared spectroscopy (CW-NIRS) to study oxygen consumption, arm muscle motor unit- and capillary recruitment, respectively. RESULTS Maximal exercise duration was twofold lower (p < 0.001) and work of breathing and ventilation was 1.6- and 1.8-fold higher (p < 0.05) in patients compared to controls, respectively. Regarding motor unit recruitment, we found higher normalized RMS amplitude onset values of sEMG signals from all muscles and the increase in normalized RMS amplitudes was similar in the m. triceps brachii, m. brachioradialis and m. flexor digitorum in SMA compared to controls. Median frequency, onset values were similar in patients and controls. We found a similar decrease in median frequencies of sEMG recordings from the m. biceps brachii, a diminished decrease from the m. brachioradialis and m. flexor digitorum, but a larger decrease from the m. triceps brachii. With respect to capillary recruitment, CW-NIRS recordings in m. biceps brachii revealed dynamics that were both qualitatively and quantitatively similar in patients and controls. CONCLUSION We found no evidence for the contribution of motor unit- and capillary recruitment capacity of the upper arm muscles in adolescent and adult patients with SMA types 3 and 4 as primary limiting factors to premature fatigue during execution of a maximal arm-cycling task.
Collapse
Affiliation(s)
- Laura E Habets
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Bart Bartels
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| | - Erik H J Hulzebos
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jeroen A L Jeneson
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| |
Collapse
|
3
|
Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions. J Magn Reson Imaging 2022; 55:988-1012. [PMID: 34390617 PMCID: PMC8841570 DOI: 10.1002/jmri.27875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Throughout the body, muscle structure and function can be interrogated using a variety of noninvasive magnetic resonance imaging (MRI) methods. Recently, intravoxel incoherent motion (IVIM) MRI has gained momentum as a method to evaluate components of blood flow and tissue diffusion simultaneously. Much of the prior research has focused on highly vascularized organs, including the brain, kidney, and liver. Unique aspects of skeletal muscle, including the relatively low perfusion at rest and large dynamic range of perfusion between resting and maximal hyperemic states, may influence the acquisition, postprocessing, and interpretation of IVIM data. Here, we introduce several of those unique features of skeletal muscle; review existing studies of IVIM in skeletal muscle at rest, in response to exercise, and in disease states; and consider possible confounds that should be addressed for muscle-specific evaluations. Most studies used segmented nonlinear least squares fitting with a b-value threshold of 200 sec/mm2 to obtain IVIM parameters of perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D). In healthy individuals, across all muscles, the average ± standard deviation of D was 1.46 ± 0.30 × 10-3 mm2 /sec, D* was 29.7 ± 38.1 × 10-3 mm2 /sec, and f was 11.1 ± 6.7%. Comparisons of reported IVIM parameters in muscles of the back, thigh, and leg of healthy individuals showed no significant difference between anatomic locations. Throughout the body, exercise elicited a positive change of all IVIM parameters. Future directions including advanced postprocessing models and potential sequence modifications are discussed. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus
| | | | | | - Eric E. Sigmund
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health
- Center for Advanced Imaging and Innovation (CAIR), Bernard and Irene Schwarz Center for Biomedical Imaging (CBI), NYU Langone Health
| |
Collapse
|
4
|
Mendelson AA, Milkovich S, Hunter T, Vijay R, Choi YH, Milkovich S, Ho E, Goldman D, Ellis CG. The capillary fascicle in skeletal muscle: Structural and functional physiology of RBC distribution in capillary networks. J Physiol 2021; 599:2149-2168. [PMID: 33595111 DOI: 10.1113/jp281172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS The capillary module, consisting of parallel capillaries from arteriole to venule, is classically considered as the building block of complex capillary networks. In skeletal muscle, this structure fails to address how blood flow is regulated along the entire length of the synchronously contracting muscle fibres. Using intravital video microscopy of resting extensor digitorum longus muscle in rats, we demonstrated the capillary fascicle as a series of interconnected modules forming continuous columns that align naturally with the dimensions of the muscle fascicle. We observed structural heterogeneity for module topology, and functional heterogeneity in space and time for capillary-red blood cell (RBC) haemodynamics within a module and between modules. We found that module RBC haemodynamics were independent of module resistance, providing direct evidence for microvascular flow regulation at the level of the capillary module. The capillary fascicle is an updated paradigm for characterizing blood flow and RBC distribution in skeletal muscle capillary networks. ABSTRACT Capillary networks are the fundamental site of oxygen exchange in the microcirculation. The capillary module (CM), consisting of parallel capillaries from terminal arteriole (TA) to post-capillary venule (PCV), is classically considered as the building block of complex capillary networks. In skeletal muscle, this structure fails to address how blood flow is regulated along the entire length of the synchronously contracting muscle fibres, requiring co-ordination from numerous modules. It has previously been recognized that TAs and PCVs interact with multiple CMs, creating interconnected networks. Using label-free intravital video microscopy of resting extensor digitorum longus muscle in rats, we found that these networks form continuous columns of linked CMs spanning thousands of microns, herein denoted as the capillary fascicle (CF); this structure aligns naturally with the dimensions of the muscle fascicle. We measured capillary-red blood cell (RBC) haemodynamics and module topology (n = 9 networks, 327 modules, 1491 capillary segments). The average module had length 481 μm, width 157 μm and 9.51 parallel capillaries. We observed structural heterogeneity for CM topology, and functional heterogeneity in space and time for capillary-RBC haemodynamics within a module and between modules. There was no correlation between capillary RBC velocity and lineal density. A passive inverse relationship between module length and haemodynamics was remarkably absent, providing direct evidence for microvascular flow regulation at the level of the CM. In summary, the CF is an updated paradigm for characterizing RBC distribution in skeletal muscle, and strengthens the theory of capillary networks as major contributors to the signal that regulates capillary perfusion.
Collapse
Affiliation(s)
- Asher A Mendelson
- Department of Medicine, Section of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Timothy Hunter
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Raashi Vijay
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Yun-Hee Choi
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Shaun Milkovich
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Edward Ho
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Applied Mathematics, Faculty of Science, Western University, London, Ontario, Canada
| | - Christopher G Ellis
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Poole DC, Pittman RN, Musch TI, Østergaard L. August Krogh's theory of muscle microvascular control and oxygen delivery: a paradigm shift based on new data. J Physiol 2020; 598:4473-4507. [PMID: 32918749 DOI: 10.1113/jp279223] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
August Krogh twice won the prestigious international Steegen Prize, for nitrogen metabolism (1906) and overturning the concept of active transport of gases across the pulmonary epithelium (1910). Despite this, at the beginning of 1920, the consummate experimentalist was relatively unknown worldwide and even among his own University of Copenhagen faculty. But, in early 1919, he had submitted three papers to Dr Langley, then editor of The Journal of Physiology in England. These papers coalesced anatomical observations of skeletal muscle capillary numbers with O2 diffusion theory to propose a novel active role for capillaries that explained the prodigious increase in blood-muscle O2 flux from rest to exercise. Despite his own appraisal of the first two papers as "rather dull" to his friend, the eminent Cambridge respiratory physiologist, Joseph Barcroft, Krogh believed that the third one, dealing with O2 supply and capillary regulation, was"interesting". These papers, which won Krogh an unopposed Nobel Prize for Physiology or Medicine in 1920, form the foundation for this review. They single-handedly transformed the role of capillaries from passive conduit and exchange vessels, functioning at the mercy of their upstream arterioles, into independent contractile units that were predominantly closed at rest and opened actively during muscle contractions in a process he termed 'capillary recruitment'. Herein we examine Krogh's findings and some of the experimental difficulties he faced. In particular, the boundary conditions selected for his model (e.g. heavily anaesthetized animals, negligible intramyocyte O2 partial pressure, binary open-closed capillary function) have not withstood the test of time. Subsequently, we update the reader with intervening discoveries that underpin our current understanding of muscle microcirculatory control and place a retrospectroscope on Krogh's discoveries. The perspective is presented that the imprimatur of the Nobel Prize, in this instance, may have led scientists to discount compelling evidence. Much as he and Marie Krogh demonstrated that active transport of gases across the blood-gas barrier was unnecessary in the lung, capillaries in skeletal muscle do not open and close spontaneously or actively, nor is this necessary to account for the increase in blood-muscle O2 flux during exercise. Thus, a contemporary model of capillary function features most muscle capillaries supporting blood flow at rest, and, rather than capillaries actively vasodilating from rest to exercise, increased blood-myocyte O2 flux occurs predominantly via elevating red blood cell and plasma flux in already flowing capillaries. Krogh is lauded for his brilliance as an experimentalist and for raising scientific questions that led to fertile avenues of investigation, including the study of microvascular function.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Roland N Pittman
- Department of Physiology and Biophysics, Virginia Commonwealth University Richmond, Richmond, VA, 23298-0551, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
6
|
Terwoord JD, Hearon CM, Racine ML, Ketelhut NB, Luckasen GJ, Richards JC, Dinenno FA. K IR channel activation links local vasodilatation with muscle fibre recruitment during exercise in humans. J Physiol 2020; 598:2621-2636. [PMID: 32329892 DOI: 10.1113/jp279682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During exercise, blood flow to working skeletal muscle increases in parallel with contractile activity such that oxygen delivery is sufficient to meet metabolic demand. K+ released from active skeletal muscle fibres could facilitate vasodilatation in proportion to the degree of muscle fibre recruitment. Once released, K+ stimulates inwardly rectifying K+ (KIR ) channels on the vasculature to elicit an increase in blood flow. In the present study, we demonstrate that KIR channels mediate the rapid vasodilatory response to an increase in exercise intensity. We also show that KIR channels augment vasodilatation during exercise which demands greater muscle fibre recruitment independent of the total amount of work performed. These results suggest that K+ plays a key role in coupling the magnitude of vasodilatation to the degree of contractile activity. Ultimately, the findings from this study help us understand the signalling mechanisms that regulate muscle blood flow in humans. ABSTRACT Blood flow to active skeletal muscle is augmented with greater muscle fibre recruitment. We tested whether activation of inwardly rectifying potassium (KIR ) channels underlies vasodilatation with elevated muscle fibre recruitment when work rate is increased (Protocol 1) or held constant (Protocol 2). We assessed forearm vascular conductance (FVC) during rhythmic handgrip exercise under control conditions and during local inhibition of KIR channels (intra-arterial BaCl2 ). In Protocol 1, healthy volunteers performed mild handgrip exercise for 3 min, then transitioned to moderate intensity for 30 s. BaCl2 eliminated vasodilatation during the first contraction at the moderate workload (ΔFVC, BaCl2 : -1 ± 17 vs. control: 30 ± 28 ml min-1 100 mmHg-1 ; n = 9; P = 0.004) and attenuated the 30 s area under the curve by 56 ± 14% (n = 9; P < 0.0001). In Protocol 2, participants performed two exercise bouts in which muscle fibre recruitment was manipulated while total contractile work was held constant via reciprocal changes in contraction frequency: (1) low fibre recruitment, with contractions at 12.5% maximal voluntary contraction once every 4 s and (2) high fibre recruitment, with contractions at 25% maximal voluntary contraction once every 8 s. Under control conditions, steady-state FVC was augmented in high vs. low fibre recruitment (211 ± 90 vs. 166 ± 73 ml min-1 ⋅100 mmHg-1 ; n = 10; P = 0.0006), whereas BaCl2 abolished the difference between high and low fibre recruitment (134 ± 59 vs. 134 ± 63 ml min-1 100 mmHg-1 ; n = 10; P = 0.85). These findings demonstrate that KIR channel activation is a key mechanism linking local vasodilatation with muscle fibre recruitment during exercise.
Collapse
Affiliation(s)
- Janée D Terwoord
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Christopher M Hearon
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Matthew L Racine
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel B Ketelhut
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gary J Luckasen
- Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, CO, USA
| | - Jennifer C Richards
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Frank A Dinenno
- Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Anagnostou ME, Hepple RT. Mitochondrial Mechanisms of Neuromuscular Junction Degeneration with Aging. Cells 2020; 9:cells9010197. [PMID: 31941062 PMCID: PMC7016881 DOI: 10.3390/cells9010197] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle deteriorates with aging, contributing to physical frailty, poor health outcomes, and increased risk of mortality. Denervation is a major driver of changes in aging muscle. This occurs through transient denervation-reinnervation events throughout the aging process that remodel the spatial domain of motor units and alter fiber type. In advanced age, reinnervation wanes, leading to persistent denervation that accelerates muscle atrophy and impaired muscle contractility. Alterations in the muscle fibers and motoneurons are both likely involved in driving denervation through destabilization of the neuromuscular junction. In this respect, mitochondria are implicated in aging and age-related neurodegenerative disorders, and are also likely key to aging muscle changes through their direct effects in muscle fibers and through secondary effects mediated by mitochondrial impairments in motoneurons. Indeed, the large abundance of mitochondria in muscle fibers and motoneurons, that are further concentrated on both sides of the neuromuscular junction, likely renders the neuromuscular junction especially vulnerable to age-related mitochondrial dysfunction. Manifestations of mitochondrial dysfunction with aging include impaired respiratory function, elevated reactive oxygen species production, and increased susceptibility to permeability transition, contributing to reduced ATP generating capacity, oxidative damage, and apoptotic signaling, respectively. Using this framework, in this review we summarize our current knowledge, and relevant gaps, concerning the potential impact of mitochondrial impairment on the aging neuromuscular junction, and the mechanisms involved.
Collapse
|
8
|
Poole DC. Edward F. Adolph Distinguished Lecture. Contemporary model of muscle microcirculation: gateway to function and dysfunction. J Appl Physiol (1985) 2019; 127:1012-1033. [PMID: 31095460 DOI: 10.1152/japplphysiol.00013.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review strikes at the very heart of how the microcirculation functions to facilitate blood-tissue oxygen, substrate, and metabolite fluxes in skeletal muscle. Contemporary evidence, marshalled from animals and humans using the latest techniques, challenges iconic perspectives that have changed little over the past century. Those perspectives include the following: the presence of contractile or collapsible capillaries in muscle, unitary control by precapillary sphincters, capillary recruitment at the onset of contractions, and the notion of capillary-to-mitochondrial diffusion distances as limiting O2 delivery. Today a wealth of physiological, morphological, and intravital microscopy evidence presents a completely different picture of microcirculatory control. Specifically, capillary red blood cell (RBC) and plasma flux is controlled primarily at the arteriolar level with most capillaries, in healthy muscle, supporting at least some flow at rest. In healthy skeletal muscle, this permits substrate access (whether carried in RBCs or plasma) to a prodigious total capillary surface area. Pathologies such as heart failure or diabetes decrease access to that exchange surface by reducing the proportion of flowing capillaries at rest and during exercise. Capillary morphology and function vary disparately among tissues. The contemporary model of capillary function explains how, following the onset of exercise, muscle O2 uptake kinetics can be extremely fast in health but slowed in heart failure and diabetes impairing contractile function and exercise tolerance. It is argued that adoption of this model is fundamental for understanding microvascular function and dysfunction and, as such, to the design and evaluation of effective therapeutic strategies to improve exercise tolerance and decrease morbidity and mortality in disease.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
9
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 846] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
10
|
Nudel I, Dorfmann L, deBotton G. The compartment syndrome: is the intra-compartment pressure a reliable indicator for early diagnosis? MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 34:547-558. [PMID: 27756790 DOI: 10.1093/imammb/dqw016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022]
Abstract
Compartment syndrome (CS) occurs when the pressure in an enclosed compartment increases due to tissue swelling or internal bleeding. As the intra-compartmental pressure (ICP) builds up, the blood flow to the tissue or the organ is compromised, resulting in ischemia, necrosis and damage to the nerves and other tissues. At the present there are no established diagnostic procedures, and clinical observations such as pain, paralysis and even compartment pressure monitoring are an unreliable determinant of the presence of the syndrome. Late diagnosis may result in fasciotomy, neurological dysfunctions, amputation and even death. Focusing on the frequently occurring CS of the lower leg, this work is aimed toward introducing a coherent, mechanically motivated analysis of the disease within the framework of poroelasticity. The fascia enclosing the compartment is treated as an inextensible and impermeable layer, and the tissue inside the compartment is represented as a fully saturated poroelastic solid. The model quantitatively predicts the highly non-uniform ICP buildup as a function of both time and location. These findings, which are in good agreement with clinical observations reported in the literature, shed light on the difficulties associated with the identification of the syndrome and may assist in improved diagnostic procedures.
Collapse
Affiliation(s)
- Iftah Nudel
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 8410501, Israel
| | - Luis Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA
| | - Gal deBotton
- Department of Biomedical Engineering, Ben-Gurion University, Beer-Sheva 8410501, Israel
- Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva 8410501, Israel
| |
Collapse
|
11
|
Novielli-Kuntz NM, Lemaster KA, Frisbee JC, Jackson DN. Neuropeptide Y1 and alpha-1 adrenergic receptor-mediated decreases in functional vasodilation in gluteus maximus microvascular networks of prediabetic mice. Physiol Rep 2018; 6:e13755. [PMID: 29981203 PMCID: PMC6035337 DOI: 10.14814/phy2.13755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 12/27/2022] Open
Abstract
Prediabetes is associated with impaired contraction‐evoked dilation of skeletal muscle arterioles, which may be due to increased sympathetic activity accompanying this early stage of diabetes disease. Herein, we sought to determine whether blunted contraction‐evoked vasodilation resulted from enhanced sympathetic neuropeptide Y1 receptor (Y1R) and alpha‐1 adrenergic receptor (α1R) activation. Using intravital video microscopy, second‐, third‐, and fourth‐order (2A, 3A, and 4A) arteriolar diameters were measured before and following electrical field stimulation of the gluteus maximus muscle (GM) in prediabetic (PD, Pound Mouse) and control (CTRL, c57bl6, CTRL) mice. Baseline diameter was similar between groups; however, single tetanic contraction (100 Hz; 400 and 800 msec) and sustained rhythmic contraction (2 and 8 Hz, 30 sec) evoked rapid onset vasodilation and steady‐state vasodilatory responses that were blunted by 50% or greater in PD versus CTRL. Following Y1R and α1R blockade with sympathetic antagonists BIBP3226 and prazosin, contraction‐evoked arteriolar dilation in PD was restored to levels observed in CTRL. Furthermore, arteriolar vasoconstrictor responses to NPY (10−13–10−8 mol/L) and PE (10−9–10−5 mol/L) were greater in PD versus CTRL at higher concentrations, especially at 3A and 4A. These findings suggest that contraction‐evoked vasodilation in PD is blunted by Y1R and α1R receptor activation throughout skeletal muscle arteriolar networks.
Collapse
Affiliation(s)
| | - Kent A Lemaster
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Murias JM, Spencer MD, Paterson DH. The critical role of O2 provision in the dynamic adjustment of oxidative phosphorylation. Exerc Sport Sci Rev 2014; 42:4-11. [PMID: 24188979 DOI: 10.1249/jes.0000000000000005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been proposed that the adjustment of oxygen uptake (V˙O2) during the exercise on-transient is controlled intracellularly in young healthy individuals and that insufficient local O2 delivery plays a rate-limiting role in aging and disease only. This review shows that adequate O2 provision to the active tissues is critical in the dynamic adjustment of oxidative phosphorylation even in young healthy individuals.
Collapse
Affiliation(s)
- Juan M Murias
- 1Canadian Centre for Activity and Aging; and 2School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
13
|
Novielli NM, Jackson DN. Contraction-evoked vasodilation and functional hyperaemia are compromised in branching skeletal muscle arterioles of young pre-diabetic mice. Acta Physiol (Oxf) 2014; 211:371-84. [PMID: 24703586 DOI: 10.1111/apha.12297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/14/2013] [Accepted: 03/28/2014] [Indexed: 12/25/2022]
Abstract
AIM To investigate the effects of pre-diabetes on microvascular network function in contracting skeletal muscle. We hypothesized that pre-diabetes compromises contraction-evoked vasodilation of branching second-order (2A), third-order (3A) and fourth-order (4A) arterioles, where distal arterioles would be affected the greatest. METHODS Intravital video microscopy was used to measure arteriolar diameter (in 2A, 3A and 4A) and blood flow (in 2A and 3A) changes to electrical field stimulation of the gluteus maximus muscle in pre-diabetic (The Pound Mouse, PD) and control (c57bl6, CTRL) mice. RESULTS Baseline diameter and blood flow were similar between groups (2A: ~20 μm, 3A: ~14 μm and 4A: ~8 μm; 2A: ~1 nL s(-1) and 3A: ~0.5 nL s(-1) ). Single tetanic contraction (100 Hz; 200, 400, 800 ms duration) evoked rapid-onset vasodilation (ROV) and blood flow responses that were blunted by ~50% and up to 81%, respectively, in PD vs. CTRL (P < 0.05). The magnitude of ROV was up to 2-fold greater at distal arterioles (3A and 4A) vs. proximal arterioles (2A) in CTRL; however, in PD, ROV of only 4A was greater than 2A (P < 0.05). Rhythmic contraction (2 and 8 Hz, 30 s) evoked vasodilatory and blood flow responses that were also attenuated by ~50% and up to 71%, respectively, in PD vs. CTRL (P < 0.05). The magnitude of vasodilatory responses to rhythmic contraction was also up to 2.5-fold greater at 4A vs. 2A in CTRL; however spatial differences in vasodilation across arteriolar branch orders was disrupted in PD. CONCLUSIONS Arteriolar dysregulation in pre-diabetes causes deficits in contraction-evoked dilation and blood flow, where greatest deficits occur at distal arterioles.
Collapse
Affiliation(s)
- N. M. Novielli
- Department of Medical Biophysics; Western University; London ON Canada
| | - D. N. Jackson
- Department of Medical Biophysics; Western University; London ON Canada
- Biomedical Engineering Graduate Program; Western University; London ON Canada
| |
Collapse
|
14
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
15
|
Callahan DM, Umberger BR, Kent-Braun JA. A computational model of torque generation: neural, contractile, metabolic and musculoskeletal components. PLoS One 2013; 8:e56013. [PMID: 23405245 PMCID: PMC3566067 DOI: 10.1371/journal.pone.0056013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.
| | | | | |
Collapse
|
16
|
Heinonen I. Comfortable at just below your critical speed: how is blood flow distribution coupled to muscle fibre recruitment during exercise? J Physiol 2011; 589:2113-4. [PMID: 21532031 DOI: 10.1113/jphysiol.2011.206342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ilkka Heinonen
- Department of Clinical Physiology andNuclear Medicine, University of Turku,Turku, Finland.
| |
Collapse
|
17
|
Poole DC, Copp SW, Hirai DM, Musch TI. Dynamics of muscle microcirculatory and blood-myocyte O(2) flux during contractions. Acta Physiol (Oxf) 2011; 202:293-310. [PMID: 21199399 DOI: 10.1111/j.1748-1716.2010.02246.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The O(2) requirements of contracting skeletal muscle may increase 100-fold above rest. In 1919, August Krogh's brilliant insights recognized the capillary as the principal site for this increased blood-myocyte O(2) flux. Based on the premise that most capillaries did not sustain RBC flux at rest, Krogh proposed that capillary recruitment [i.e. initiation of red blood cell (RBC) flux in previously non-flowing capillaries] increased the capillary surface area available for O(2) flux and reduced mean capillary-to-mitochondrial diffusion distances. More modern experimental approaches reveal that most muscle capillaries may support RBC flux at rest. Thus, rather than contraction-induced capillary recruitment per se, increased RBC flux and haematocrit within already-flowing capillaries probably elevate perfusive and diffusive O(2) conductances and hence blood-myocyte O(2) flux. Additional surface area for O(2) exchange is recruited but, crucially, this may occur along the length of already-flowing capillaries (i.e. longitudinal recruitment). Today, the capillary is still considered the principal site for O(2) and substrate delivery to contracting skeletal muscle. Indeed, the presence of very low intramyocyte O(2) partial pressures (PO(2)s) and the absence of intramyocyte PO(2) gradients, whilst refuting the relevance of diffusion distances, place an even greater importance on capillary hemodynamics. This emergent picture calls for a paradigm-shift in our understanding of the function of capillaries by de-emphasizing de novo'capillary recruitment'. Diseases such as heart failure impair blood-myocyte O(2) flux, in part, by decreasing the proportion of RBC-flowing capillaries. Knowledge of capillary function in healthy muscle is requisite for identification of pathology and efficient design of therapeutic treatments.
Collapse
Affiliation(s)
- D C Poole
- Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS, USA.
| | | | | | | |
Collapse
|
18
|
|
19
|
Sarelius I, Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms. Acta Physiol (Oxf) 2010; 199:349-65. [PMID: 20353492 DOI: 10.1111/j.1748-1716.2010.02129.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the control mechanisms of blood flow within the vasculature of skeletal muscle is clearly fascinating from a theoretical point of view due to the extremely tight coupling of tissue oxygen demands and blood flow. It also has practical implications as impairment of muscle blood flow and its prevention/reversal by exercise training has a major impact on widespread diseases such as hypertension and diabetes. Here we analyse the role of mediators generated by skeletal muscle activity on smooth muscle relaxation in resistance vessels in vitro and in vivo. We summarize their cellular mechanisms of action and their relative roles in exercise hyperaemia with regard to early and late responses. We also discuss the consequences of interactions among mediators with regard to identifying their functional significance. We focus on (potential) mechanisms integrating the action of the mediators and their effects among the cells of the intact arteriolar wall. This integration occurs both locally, partly due to myoendothelial communication, and axially along the vascular tree, thus enabling the local responses to be manifest along an entire functional vessel path. Though the concept of signal integration is intriguing, its specific role on the control of exercise hyperaemia and the consequences of its modulation under physiological and pathophysiological conditions still await additional analysis.
Collapse
Affiliation(s)
- I Sarelius
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
20
|
Moore AW, Bearden SE, Segal SS. Regional activation of rapid onset vasodilatation in mouse skeletal muscle: regulation through α-adrenoreceptors. J Physiol 2010; 588:3321-31. [PMID: 20624796 DOI: 10.1113/jphysiol.2010.193672] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exercise onset entails motor unit recruitment and the initiation of vasodilatation. Dilatation can ascend the arteriolar network to encompass proximal feed arteries but is opposed by sympathetic nerve activity, which promotes vasoconstriction and inhibits ascending vasodilatation through activating α-adrenoreceptors. Whereas contractile activity can antagonize sympathetic vasoconstriction, more subtle aspects of this interaction remain to be defined. We tested the hypothesis that constitutive activation of α-adrenoreceptors governs blood flow distribution within individual muscles. The mouse gluteus maximus muscle (GM) consists of Inferior and Superior regions. Each muscle region is supplied by its own motor nerve and feed artery with an anastomotic arteriole (resting diameter 25 microm) that spans both muscle regions. In anaesthetized male C57BL/6J mice (3-5 months old), the GM was exposed and superfused with physiological saline solution (35 degrees C; pH 7.4). Stimulating the inferior gluteal motor nerve (0.1 ms pulse, 100 Hz for 500 ms) evoked a brief tetanic contraction and produced rapid (<1 s) onset vasodilatation (ROV; diameter change, 10 +/- 1 μm) of the anastomotic arteriole along the active (Inferior) muscle region but not along the inactive (Superior) region (n = 8). In contrast, microiontophoresis of acetylcholine (1 μm micropipette tip, 1 μA, 500 ms) initiated dilatation that travelled along the anastomotic arteriole from the Inferior into the Superior muscle region (diameter change, 5 +/- 2 μm). Topical phentolamine (1 μm) had no effect on resting diameter but this inhibition of α-adrenoreceptors enabled ROV to spread along the anastomotic arteriole into the inactive muscle region (dilatation, 7 +/- 1 μm; P < 0.05), where remote dilatation to acetylcholine then doubled (P < 0.05). These findings indicate that constitutive activation of α-adrenoreceptors in skeletal muscle can restrict the spread of dilatation within microvascular resistance networks and thereby increase blood flow to active muscle regions.
Collapse
Affiliation(s)
- Alex W Moore
- Department of Medical Pharmacology and Physiology, MA415 Medical Science Building, University of Missouri - Columbia, Columbia, MO 65212, USA
| | | | | |
Collapse
|
21
|
Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I. A muscle architecture model offering control over motor unit fiber density distributions. Med Biol Eng Comput 2010; 48:875-86. [PMID: 20535575 DOI: 10.1007/s11517-010-0642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 05/13/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to develop a muscle architecture model able to account for the observed distributions of innervation ratios and fiber densities of different types of motor units in a muscle. A model algorithm is proposed and mathematically analyzed in order to obtain an inverse procedure that allows, by modification of input parameters, control over the output distributions of motor unit fiber densities. The model's performance was tested with independent data from a glycogen depletion study of the medial gastrocnemius of the rat. Results show that the model accurately reproduces the observed physiological distributions of innervation ratios and fiber densities and their relationships. The reliability and accuracy of the new muscle architecture model developed here can provide more accurate models for the simulation of different electromyographic signals.
Collapse
Affiliation(s)
- Javier Navallas
- Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona, Navarra, Spain.
| | | | | | | | | |
Collapse
|
22
|
Heinonen I, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos MM, Oikonen V, Nuutila P, Knuuti J, Hellsten Y, Boushel R, Kalliokoski KK. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. J Appl Physiol (1985) 2010; 108:378-86. [DOI: 10.1152/japplphysiol.00745.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is a widely used pharmacological agent to induce a “high-flow” control condition to study the mechanisms of exercise hyperemia, but it is not known how well an adenosine infusion depicts exercise-induced hyperemia, especially in terms of blood flow distribution at the capillary level in human muscle. Additionally, it remains to be determined what proportion of the adenosine-induced flow elevation is specifically directed to muscle only. In the present study, we measured thigh muscle capillary nutritive blood flow in nine healthy young men using PET at rest and during the femoral artery infusion of adenosine (1 mgmin−1l thigh volume−1), which has previously been shown to induce a maximal whole thigh blood flow of ∼8 l/min. This response was compared with the blood flow induced by moderate- to high-intensity one-leg dynamic knee extension exercise. Adenosine increased muscle blood flow on average to 40 ± 7 ml·min−1·100 g muscle−1 with an aggregate value of 2.3 ± 0.6 l/min for the whole thigh musculature. Adenosine also induced a substantial change in blood flow distribution within individuals. Muscle blood flow during the adenosine infusion was comparable with blood flow in moderate- to high-intensity exercise (36 ± 9 ml·min−1·100 g muscle−1), but flow heterogeneity was significantly higher during the adenosine infusion than during voluntary exercise. In conclusion, a substantial part of the flow increase in the whole limb blood flow induced by a high-dose adenosine infusion is conducted through the physiological non-nutritive shunt in muscle and/or also through tissues of the limb other than muscle. Additionally, an intra-arterial adenosine infusion does not mimic exercise hyperemia, especially in terms of muscle capillary flow heterogeneity, while the often-observed exercise-induced changes in capillary blood flow heterogeneity likely reflect true changes in nutritive flow linked to muscle fiber and vascular unit recruitment.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre,
- Departments of 2Clinical Physiology and Nuclear Medicine,
| | - Jukka Kemppainen
- Turku PET Centre,
- Departments of 2Clinical Physiology and Nuclear Medicine,
| | | | - Juha E. Peltonen
- Unit for Sports and Exercise Medicine, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Pirjo Nuutila
- Turku PET Centre,
- Medicine, Turku University Hospital and University of Turku, Turku
| | | | - Ylva Hellsten
- Departments of Exercise and Sport Sciences, Section of Human Physiology, and
| | - Robert Boushel
- Department of Biomedical Sciences, Centre for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
23
|
Abstract
The regulation of blood flow has rich history of investigation and is exemplified in exercising skeletal muscle by a concerted interaction between striated muscle fibers and their microvascular supply. This review considers blood flow control in light of the regulation of capillary perfusion by and among terminal arterioles, the distribution of blood flow in arteriolar networks according to metabolic and hemodynamic feedback from active muscle fibers, and the balance between peak muscle blood flow and arterial blood pressure governed by sympathetic nerve activity. As metabolic demand increases,the locus of regulating oxygen delivery to muscle fibers "ascends" from terminal arterioles, through intermediate distributing arterioles, and into the proximal arterioles and feed arteries, which govern total flow into a muscle. At multiple levels, venules are positioned to provide feedback to nearby arterioles regarding the metabolic state of the tissue through the convection, production and diffusion of vasodilator stimuli. Electrical signals initiated on microvascular smooth muscle and endothelial cells can travel rapidly for millimeters through cell-to-cell conduction via gap junction channels, rapidly coordinating vasodilator responses that govern the distribution and magnitude of blood flow to active muscle fibers. Sympathetic constriction of proximal arterioles and feed arteries can restrict functional hyperemia while dilation prevails in distal arterioles to promote oxygen extraction. With vasomotor tone reflecting myogenic contraction of smooth muscle cells modulated by shear stress on the endothelium, the initiation of functional vasodilation and its modulation by sympathetic innervation dictate how and where blood flow is distributed in response to metabolic demand. A remarkable ensemble of signaling pathways underlies the integration of smooth muscle and endothelial cell function in microvascular networks. These pathways are being defined with refreshing new insight as novel approaches are applied to understanding the cellular and molecular mechanisms of blood flow control.
Collapse
Affiliation(s)
- Steven S Segal
- The John B. Pierce Laboratory & Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
24
|
Lai N, Zhou H, Saidel GM, Wolf M, McCully K, Gladden LB, Cabrera ME. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy. J Appl Physiol (1985) 2009; 106:1858-74. [PMID: 19342438 PMCID: PMC2692777 DOI: 10.1152/japplphysiol.91102.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 03/31/2009] [Indexed: 11/22/2022] Open
Abstract
Noninvasive, continuous measurements in vivo are commonly used to make inferences about mechanisms controlling internal and external respiration during exercise. In particular, the dynamic response of muscle oxygenation (Sm(O(2))) measured by near-infrared spectroscopy (NIRS) is assumed to be correlated to that of venous oxygen saturation (Sv(O(2))) measured invasively. However, there are situations where the dynamics of Sm(O(2)) and Sv(O(2)) do not follow the same pattern. A quantitative analysis of venous and muscle oxygenation dynamics during exercise is necessary to explain the links between different patterns observed experimentally. For this purpose, a mathematical model of oxygen transport and utilization that accounts for the relative contribution of hemoglobin (Hb) and myoglobin (Mb) to the NIRS signal was developed. This model includes changes in microvascular composition within skeletal muscle during exercise and integrates experimental data in a consistent and mechanistic manner. Three subjects (age 25.6 +/- 0.6 yr) performed square-wave moderate exercise on a cycle ergometer under normoxic and hypoxic conditions while muscle oxygenation (C(oxy)) and deoxygenation (C(deoxy)) were measured by NIRS. Under normoxia, the oxygenated Hb/Mb concentration (C(oxy)) drops rapidly at the onset of exercise and then increases monotonically. Under hypoxia, C(oxy) decreases exponentially to a steady state within approximately 2 min. In contrast, model simulations of venous oxygen concentration show an exponential decrease under both conditions due to the imbalance between oxygen delivery and consumption at the onset of exercise. Also, model simulations that distinguish the dynamic responses of oxy-and deoxygenated Hb (HbO(2), HHb) and Mb (MbO(2), HMb) concentrations (C(oxy) = HbO(2) + MbO(2); C(deoxy) = HHb + HMb) show that Hb and Mb contributions to the NIRS signal are comparable. Analysis of NIRS signal components during exercise with a mechanistic model of oxygen transport and metabolism indicates that changes in oxygenated Hb and Mb are responsible for different patterns of Sm(O(2)) and Sv(O(2)) dynamics observed under normoxia and hypoxia.
Collapse
Affiliation(s)
- Nicola Lai
- Depatment of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I. Mathematical analysis of a muscle architecture model. Math Biosci 2009; 217:64-76. [DOI: 10.1016/j.mbs.2008.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/14/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
26
|
Schmid-Schoenbein GW, Murfee WL. In response to "Point:Counterpoint: There is/is not capillary recruitment in active skeletal muscle during exercise". J Appl Physiol (1985) 2008; 104:899. [PMID: 18453032 DOI: 10.1152/japplphysiol.01293.2007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Parker BA, Smithmyer SL, Ridout SJ, Ray CA, Proctor DN. Age and microvascular responses to knee extensor exercise in women. Eur J Appl Physiol 2008; 103:343-51. [DOI: 10.1007/s00421-008-0711-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2008] [Indexed: 11/30/2022]
|
28
|
|
29
|
Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes 2007; 56:2194-200. [PMID: 17563063 DOI: 10.2337/db07-0020] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined whether contraction-induced muscle microvascular recruitment would expand the surface area for insulin and nutrient exchange and thereby contribute to insulin-mediated glucose disposal. We measured in vivo rat hindlimb microvascular blood volume (MBV) using contrast ultrasound and femoral blood flow (FBF) using Doppler ultrasound in response to a stimulation frequency range. Ten minutes of 0.1-Hz isometric contraction more than doubled MBV (P < 0.05; n = 6) without affecting FBF (n = 7), whereas frequencies >0.5 Hz increased both. Specific inhibition of nitric oxide (NO) synthase with N(omega)-l-nitro-arginine-methyl ester (n = 5) significantly elevated mean arterial pressure by approximately 30 mmHg but had no effect on basal FBF or MBV. We next examined whether selectively elevating MBV without increasing FBF (0.1-Hz contractions) increased muscle uptake of albumin-bound Evans blue dye (EBD). Stimulation at 0.1 Hz (10 min) elicited more than twofold increases in EBD content (micrograms EBD per gram dry tissue) in stimulated versus contralateral muscle (n = 8; 52.2 +/- 3.8 vs. 20 +/- 2.5, respectively; P < 0.001). We then measured muscle uptake of EBD and (125)I-labeled insulin (dpm per gram dry tissue) with 0.1-Hz stimulation (n = 6). Uptake of EBD (19.1 +/- 3.8 vs. 9.9 +/- 1; P < 0.05) and (125)I-insulin (5,300 +/- 800 vs. 4,244 +/- 903; P < 0.05) was greater in stimulated muscle versus control. Low-frequency contraction increases muscle MBV by a NO-independent pathway and facilitates muscle uptake of albumin and insulin in the absence of blood flow increases. This microvascular response may, in part, explain enhanced insulin action in exercising skeletal muscle.
Collapse
Affiliation(s)
- April C Inyard
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
30
|
DeLorey DS, Kowalchuk JM, Heenan AP, Dumanoir GR, Paterson DH. Prior exercise speeds pulmonary O2 uptake kinetics by increases in both local muscle O2 availability and O2 utilization. J Appl Physiol (1985) 2007; 103:771-8. [PMID: 17495116 DOI: 10.1152/japplphysiol.01061.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of prior exercise on pulmonary O2 uptake (V̇o2p), leg blood flow (LBF), and muscle deoxygenation at the onset of heavy-intensity alternate-leg knee-extension (KE) exercise was examined. Seven subjects [27 ( 5 ) yr; mean (SD)] performed step transitions ( n = 3; 8 min) from passive KE following no warm-up (HVY 1) and heavy-intensity (Δ50%, 8 min; HVY 2) KE exercise. V̇o2p was measured breath-by-breath; LBF was measured by Doppler ultrasound at the femoral artery; and oxy (O2Hb)-, deoxy (HHb)-, and total (Hbtot) hemoglobin/myoglobin of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS; Hamamatsu NIRO-300). Phase 2 V̇o2p, LBF, and HHb data were fit with a monoexponential model. The time delay (TD) from exercise onset to an increase in HHb was also determined and an HHb effective time constant (HHb − MRT = TD + τ) was calculated. Prior heavy-intensity exercise resulted in a speeding ( P < 0.05) of phase 2 V̇o2p kinetics [HVY 1: 42 s ( 6 ); HVY 2: 37 s ( 8 )], with no change in the phase 2 amplitude [HVY 1: 1.43 l/min (0.21); HVY 2: 1.48 l/min (0.21)] or amplitude of the V̇o2p slow component [HVY 1: 0.18 l/min (0.08); HVY 2: 0.18 l/min (0.09)]. O2Hb and Hbtot were elevated throughout the on-transient following prior heavy-intensity exercise. The τLBF [HVY 1: 39 s ( 7 ); HVY 2: 47 s ( 21 ); P = 0.48] and HHb-MRT [HVY 1: 23 s ( 4 ); HVY 2: 21 s ( 7 ); P = 0.63] were unaffected by prior exercise. However, the increase in HHb [HVY 1: 21 μM ( 10 ); HVY 2: 25 μM ( 10 ); P < 0.001] and the HHb-to-V̇o2p ratio [(HHb/V̇o2p) HVY 1: 14 μM·l−1·min−1 ( 6 ); HVY 2: 17 μM·l−1·min−1 ( 5 ); P < 0.05] were greater following prior heavy-intensity exercise. These results suggest that the speeding of phase 2 τV̇o2p was the result of both elevated local O2 availability and greater O2 extraction evidenced by the greater HHb amplitude and HHb/V̇o2p ratio following prior heavy-intensity exercise.
Collapse
Affiliation(s)
- Darren S DeLorey
- Canadian Centre for Activity and Aging, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada N6A 3K7
| | | | | | | | | |
Collapse
|
31
|
Kendall TL, Black CD, Elder CP, Gorgey A, Dudley GA. Determining the extent of neural activation during maximal effort. Med Sci Sports Exerc 2006; 38:1470-5. [PMID: 16888461 DOI: 10.1249/01.mss.0000228953.52473.ce] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to compare the extent of neural activation assessed by the central activation ratio (CAR) versus activation estimated from T2 magnetic resonance imaging (MRI) and neuromuscular electrical stimulation (NMES). METHODS Seven college-age individuals volunteered for this study. CAR was determined by manually superimposing a train of NMES (50 Hz, 450-mus biphasic pulses) for 1 s during a maximal voluntary effort. The MRI-NMES method assessed activation by stimulating the knee extensors for 3 min in a 2 s on, 2 s off cycle. T2 MR images were taken at rest and after NMES was administered. Theoretical maximal torque (TMT) of the knee extensors was calculated based on the MRI-NMES activation data. The TMT was then divided by the maximal voluntary isometric contraction (MVIC) of each subject to determine the extent of neural activation during a MVIC. RESULTS The results for CAR reveal the percent activation (mean +/- SD) of the quadriceps femoris during a MVIC was 92 +/- 7% for the right thigh and 96 +/- 4% for the left thigh. The MRI-NMES method estimated that MVIC could be achieved if 75 +/- 14% of the knee extensors on the right thigh and 74 +/- 14% on the left thigh were activated. These results are similar to findings that showed MVIC could be achieved by stimulating 71% of the knee extensors. CONCLUSIONS We conclude that CAR overestimates the extent of neural activation during an MVIC because the 3D shape of the thigh is altered. This will change electric current flow to the axonal motor neuron branches and limit the artificially evoked torque, thereby resulting in an overestimation of CAR.
Collapse
Affiliation(s)
- Tracee L Kendall
- Department of Kinesiology, The University of Georgia, Athens, GA 30605, USA
| | | | | | | | | |
Collapse
|
32
|
Mabanta L, Valane P, Borne J, Frame MD. Initiation of remote microvascular preconditioning requires KATP channel activity. Am J Physiol Heart Circ Physiol 2006; 290:H264-71. [PMID: 16126818 DOI: 10.1152/ajpheart.00455.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate vascular preconditioning of individual microvascular networks. Prior work shows that exposure of downstream arterioles to specific agonists preconditions upstream arterioles so that they exhibit an altered local vasoactive response [remote microvascular preconditioning (RMP)]. We hypothesized that mitochondrial ATP-sensitive K+ (KATP) channels were involved in stimulation of RMP. Arteriolar diameter (∼15 μm) was observed ∼1,000 μm upstream of the remote exposure site in the cheek pouch of pentobarbital sodium-anesthetized (70 mg/kg) male hamsters ( n = 104); all agonists were applied via micropipette. RMP was initiated by application of pinacidil (Pin), diazoxide (DZ), sodium nitroprusside (SNP), or bradykinin (BK) to the downstream vessel. After 15 min, RMP was apparent at the upstream observation site from testing of local vasoactive responses to l-arginine. Pin, DZ, SNP, and BK each stimulated RMP. To evaluate a specific role for mitochondrial KATP channels in this response, 5-hydroxydecanoate was applied (via a 2nd pipette) during downstream stimulation with agonist. 5-Hydroxydecanoate blocked RMP initiated by Pin, DZ, or SNP, suggesting that mitochondrial KATP channels are involved before SNP signal transduction. To verify this, we applied Nω-nitro-l-arginine during DZ or SNP stimulation. RMP was blocked during SNP, but not during DZ, stimulation. Thus stimulation of the RMP response requires mitochondrial KATP channel activity after stimulation by nitric oxide donors.
Collapse
Affiliation(s)
- Lauren Mabanta
- Dept. of Biomedical Engineering, SUNY Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
33
|
Calbet JAL, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol 2005; 289:R1448-58. [PMID: 15919729 DOI: 10.1152/ajpregu.00824.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether conditions for O2 utilization and O2 off-loading from the hemoglobin are different in exercising arms and legs, six cross-country skiers participated in this study. Femoral and subclavian vein blood flow and gases were determined during skiing on a treadmill at approximately 76% maximal O2 uptake (V(O2)max) and at V(O2)max with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise), and leg skiing (predominantly leg exercise). The percentage of O2 extraction was always higher for the legs than for the arms. At maximal exercise (diagonal stride), the corresponding mean values were 93 and 85% (n = 3; P < 0.05). During exercise, mean arm O2 extraction correlated with the P(O2) value that causes hemoglobin to be 50% saturated (P50: r = 0.93, P < 0.05), but for a given value of P50, O2 extraction was always higher in the legs than in the arms. Mean capillary muscle O2 conductance of the arm during double poling was 14.5 (SD 2.6) ml.min(-1).mmHg(-1), and mean capillary P(O2) was 47.7 (SD 2.6) mmHg. Corresponding values for the legs during maximal exercise were 48.3 (SD 13.0) ml.min(-1).mmHg(-1) and 33.8 (SD 2.6) mmHg, respectively. Because conditions for O2 off-loading from the hemoglobin are similar in leg and arm muscles, the observed differences in maximal arm and leg O2 extraction should be attributed to other factors, such as a higher heterogeneity in blood flow distribution, shorter mean transit time, smaller diffusing area, and larger diffusing distance, in arms than in legs.
Collapse
Affiliation(s)
- J A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Delp MD, O'Leary DS. Integrative control of the skeletal muscle microcirculation in the maintenance of arterial pressure during exercise. J Appl Physiol (1985) 2004; 97:1112-8. [PMID: 15333629 DOI: 10.1152/japplphysiol.00147.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle blood flow and vascular conductance are influenced by numerous factors that can be divided into two general categories: central cardiovascular control mechanisms and local vascular control mechanisms. Central cardiovascular control mechanisms are thought to be designed primarily for the maintenance of arterial pressure and central cardiovascular homeostasis, whereas local vascular control mechanisms are thought to be designed primarily for the maintenance of muscle homeostasis. To support the high metabolic rates that can be generated during muscle contraction, skeletal muscle has a tremendous capacity to vasodilate and increase oxygen and nutrient delivery. During whole body dynamic exercise at maximal oxygen consumption (V̇o2 max), the skeletal muscle receives 85–90% of cardiac output. Yet despite receiving such a large fraction of cardiac output during high-intensity exercise, a vasodilator reserve remains with the potential to produce further elevations in skeletal muscle vascular conductance and blood flow. However, because maximal cardiac output is reached during exercise at V̇o2 max, further elevations in muscle vascular conductance would produce a fall in arterial pressure. Therefore, limits on muscle perfusion must be imposed during whole body exercise to prevent such drops in pressure. Effective arterial pressure control in response to a potentially hypotensive challenge during high-intensity exercise occurs primarily through reflex-mediated increases in sympathetic nerve activity, which are capable of modulating vasomotor tone of the skeletal muscle resistance vasculature. Thus skeletal muscle vascular conductance and perfusion are primarily mediated by local factors at rest and during exercise, but other centrally mediated control systems are superimposed on the dominant local control mechanisms to provide an integrated regulation of both arterial pressure and skeletal muscle vascular conductance and perfusion during whole body dynamic exercise.
Collapse
Affiliation(s)
- Michael D Delp
- Department of Health and Kinesiology, Texas A&M University and Texas A&M Health Science Center, College Station, Texas 77843-4243, USA.
| | | |
Collapse
|
35
|
Damon BM, Gore JC. Physiological basis of muscle functional MRI: predictions using a computer model. J Appl Physiol (1985) 2004; 98:264-73. [PMID: 15333610 DOI: 10.1152/japplphysiol.00369.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle functional MRI (mfMRI) has been proposed as a tool for noninvasively measuring the metabolic and hemodynamic responses to muscle activation, but its theoretical basis remains unclear. One challenge is that it is difficult to isolate individually those variables affecting the magnitude and temporal pattern of the mfMRI response. Therefore, the purpose of this study was to develop a computer model of how physiological factors altered during exercise affect the mfMRI signal intensity time course and then predict the contributions made by individual factors. A model muscle containing 39,204 fibers was defined. The fiber-type composition and neural activation strategies were designed to represent isometric contractions of the human anterior tibialis muscle, for which published mfMRI data exist. Sustained isometric contractions at 25 and 40% maximum voluntary contraction were modeled, as were the vascular (capillary recruitment, blood oxygen extraction) and metabolic (lactate accumulation, phosphocreatine hydrolysis, pH) responses. The effects on the transverse relaxation of MRI signal were estimated, and the mfMRI signal intensity time course was measured from simulated images. The model data agreed well qualitatively with published experimental data, and at long exercise durations the quantitative agreement was also good. The model was then used to predict that NMR relaxation effects secondary to blood volume and oxygenation changes, plus the creatine kinase reaction, dominate the mfMRI time course at short exercise durations (up to approximately 45 s) and that effects secondary to glycolysis are the main contributors at later times.
Collapse
Affiliation(s)
- Bruce M Damon
- Dept. of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Ave S., CCC-1121, Nashville, TN 37232-2675, USA.
| | | |
Collapse
|
36
|
Wigmore DM, Damon BM, Pober DM, Kent-Braun JA. MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions. J Appl Physiol (1985) 2004; 97:2385-94. [PMID: 15298991 DOI: 10.1152/japplphysiol.01390.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although skeletal muscle perfusion is fundamental to proper muscle function, in vivo measurements are typically limited to those of limb or arterial blood flow, rather than flow within the muscle bed itself. We present a noninvasive functional MRI (fMRI) technique for measuring perfusion-related signal intensity (SI) changes in human skeletal muscle during and after contractions and demonstrate its application to the question of occlusion during a range of contraction intensities. Eight healthy men (aged 20-31 yr) performed a series of isometric ankle dorsiflexor contractions from 10 to 100% maximal voluntary contraction. Axial gradient-echo echo-planar images (repetition time = 500 ms, echo time = 18.6 ms) were acquired continuously before, during, and following each 10-s contraction, with 4.5-min rest between contractions. Average SI in the dorsiflexor muscles was calculated for all 240 images in each contraction series. Postcontraction hyperemia for each force level was determined as peak change in SI after contraction, which was then scaled to that obtained following a 5-min cuff occlusion of the thigh (i.e., maximal hyperemia). A subset of subjects (n = 4) performed parallel studies using venous occlusion plethysmography to measure limb blood flow. Hyperemia measured by fMRI and plethysmography demonstrated good agreement. Postcontraction hyperemia measured by fMRI scaled with contraction intensity up to approximately 60% maximal voluntary contraction. fMRI provides a noninvasive means of quantifying perfusion-related changes during and following skeletal muscle contractions in humans. Temporal changes in perfusion can be observed, as can the heterogeneity of perfusion across the muscle bed.
Collapse
Affiliation(s)
- D M Wigmore
- Dept. of Exercise Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
37
|
Tschakovsky ME, Sheriff DD. Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation. J Appl Physiol (1985) 2004; 97:739-47. [PMID: 15247202 DOI: 10.1152/japplphysiol.00185.2004] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A striking characteristic of the blood flow adaptation at exercise onset is the immediate and substantial increase in the first few (0–5 s) seconds of exercise. The purpose of this mini-review is to put into context the present evidence regarding mechanisms responsible for this phase of exercise hyperemia. One potential mechanism that has received much attention is the mechanical effect of muscle contraction (the muscle pump). The rapid vasodilatory mechanism(s) is another possible mechanism that has recently been shown to exist. This review will provide the reader with 1) an understanding of the basic physics of blood flow and the theories of muscle pump function, 2) a critical examination of evidence both for and against the contribution of the muscle pump or rapid vasodilatory mechanisms, and 3) an awareness of the limitations and impact of experimental models and exercise modes on the contribution of each of these mechanisms to the immediate exercise hyperemia. The inability to measure microvenular pressure continues to limit investigators to indirect assessments of the muscle pump vs. vasodilatory mechanism contributions to immediate exercise hyperemia in vivo. Future research directions should include examination of muscle-contraction-induced resistance vessel distortion as a trigger for rapid smooth muscle relaxation and further investigation into the exercise mode dependency of muscle pump vs. rapid vasodilatory contributions to immediate exercise hyperemia.
Collapse
Affiliation(s)
- Michael E Tschakovsky
- School of Physical and Health Education, Department of Physiology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|
38
|
Bhambhani YN. Muscle Oxygenation Trends During Dynamic Exercise Measured by Near Infrared Spectroscopy. ACTA ACUST UNITED AC 2004; 29:504-23. [PMID: 15328597 DOI: 10.1139/h04-033] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the last decade, NIRS has been used extensively to evaluate the changes in muscle oxygenation and blood volume during a variety of exercise modes. The important findings from this research are as follows: (a) There is a strong correlation between the lactate (ventilatory) threshold during incremental cycle exercise and the exaggerated reduction in muscle oxygenation measured by NIRS. (b) The delay in steady-state oxygen uptake during constant work rate exercise at intensities above the lactate/ventilatory threshold is closely related to changes in muscle oxygenation measured by NIRS. (c) The degree of muscle deoxygenation at the same absolute oxygen uptake is significantly lower in older persons compared younger persons; however, these changes are negated when muscle oxygenation is expressed relative to maximal oxygen uptake values. (d) There is no significant difference between the rate of biceps brachii and vastus lateralis deoxygenation during arm cranking and leg cycling exercise, respectively, in males and females. (e) Muscle deoxygenation trends recorded during short duration, high-intensity exercise such as the Wingate test indicate that there is a substantial degree of aerobic metabolism during such exercise. Recent studies that have used NIRS at multiple sites, such as brain and muscle tissue, provide useful information pertaining to the regional changes in oxygen availability in these tissues during dynamic exercise. Key words: blood volume, noninvasive measurement
Collapse
Affiliation(s)
- Yagesh N Bhambhani
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
39
|
Lo A, Fuglevand AJ, Secomb TW. Theoretical simulation of K+-based mechanisms for regulation of capillary perfusion in skeletal muscle. Am J Physiol Heart Circ Physiol 2004; 287:H833-40. [PMID: 15277205 DOI: 10.1152/ajpheart.00139.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fibers release K(+) into the interstitial space upon recruitment. Increased local interstitial K(+) concentration ([K(+)]) can cause dilation of terminal arterioles, leading to perfusion of downstream capillaries. The possibility that capillary perfusion can be regulated by vascular responses to [K(+)] was examined using a theoretical model. The model takes into account the spatial relationship between functional units of muscle fiber recruitment and capillary perfusion. Diffusion of K(+) in the interstitial space was simulated. Two hypothetical mechanisms for vascular sensing of interstitial [K(+)] were considered: direct sensing by arterioles and sensing by capillaries with stimulation of feeding arterioles via conducted responses. Control by arteriolar sensing led to poor tissue oxygenation at high levels of muscle activation. With control by capillary sensing, increases in perfusion matched increases in oxygen demand. The time course of perfusion after sudden muscle activation was considered. Predicted capillary perfusion increased rapidly within the first 5 s of muscle fiber activation. The reuptake of K(+) by muscle fibers had a minor effect on the increase of interstitial [K(+)]. Uptake by perfused capillaries was primarily responsible for limiting the increase in [K(+)] in the interstitial space at the onset of fiber activation. Vascular responses to increasing interstitial [K(+)] may contribute to the rapid increase in blood flow that is observed to occur after the onset of muscle contraction.
Collapse
Affiliation(s)
- Arthur Lo
- Program in Applied Mathematics, University of Arizona, Tucson, AZ 85724-5051, USA
| | | | | |
Collapse
|
40
|
Olive JL, Slade JM, Bickel CS, Dudley GA, McCully KK. Increasing blood flow before exercise in spinal cord-injured individuals does not alter muscle fatigue. J Appl Physiol (1985) 2004; 96:477-82. [PMID: 14506095 DOI: 10.1152/japplphysiol.00577.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown increased fatigue in paralyzed muscle of spinal cord-injured (SCI) patients (Castro M, Apple D Jr, Hillegass E, and Dudley GA. Eur J Appl Physiol 80: 373-378, 1999; Gerrits H, Hopman MTE, Sargeant A, and de Haan A. Clin Physiol 21: 105-113, 2001). Our purpose was to determine whether the increased muscle fatigue could be due to a delayed rise in blood flow at the onset of exercise in SCI individuals. Isometric electrical stimulation was used to induce fatigue in the quadriceps femoris muscle of seven male, chronic (>1 yr postinjury), complete (American Spinal Injury Association, category A) SCI subjects. Cuff occlusion was used to elevate blood flow before electrical stimulation, and the magnitude of fatigue was compared with a control condition of electrical stimulation without prior cuff occlusion. Blood flow was measured in the femoral artery by Doppler ultrasound. Prior cuff occlusion increased blood flow in the first 30 s of stimulation compared with the No-Cuff condition (1,350 vs. 680 ml/min, respectively; P < 0.001), although blood flow at the end of stimulation was the same between conditions (1,260 ± 140 vs. 1,160 ± 370 ml/min, Cuff and No-Cuff condition, respectively; P = 0.511). Muscle fatigue was not significantly different between prior cuff occlusion and the control condition (32 ± 13 vs. 35 ± 10%; P = 0.670). In conclusion, increased muscle fatigue in SCI individuals is not associated with the prolonged time for blood flow to increase at the onset of exercise.
Collapse
Affiliation(s)
- Jennifer L Olive
- Department of Radiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | |
Collapse
|
41
|
Tschakovsky ME, Rogers AM, Pyke KE, Saunders NR, Glenn N, Lee SJ, Weissgerber T, Dwyer EM. Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation. J Appl Physiol (1985) 2004; 96:639-44. [PMID: 14578368 DOI: 10.1152/japplphysiol.00769.2003] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that rapid vasodilation proportional to contraction intensity contributes to the immediate (first cardiac cycle after initial contraction) exercise hyperemia. Ten healthy subjects performed single 1-s isometric forearm contractions at 5, 10, 15, 20, 30, 50, and 70% maximal voluntary contraction intensity (MVC) in arm above heart (AH) and below heart (BH) positions. Forearm blood flow (FBF; brachial artery mean blood velocity, Doppler ultrasound), mean arterial pressure (arterial tonometry), and heart rate (electrocardiogram) were measured beat by beat. Venous emptying (measured with a forearm strain gauge) was already maximized at 5% MVC, indicating that increases in contraction intensity did not further empty the forearm veins. Immediate increases in FBF were linearly proportional to contraction intensity from 5 to 70% MVC in AH (slope = 4.4 ± 0.5%ΔFBF/%MVC). In BH, the immediate increase in FBF demonstrated a curvilinear relationship with increasing contraction intensity and was greater than AH at 15, 20, 30, and 50% MVC ( P < 0.05). Peak changes in FBF were greater in BH vs. AH from 10 to 50% MVC, even when venous refilling was complete ( P < 0.05). These data support the existence of a rapid-acting vasodilatory mechanism(s) at the onset of human forearm exercise.
Collapse
Affiliation(s)
- M E Tschakovsky
- Department of Physiology, Human Vascular Control Laboratory, School of Physical and Health Education, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lo A, Fuglevand AJ, Secomb TW. Oxygen delivery to skeletal muscle fibers: effects of microvascular unit structure and control mechanisms. Am J Physiol Heart Circ Physiol 2003; 285:H955-63. [PMID: 12738621 DOI: 10.1152/ajpheart.00278.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of perfused capillaries in skeletal muscle varies with muscle activation. With increasing activation, muscle fibers are recruited as motor units consisting of widely dispersed fibers, whereas capillaries are recruited as groups called microvascular units (MVUs) that supply several adjacent fibers. In this study, a theoretical model was used to examine the consequences of this spatial mismatch between the functional units of muscle activation and capillary perfusion. Diffusive oxygen transport was simulated in cross sections of skeletal muscle, including several MVUs and fibers from several motor units. Four alternative hypothetical mechanisms controlling capillary perfusion were considered. First, all capillaries adjacent to active fibers are perfused. Second, all MVUs containing capillaries adjacent to active fibers are perfused. Third, each MVU is perfused whenever oxygen levels at its feed arteriole fall below a threshold value. Fourth, each MVU is perfused whenever the average oxygen level at its capillaries falls below a threshold value. For each mechanism, the dependence of the fraction of perfused capillaries on the level of muscle activation was predicted. Comparison of the results led to the following conclusions. Control of perfusion by MVUs increases the fraction of perfused capillaries relative to control by individual capillaries. Control by arteriolar oxygen sensing leads to poor control of tissue oxygenation at high levels of muscle activation. Control of MVU perfusion by capillary oxygen sensing permits adequate tissue oxygenation over the full range of activation without resulting in perfusion of all MVUs containing capillaries adjacent to active fibers.
Collapse
Affiliation(s)
- Arthur Lo
- Department of Physiology, University of Arizona, Tucson, AZ 85724-5051, USA
| | | | | |
Collapse
|
43
|
Kindig CA, Kelley KM, Howlett RA, Stary CM, Hogan MC. Assessment of O2 uptake dynamics in isolated single skeletal myocytes. J Appl Physiol (1985) 2003; 94:353-7. [PMID: 12391049 DOI: 10.1152/japplphysiol.00559.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this research was to develop a technique for rapid measurement of O(2) uptake (Vo(2)) kinetics in single isolated skeletal muscle cells. Previous attempts to measure single cell Vo(2) have utilized polarographic-style electrodes, thereby mandating large fluid volumes and relatively poor sensitivity. Thus our laboratory has developed an approximately 100-microl, well-stirred chamber for the measurement of Vo(2) in isolated Xenopus laevis myocytes using a phosphorescence quenching technique [Ringer solution with 0.05 mM Pd-meso-tetra(4-carboxyphenyl)porphine] to monitor the fall in extracellular Po(2) (which is proportional to cellular Vo(2) within the sealed chamber). Vo(2) in single living myocytes dissected from Xenopus lumbrical muscles was measured from rest across a bout of repetitive tetanic contractions (0.33 Hz) and in response to a ramp protocol utilizing an increasing contraction frequency. In response to the square-wave contraction bout, the increase in Vo(2) to steady state (SS) was 16.7 +/- 1.3 ml x 100 g(-1) x min(-1) (range 13.0-21.9 ml x 100 g(-1) x min(-1); n = 6). The rise in Vo(2) at contractions onset (n = 6) was fit with a time delay (2.1 +/- 1.2 s, range 0.0-7.7 s) plus monoexponential rise to SS (time constant = 9.4 +/- 1.5 s, range 5.2-14.9 s). Furthermore, in two additional myocytes, Vo(2) increased progressively as contraction frequency increased (ramp protocol). This technique for measuring Vo(2) in isolated, single skeletal myocytes represents a novel and powerful investigative tool for gaining mechanistic insight into mitochondrial function and Vo(2) dynamics without potential complications of the circulation and other myocytes.
Collapse
Affiliation(s)
- Casey A Kindig
- Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA.
| | | | | | | | | |
Collapse
|
44
|
Behnke BJ, Barstow TJ, Kindig CA, McDonough P, Musch TI, Poole DC. Dynamics of oxygen uptake following exercise onset in rat skeletal muscle. Respir Physiol Neurobiol 2002; 133:229-39. [PMID: 12425970 DOI: 10.1016/s1569-9048(02)00183-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Technical limitations have precluded measurement of the V(O(2)) profile within contracting muscle (mV(O(2))) and hence it is not known to what extent V(O(2)) dynamics measured across limbs in humans or muscles in the dog are influenced by transit delays between the muscle microvasculature and venous effluent. Measurements of capillary red blood cell flux and microvascular P(O(2)) (P(O(2)m)) were combined to resolve the time course of mV(O(2)) across the rest-stimulation transient (1 Hz, twitch contractions). mV(O(2)) began to rise at the onset of contractions in a close to monoexponential fashion (time constant, J = 23.2 +/- 1.0 sec) and reached it's steady-state value at 4.5-fold above baseline. Using computer simulation in healthy and disease conditions (diabetes and chronic heart failure), our findings suggest that: (1) mV(O(2)) increases essentially immediately (< 2 sec) following exercise onset; (2) within healthy muscle the J blood flow (thus O(2) delivery, J Q(O(2)m)) is faster than JmV(O(2)) such that oxygen delivery is not limiting, and 3) a faster P(O(2)m) fall to a P(O(2)m) value below steady-state values within muscle from diseased animals is consistent with a relatively sluggish Q(O(2)m) response compared to that of mV(O(2)).
Collapse
Affiliation(s)
- Brad J Behnke
- Department of Anatomy, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rodríguez LP, López-Rego J, Calbet JAL, Valero R, Varela E, Ponce J. Effects of training status on fibers of the musculus vastus lateralis in professional road cyclists. Am J Phys Med Rehabil 2002; 81:651-60. [PMID: 12172517 DOI: 10.1097/00002060-200209000-00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate possible changes occurring in muscle fibers related to the training status of professional road cyclists. DESIGN A comparative study was performed on two groups of male road cyclists: ten 21-yr-old cyclists with a history of 3 yr of sport competition (RC21) and ten 25-yr-old cyclists with a history of 7 yr of competition (RC25). The control group was formed by two subgroups of five nontrained, sedentary volunteers who were matched for age with the study subjects (NT21 and NT25). Biopsies of the vastus lateralis muscle were obtained to determine the fiber variables: percentage, cross-sectional area, mitochondrial volume, and capillary density. RESULTS Control group variables were within the normal range. According to their training status, cyclists showed an increased percentage of type I and IIC fibers (RC25 > RC21 > NT) and decreased percentage of type IIA (RC25 < RC21 < NT) and IIB fibers (RC25 = RC21 < NT), an increased cross-sectional area of all fiber types after 3 yr of training (RC25 = RC21 > NT) except IIB fibers (RC25 > RC21), an increased mitochondrial volume in all fiber types (RC25 > RC21 > NT) except type IIA fibers (RC25 > RC21 = NT21), and an increased capillary density (RC25 > RC21 > NT). CONCLUSIONS Findings indicate a progressive increase in the muscle fiber types that are mostly implicated in endurance sports, accompanied by phenotypic changes in the fiber population of lesser participation.
Collapse
Affiliation(s)
- Luis P Rodríguez
- Departamento de Medicina Física y de Rehabilitación, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Brutsaert TD, Gavin TP, Fu Z, Breen EC, Tang K, Mathieu-Costello O, Wagner PD. Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation. BMC PHYSIOLOGY 2002; 2:8. [PMID: 12086595 PMCID: PMC117122 DOI: 10.1186/1472-6793-2-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Accepted: 06/19/2002] [Indexed: 01/02/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) mRNA levels increase in rat skeletal muscle after a single bout of acute exercise. We assessed regional differences in VEGF165 mRNA levels in rat gastrocnemius muscle using in situ hybridization after inducing upregulation of VEGF by treadmill running (1 hr) or electrical stimulation (1 hr). Muscle functional regions were defined as oxidative (primarily oxidative fibers, I and IIa), or glycolytic (entirely IIb or IId/x fibers). Functional regions were visualized on muscle cross sections that were matched in series to slides processed through in situ hybridization with a VEGF165 probe. A greater upregulation in oxidative regions was hypothesized. RESULTS Total muscle VEGF mRNA (via Northern blot) was upregulated 3.5-fold with both exercise and with electrical stimulation (P = 0.015). Quantitative densitometry of the VEGF mRNA signal via in situ hybridization reveals significant regional differences (P <or= 0.01) and protocol differences (treadmill, electrical stimulation, and control, P <or= 0.05). Mean VEGF mRNA signal was higher in the oxidative region in both treadmill run (approximately 7%, N = 4 muscles, P <or= 0.05) and electrically stimulated muscles (approximately 60%, N = 4, P <or= 0.05). These regional differences were not significantly different from control muscle (non-exercised, non-stimulated, N = 2 muscles), although nearly so for electrically stimulated muscle (P = 0.056). CONCLUSIONS Moderately higher VEGF mRNA signal in oxidative muscle regions is consistent with regional differences in capillary density. However, it is not possible to determine if the VEGF mRNA signal difference is important in either the maintenance of regional capillarity differences or exercise induced angiogenesis.
Collapse
MESH Headings
- Animals
- Blotting, Northern/methods
- Electric Stimulation/methods
- Female
- Gene Expression Regulation/physiology
- Muscle Fibers, Fast-Twitch/chemistry
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/chemistry
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Physical Conditioning, Animal/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Time Factors
- Up-Regulation/physiology
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- Tom D Brutsaert
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| | - Timothy P Gavin
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| | - Zhenxing Fu
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| | - Ellen C Breen
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| | - Kechun Tang
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| | - Odile Mathieu-Costello
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| | - Peter D Wagner
- Department of Physiology, School of Medicine, University of California, San Diego, 92093-0623A, USA
| |
Collapse
|
47
|
Segal SS, Cunningham SA, Jacobs TL. Motor nerve topology reflects myocyte morphology in hamster retractor and epitrochlearis muscles. J Morphol 2000; 246:103-17. [PMID: 11074578 DOI: 10.1002/1097-4687(200011)246:2<103::aid-jmor5>3.0.co;2-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuromuscular activation is a primary determinant of metabolic demand and oxygen transport. The m. retractor and m. epitrochlearis are model systems for studying metabolic control and oxygen transport; however, the organization of muscle fibers and motor nerves in these muscles is unknown. We tested whether the topology of motor innervation was related to the morphology of muscle fibers in m. retractor and m. epitrochlearis of male hamsters ( approximately 100 g). Respective muscles averaged 47 and 12 mm in length 100 and 35 mg in mass. Staining for acetylcholinesterase revealed neuromuscular junctions arranged in clusters throughout m. retractor and as a central band across m. epitrochlearis, suggesting differences in fiber morphology. For both muscles, complete cross-sections contained approximately 1,700 fibers. Fiber cross-sectional areas were distributed nearly normal in m. epitrochlearis (mean = 1,559 +/- 17 microm(2)) and skewed left (P < 0.05) in m. retractor (mean = 973 +/- 15 microm(2)). Single fiber length (Lf) spanned muscle length (Lm) in m. epitrochlearis, while fibers tapered to terminate within m. retractor (Lf/Lm = 0.43 +/- 0. 02). With myelin staining, a single branch of ulnar nerve projected axons across the midregion of m. epitrochlearis. For m. retractor, the spinal accessory nerve branched to give rise to proximal and distal regions of innervation, with intermingling of axons between nerve branches. Nerve bundle cross-sections stained for acetylcholinesterase indicate that each motor axon projects to an average of 65 muscle fibers in m. epitrochlearis and 100 in m. retractor. Differences in fiber morphology, innervation topology, and neuromuscular organization may contribute to the heterogeneity of metabolic demand and oxygen supply in skeletal muscle.
Collapse
Affiliation(s)
- S S Segal
- John B. Pierce Laboratory, Yale University School of Medicine, New Haven,Connecticut 06519, USA.
| | | | | |
Collapse
|
48
|
Sejersted OM, Sjøgaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 2000; 80:1411-81. [PMID: 11015618 DOI: 10.1152/physrev.2000.80.4.1411] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since it became clear that K(+) shifts with exercise are extensive and can cause more than a doubling of the extracellular [K(+)] ([K(+)](s)) as reviewed here, it has been suggested that these shifts may cause fatigue through the effect on muscle excitability and action potentials (AP). The cause of the K(+) shifts is a transient or long-lasting mismatch between outward repolarizing K(+) currents and K(+) influx carried by the Na(+)-K(+) pump. Several factors modify the effect of raised [K(+)](s) during exercise on membrane potential (E(m)) and force production. 1) Membrane conductance to K(+) is variable and controlled by various K(+) channels. Low relative K(+) conductance will reduce the contribution of [K(+)](s) to the E(m). In addition, high Cl(-) conductance may stabilize the E(m) during brief periods of large K(+) shifts. 2) The Na(+)-K(+) pump contributes with a hyperpolarizing current. 3) Cell swelling accompanies muscle contractions especially in fast-twitch muscle, although little in the heart. This will contribute considerably to the lowering of intracellular [K(+)] ([K(+)](c)) and will attenuate the exercise-induced rise of intracellular [Na(+)] ([Na(+)](c)). 4) The rise of [Na(+)](c) is sufficient to activate the Na(+)-K(+) pump to completely compensate increased K(+) release in the heart, yet not in skeletal muscle. In skeletal muscle there is strong evidence for control of pump activity not only through hormones, but through a hitherto unidentified mechanism. 5) Ionic shifts within the skeletal muscle t tubules and in the heart in extracellular clefts may markedly affect excitation-contraction coupling. 6) Age and state of training together with nutritional state modify muscle K(+) content and the abundance of Na(+)-K(+) pumps. We conclude that despite modifying factors coming into play during muscle activity, the K(+) shifts with high-intensity exercise may contribute substantially to fatigue in skeletal muscle, whereas in the heart, except during ischemia, the K(+) balance is controlled much more effectively.
Collapse
Affiliation(s)
- O M Sejersted
- Institute for Experimental Medical Research, University of Oslo, Ullevaal Hospital, Oslo, Norway.
| | | |
Collapse
|
49
|
VanTeeffelen JW, Segal SS. Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle. J Physiol 2000; 524 Pt 1:267-78. [PMID: 10747197 PMCID: PMC2269846 DOI: 10.1111/j.1469-7793.2000.t01-1-00267.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The effect of motor unit recruitment on functional vasodilatation was investigated in hamster retractor muscle. Recruitment (i.e. peak tension) was controlled with voltage applied to the spinal accessory nerve (high = maximum tension; intermediate = approximately 50% maximum; low = approximately 25% maximum). Vasodilatory responses (diameter times time integral, DTI) to rhythmic contractions (1 per 2s for 65s) were evaluated in first, second and third order arterioles and in feed arteries. Reciprocal changes in duty cycle (range, 2.5-25%) effectively maintained the total active tension (tension times time integral, TTI) constant across recruitment levels. 2. With constant TTI and stimulation frequency (40 Hz), DTI in all vessels increased with motor unit recruitment. DTI increased from distal arterioles up through proximal feed arteries. 3. To determine whether the effect of recruitment on DTI was due to increased peak tension, the latter was controlled with stimulation frequency (15, 20 and 40 Hz) during maximum (high) recruitment. With constant TTI, DTI then decreased as peak tension increased. 4. To explore the interaction between recruitment and duty cycle on DTI, each recruitment level was applied at 2.5, 10 and 20 % duty cycle (at 40 Hz). For a given increase in TTI, recruitment had a greater effect on DTI than did duty cycle. 5. Functional vasodilatation in response to rhythmic contractions is facilitated by motor unit recruitment. Thus, vasodilatory responses are determined not only by the total tension produced, but also by the number of active motor units.
Collapse
Affiliation(s)
- J W VanTeeffelen
- The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|
50
|
Joyner MJ, Halliwill JR. Neurogenic vasodilation in human skeletal muscle: possible role in contraction-induced hyperaemia. ACTA PHYSIOLOGICA SCANDINAVICA 2000; 168:481-8. [PMID: 10759585 DOI: 10.1046/j.1365-201x.2000.00700.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whether or not neurally mediated vasodilation contributes to the rise in skeletal muscle blood flow during exercise in humans remains unknown. Such a mechanism might serve as an important 'feed-forward' regulatory signal causing blood flow to rise prior to the development of a metabolic demand. Research in animal species has identified three neurally mediated vasodilating mechanisms with the potential to increase skeletal muscle blood flow during exercise. These include sympathetic vasodilator nerves, the potential for substances released by motor nerves to evoke vasodilation and the possibility of an 'intrinsic' vasodilator nerve system within the walls of blood vessels. In humans, sympathetic vasodilator nerves are present in several vascular beds (e.g. cutaneous). However, more recent information suggests that the human skeletal muscle is not innervated by this class of nerves. Along these lines, the vasodilator response to exercise is unaffected by sympathectomy or by blockade of the traditional transmitters associated with neurally mediated vasodilation. The possibility that spillover of substances released from motor neurones evokes vasodilation is provocative. For example, acetylcholine could produce both skeletal muscle contraction via nicotinic receptors and vasodilation via endothelial muscarinic receptors. However, in many species including humans, atropine has no effect on exercise hyperaemia. While the concept of an 'intrinsic' vasodilator pathway within the walls of the skeletal muscle vascular bed is fascinating, limited information is available on this mechanism in animals and none is available in humans. Taken together, the current information suggests that neurally mediated vasodilating mechanisms may not exist in human skeletal muscle. Additionally, even if such mechanisms exist, they do not play an obligatory role in governing the rise in muscle blood flow during exercise in humans.
Collapse
Affiliation(s)
- M J Joyner
- Department of Anaesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|