1
|
Shaik KM, Patibandla V, Nandi S. Impact of anabolic androgenic steroids on COVID-19. Steroids 2024; 203:109361. [PMID: 38176451 DOI: 10.1016/j.steroids.2023.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
In the wake of the Novel Coronavirus arrival, the world witnessed the fragility of healthcare systems and the resilience of healthcare workers who stood on the front lines. SARS-CoV-2, also known as COVID-19 or severe acute respiratory syndrome, first appeared in China in December 2019. The infection quickly spread across the nation and the world. All countries severely restricted social interaction to stop the virus's transmission, impacting all sporting, social, and recreational activities. Anabolic androgenic steroids (AASs) are frequently used illegally to enhance strength and physical attractiveness. However, they could hurt immune system health. Much research hasn't been done yet on the connection between Covid-19 and AASs. Synthetic testosterone analogs known as anabolic androgenic steroids (AASs) can have an immune-system-altering effect. Sportspeople and bodybuilders are vulnerable to AAS abuse. Governmental reactions to the coronavirus infection issue over the last year have drawn much attention and discussion regarding public services, the experience and lessons learned from different limitations, and strategies for dealing with potential future pandemics. Using AAS has the potential to cause a variety of adverse reactions, including cardiovascular issues (including high blood pressure, heart disease, and blood clots), liver damage, renal failure, mood swings, aggressiveness, and psychiatric disorders. Individuals already suffering from severe respiratory conditions like COVID-19 may have these risks increased. This review mainly highlights the anabolic androgen steroids use and its unseen effects on coronavirus patients and gymnastics.
Collapse
Affiliation(s)
- Khaja Moinuddin Shaik
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Vijay Patibandla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Sukhendu Nandi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062, Punjab, India.
| |
Collapse
|
2
|
Prebay ZJ, Fu DH, Chung PH. Androgens and Urethral Health: How Hypogonadism Affects Postoperative Outcomes of Patients Undergoing Artificial Urinary Sphincter or Inflatable Penile Prosthesis Placement. Urology 2024; 184:266-271. [PMID: 37972898 DOI: 10.1016/j.urology.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE To determine the role of androgens in penile and urethral health, we sought to understand what impact hypogonadism may have on artificial urinary sphincter (AUS) and inflatable penile prosthesis (IPP) outcomes. We hypothesize that patients with hypogonadism are at increased risk of reinterventions, complications, and infections. METHODS We queried the TriNetX Global Database in March 2023 for patients receiving an AUS or IPP, looking at lifetime reintervention, complication, and infection rates. We conducted multiple comparisons: (1) eugonadal patients against hypogonadal patients, (2) hypogonadal patients on testosterone replacement therapy (TRT) against hypogonadal patients not on TRT, and (3) hypogonadal patients on TRT against eugonadal patients. RESULTS Hypogonadal patients undergoing AUS had more complications (33.5% vs 28.3%), higher reintervention rates (27.7% vs 24.3%) and higher infection rates (7.3% vs 6.8%), albeit none reaching significance. Hypogonadal patients undergoing IPP had significantly higher infection rates (6.3% vs 4.4%, RR 1.5 (1.04, 2.04)) and reintervention rates (14.9% vs 11.9%, RR 1.3 (1.04, 1.61)), but not complication rates (21.9% vs 18.9%). When comparing patients with hypogonadism on TRT vs off TRT, there was not a significant difference in reinterventions, or complications, in AUS and IPP patients, but there were significantly more infections in IPP patients (7.0% vs 3.9%, RR 1.9 (1.002, 3.5)). CONCLUSION Hypogonadal patients have more reinterventions, complications, and infections following urologic implant surgery, to varying levels of significance. TRT may not be completely protective to improve tissue health but with many limitations that should be explored in further research.
Collapse
Affiliation(s)
- Zachary J Prebay
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - David H Fu
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.
| | - Paul H Chung
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
3
|
Derwand D, Zierau O, Thieme D, Keiler AM. Up to the maximum-testosterone dose-dependent effects on anabolic and androgen responsive tissues in orchiectomized rats. Andrology 2024; 12:231-240. [PMID: 37254653 DOI: 10.1111/andr.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Despite the high number of synthetic androgenic-anabolic steroids, testosterone is still misused for doping in amateur and professional sports. However, only few studies investigated the dose-response effects of testosterone beyond its physiological concentrations and in over 90 years of research, no saturation dosage has been experimentally described for exogenous testosterone administration. OBJECTIVES We want to elucidate the physiological and pathophysiological effects of supra-physiological testosterone application and close this gap in testosterone dose-response data. MATERIALS AND METHODS Male orchiectomized rats were treated with different testosterone doses ranging from 0.1 to 50 mg/kg body weight for 3 weeks. Several physiological endpoints (e.g., body weight, organ and muscle weight, muscle strength, muscle fiber size) were examined during and after the termination of the treatment with an adjusted Hershberger assay, open-field-test, and (immuno-)histologic. RESULTS The wet weights of androgen responsive organs (penis, prostate, seminal vesicle) showed a significant increase in a dose-dependent manner. Histological evaluation of the prostate showed a significant higher percentage of KI67 positive prostate nuclei in the highest dosage group and an increasing hyperplasia with increasing testosterone administered. A significant anabolic effect was only observed in Levator ani wet weight, and to minor degree for the cardiac muscle. Regarding other skeletal muscles (Musculus soleus and Musculus gastrognemicus), no significant testosterone effects were observed. We showed a significant increasing dosage-response effect for testosterone in androgen responsive organs with saturation at the two highest concentration of 10 and 50 mg/kg body weight. DISCUSSION AND CONCLUSION The dose-dependent androgenic effects of testosterone were well observable and the anabolic effects on muscle tissue were visible although to a lesser degree, without the support of aerobic exercise and a protein rich diet. Future studies should investigate a combinatorial effect of testosterone and training. Nevertheless, with the chosen range of applied testosterone, we showed a saturation of testosterone effects in prostate, seminal vesicle, penis, and Levator ani.
Collapse
Affiliation(s)
- Daniel Derwand
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Zierau
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
| | - Annekathrin Martina Keiler
- Institute of Doping Analysis and Sports Biochemistry Dresden, Kreischa, Germany
- Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. J Appl Physiol (1985) 2023; 134:1438-1449. [PMID: 37102698 PMCID: PMC10228673 DOI: 10.1152/japplphysiol.00023.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Barsky ST, Monks DA. Myocytic androgen receptor overexpression does not affect sex differences in adaptation to chronic endurance exercise. Biol Sex Differ 2022; 13:59. [PMID: 36274144 PMCID: PMC9590152 DOI: 10.1186/s13293-022-00471-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
Muscle-specific androgen receptor (AR) overexpression (HSAAR transgene) in sedentary male rats results in reduced adiposity, increased mitochondrial enzyme activity, and selective increase in Type 2b myofiber size. Here, we tested chronic endurance exercise interactions with this phenotype in both sexes. Across 9 weeks, rats ran 5×/week on motorized running wheels at increasing speeds and durations. Exercise reduced fat mass in all groups, but sex affected endurance exercise outcomes such that absolute lean mass increased only in females and total body mass decreased only in males. Expected sex differences were observed with males exhibiting greater total body and lean mass; absolute and relative fat mass; bone mineral density; extensor digitorum longus (EDL) myofiber size and glycolytic proportion; but lesser Type 2a and Type 1 myosin expression in tibialis anterior. Observed HSAAR outcomes were not altered by sex, with transgenic rats having greater lean mass, Type 2a myosin expression in soleus, and glycolytic myofiber size in EDL. Tibialis AR content was independently affected by sex, HSAAR, and exercise. No sex differences were observed in tibialis AR expression in wild-type rats, although HSAAR males had greater AR content than HSAAR females. We identified a moderate correlation between AR expression and glycolytic myofiber size, but not whole-body composition. Overall, results suggest myocytic AR overexpression and chronic exercise, despite sharing a similar phenotype to adaptation, are mediated by distinct mechanisms. Further, this study illustrates sex differences in adaptation to chronic endurance exercise, and suggests sex-similarity in the relationship between muscle AR and exercise response. Adaptations in bone, lean, and total mass after forced endurance exercise are sex-dependent in rats. Sex differences in muscle fiber-type size and proportion, lean body mass, and bone density are independent of exercise in rats. Myocytic AR overexpression promotes lean body mass and glycolytic myofiber size in both sexes. Skeletal muscle AR protein is elevated by chronic endurance exercise in rats, and these changes in AR content are correlated with improved glycolytic myofiber size.
Collapse
|
6
|
Roch PJ, Wolgast V, Gebhardt MM, Böker KO, Hoffmann DB, Saul D, Schilling AF, Sehmisch S, Komrakova M. Combination of selective androgen and estrogen receptor modulators in orchiectomized rats. J Endocrinol Invest 2022; 45:1555-1568. [PMID: 35429299 PMCID: PMC9270269 DOI: 10.1007/s40618-022-01794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Selective androgen and estrogen receptor modulators, ostarine (OST) and raloxifen (RAL), reportedly improve muscle tissue and offer therapeutic approaches to muscle maintenance in the elderly. The present study evaluated the effects of OST and RAL and their combination on musculoskeletal tissue in orchiectomized rats. METHODS Eight-month-old Sprague Dawley rats were analyzed. Experiment I: (1) Untreated non-orchiectomized rats (Non-ORX), (2) untreated orchiectomized rats (ORX), (3) ORX rats treated with OST during weeks 0-18 (OST-P), (4) ORX rats treated with OST during weeks 12-18 (OST-T). Experiment II: 1) Non-ORX, (2) ORX, 3) OST-P, (4) ORX rats treated with RAL, during weeks 0-18 (RAL-P), 5) ORX rats treated with OST + RAL, weeks 0-18 (OST + RAL-P). The average daily doses of OST and RAL were 0.4 and 7 mg/kg body weight (BW). Weight, fiber size, and capillarization of muscles, gene expression, serum markers and the lumbar vertebral body were analyzed. RESULTS OST-P exerted favorable effects on muscle weight, expression of myostatin and insulin growth factor-1, but increased prostate weight. OST-T partially improved muscle parameters, showing less effect on the prostate. RAL-P did not show anabolic effects on muscles but improved body constitution by reducing abdominal area, food intake, and BW. OST + RAL-P had an anabolic impact on muscle, reduced androgenic effect on the prostate, and normalized food intake. OST and RAL improved osteoporotic bone. CONCLUSIONS The OST + RAL treatment appeared to be a promising option in the treatment of androgen-deficient conditions and showed fewer side effects than the respective single treatments.
Collapse
Affiliation(s)
- P. J. Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - V. Wolgast
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - M.-M. Gebhardt
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - K. O. Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. B. Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Kogod Center On Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN 55905 USA
| | - A. F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - S. Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - M. Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
7
|
Takahashi K, Kitaoka Y, Hatta H. Effects of endurance training on metabolic enzyme activity and transporter protein levels in the skeletal muscles of orchiectomized mice. J Physiol Sci 2022; 72:14. [PMID: 35768774 PMCID: PMC10717707 DOI: 10.1186/s12576-022-00839-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
This study investigated whether endurance training attenuates orchiectomy (ORX)-induced metabolic alterations. At 7 days of recovery after sham operation or ORX surgery, the mice were randomized to remain sedentary or undergo 5 weeks of treadmill running training (15-20 m/min, 60 min, 5 days/week). ORX decreased glycogen concentration in the gastrocnemius muscle, enhanced phosphofructokinase activity in the plantaris muscle, and decreased lactate dehydrogenase activity in the plantaris and soleus muscles. Mitochondrial enzyme activities and protein content in the plantaris and soleus muscles were also decreased after ORX, but preserved, in part, by endurance training. In the treadmill running test (15 m/min, 60 min) after 4 weeks of training, orchiectomized sedentary mice showed impaired exercise performance, which was restored by endurance training. Thus, endurance training could be a potential therapeutic strategy to prevent the hypoandrogenism-induced decline in muscle mitochondrial content and physical performance.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
8
|
Zubiaurre-Elorza L, Cerdán S, Uribe C, Pérez-Laso C, Marcos A, Rodríguez del Cerro MC, Fernandez R, Pásaro E, Guillamon A. The Effects of Testosterone on the Brain of Transgender Men. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:252-260. [PMID: 35024694 PMCID: PMC8744429 DOI: 10.1089/andro.2021.0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/28/2023]
Abstract
Transgender men (TM) experience an incongruence between the female sex assigned when they were born and their self-perceived male identity. Some TM seek for a gender affirming hormone treatment (GAHT) to induce a somatic transition from female to male through continuous administration of testosterone. GAHT seems to be relatively safe. However, testosterone produces structural changes in the brain as detected by quantitative magnetic resonance imaging. Mainly, it induces an increase in cortical volume and thickness and subcortical structural volume probably due to the anabolic effects. Animal models, specifically developed to test the anabolic hypothesis, suggest that testosterone and estradiol, its aromatized metabolite, participate in the control of astrocyte water trafficking, thereby controlling brain volume.
Collapse
Affiliation(s)
- Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Spain
| | - Sebastian Cerdán
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carme Uribe
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Carmen Pérez-Laso
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Alberto Marcos
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | | - Rosa Fernandez
- Departamento de Psicología, Facultade de Ciencias da Educación, Universidade da Coruña, A Coruña, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Facultade de Ciencias da Educación, Universidade da Coruña, A Coruña, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| |
Collapse
|
9
|
Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front Physiol 2021; 11:621226. [PMID: 33519525 PMCID: PMC7844366 DOI: 10.3389/fphys.2020.621226] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Wilkinson
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Philip J. Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
10
|
Exercise as a therapy for cancer-induced muscle wasting. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:186-194. [PMID: 35782998 PMCID: PMC9219331 DOI: 10.1016/j.smhs.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a progressive disorder characterized by body weight, fat, and muscle loss. Cachexia induces metabolic disruptions that can be analogous and distinct from those observed in cancer, obscuring both diagnosis and treatment options. Inflammation, hypogonadism, and physical inactivity are widely investigated as systemic mediators of cancer-induced muscle wasting. At the cellular level, dysregulation of protein turnover and energy metabolism can negatively impact muscle mass and function. Exercise is well known for its anti-inflammatory effects and potent stimulation of anabolic signaling. Emerging evidence suggests the potential for exercise to rescue muscle's sensitivity to anabolic stimuli, reduce wasting through protein synthesis modulation, myokine release, and subsequent downregulation of proteolytic factors. To date, there is no recommendation for exercise in the management of cachexia. Given its complex nature, a multimodal approach incorporating exercise offers promising potential for cancer cachexia treatment. This review's primary objective is to summarize the growing body of research examining exercise regulation of cancer cachexia. Furthermore, we will provide evidence for exercise interactions with established systemic and cellular regulators of cancer-induced muscle wasting.
Collapse
|
11
|
Correlations between sex-related hormones, alcohol dependence and alcohol craving. Drug Alcohol Depend 2019; 197:183-190. [PMID: 30840924 DOI: 10.1016/j.drugalcdep.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sex-related differences in the susceptibility, progression, and treatment response in alcohol-dependent subjects have been repeatedly reported. In this study, we aimed to investigate the associations of the sex-related hormone/protein levels with alcohol dependence (AD) and alcohol craving in male and female subjects. METHODS Plasma sex-related hormones (estradiol, estrone, total testosterone, progesterone, follicle stimulated hormone [FSH], luteinizing hormone), and sex hormone binding globulin were measured by mass spectrometry or automated immunoassays from 44 recently-abstained subjects (29 males and 15 females; mean age = 45.9 ± 15.6) meeting DSM-IV-TR criteria for AD and 44 age-, sex- and race-matched non-AD controls. Conditional logistic regression was conducted to examine the association of sex-related hormone and protein levels with AD risk, accounting for matching variables. Their associations with alcohol craving scales (Penn Alcohol Craving Scale and Inventory of Drug-Taking Situations) were assessed in AD subjects. RESULTS Plasma FSH level was significantly higher in AD males (10.3 ± 9.8 IU/L) than control males (8.0 ± 15.9 IU/L; p = 0.005, pcorrected = 0.035). We also found a significant inverse correlation of FSH level with propensity to drink in negative emotional situations (Spearman's rho=-.540; p = 0.021) and positive correlations between progesterone level and craving intensity (Spearman's rho=.464; p = 0.020) and between total testosterone level and propensity to drink under temptations (adjusted for no-drinking days; β=6.496; p = 0.041) in AD males. CONCLUSIONS These results suggest that FSH, progesterone, and testosterone levels may be associated with AD and alcohol craving in AD males. Future research is needed to replicate these findings and investigate the underlying biological mechanisms.
Collapse
|
12
|
Abstract
Background We observed that patients with hypogonadism are at higher risk to experience artificial urinary sphincter cuff erosion. Sphincter erosions have been found to be associated with urethral atrophy or compromised urethras subsequent to events limiting its blood supply. We therefore analyzed possible mechanisms how a decrease in testosterone serum levels can result decreased urethral blood flow. Methods In a cohort of >1,200 urethroplasties, tissue specimens obtained during surgeries were analyzed for expression of androgen receptor (AR), AR-responsive TIE-2 associated with angiogenesis, and the endothelial cell marker CD31 for determination of vessel counts were analyzed immunohistochemically. A total of 11 patients were included in whom both tissue and serum testosterone levels within 2 years of the urethroplasty was available. Low serum testosterone level defined as <280 ng/dL. Image J software was used to analyze expression profiles. Results Mean serum testosterone level was significant lower in hypogonadal patients (179.4 ng/dL) compared to eugonadal patients (375.0 ng/dL, P=0.003). Urethral tissue of hypogonadal patients showed decreased AR expression [1.11% high power field (HPF)] compared to eugonadal patients (1.62%, P=0.016), decreased TIE-2 expression (1.84% HPF vs. 3.08%, P=0.006), and also decreased vessel counts (44.47 vessels/HPF vs. 98.33, P=0.004). There was a direct correlation of AR and TIE-2 expression levels with serum testosterone levels (rho 0.685, P=0.029, and rho 0.773, P=0.005, respectively). Of note, we did not detect a difference in age, prior radiation, coronary artery disease or hypertension among hypo- or eugonadal patient. However, higher body mass index was associated with low serum testosterone levels. Conclusions Hypogonadal status is associated with decreased expression of AR and TIE-2 and also reduced vessel count in urethral tissue. We believe that the resulting decreased urethral vascularity subsequent to a hypogonadal state may be an important risk factor for complications of urethral surgery.
Collapse
Affiliation(s)
- Matthias D Hofer
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Allen F Morey
- Department of Urology, UT Southwestern, Dallas, TX, USA
| |
Collapse
|
13
|
Hofer MD, Kapur P, Cordon BH, Hamoun F, Russell D, Scott JM, Roehrborn CG, Morey AF. Low Testosterone Levels Result in Decreased Periurethral Vascularity via an Androgen Receptor-mediated Process: Pilot Study in Urethral Stricture Tissue. Urology 2017; 105:175-180. [DOI: 10.1016/j.urology.2017.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 01/07/2023]
|
14
|
Rossetti ML, Gordon BS. The role of androgens in the regulation of muscle oxidative capacity following aerobic exercise training. Appl Physiol Nutr Metab 2017; 42:1001-1007. [PMID: 28570828 DOI: 10.1139/apnm-2017-0230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced production or bioavailability of androgens, termed hypogonadism, occurs in a variety of pathological conditions. While androgens target numerous tissues throughout the body, hypogonadism specifically reduces the ability of skeletal muscle to produce adenosine triphosphate aerobically, i.e., muscle oxidative capacity. This has important implications for overall health as muscle oxidative capacity impacts a number of metabolic processes. Although androgen replacement therapy is effective at restoring muscle oxidative capacity in hypogonadal individuals, this is not a viable therapeutic option for all who are experiencing hypogonadism. While aerobic exercise may be a viable alternative to increase muscle oxidative capacity, it is unknown whether androgen depletion affects this adaptation. To determine this, sham and castrated mice were randomized to remain sedentary or undergo 8 weeks of aerobic treadmill exercise training. All mice were fasted overnight prior to sacrifice. Though exercise increased markers of muscle oxidative capacity independent of castration (cytochrome c oxidase subunit IV and cytochrome c), these measures were lower in castrated mice. This reduction was not due to a difference in peroxisome proliferator activated receptor gamma coactivator 1 alpha protein content, as expression was increased to a similar absolute value in sham and castrated animals following exercise training. However, markers of BCL2/Adenovirus E1B 19 kDa Interacting Protein 3 (BNIP3)-mediated mitophagy were increased by castration independent of exercise. Together, these data show that exercise training can increase markers of muscle oxidative capacity following androgen depletion. However, these values are reduced by androgen depletion likely due in part to elevated BNIP3-mediated mitophagy.
Collapse
Affiliation(s)
- Michael L Rossetti
- Institute of Exercise Physiology and Wellness, The University of Central Florida, PO Box 161250, Orlando, FL 32816, USA.,Institute of Exercise Physiology and Wellness, The University of Central Florida, PO Box 161250, Orlando, FL 32816, USA
| | - Bradley S Gordon
- Institute of Exercise Physiology and Wellness, The University of Central Florida, PO Box 161250, Orlando, FL 32816, USA.,Institute of Exercise Physiology and Wellness, The University of Central Florida, PO Box 161250, Orlando, FL 32816, USA
| |
Collapse
|
15
|
Divari S, Berio E, Pregel P, Sereno A, Chiesa L, Pavlovic R, Panseri S, Bovee TFH, Biolatti B, Cannizzo FT. Effects and detection of Nandrosol and ractopamine administration in veal calves. Food Chem 2016; 221:706-713. [PMID: 27979262 DOI: 10.1016/j.foodchem.2016.11.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 06/01/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
Abstract
The present study describes different effects of the selective androgen receptor modulator (SARM) nandrolone phenylpropionate (Nandrosol) and the β-agonist ractopamine administration in veal calves, and it investigates different strategies applied to trace these molecules. Morphological changes of gonads and accessory glands attributed to androgen effects, such as testicular atrophy, seminiferous tubule diameter reduction and hyperplasia of prostate epithelium, were detected, although SARMs are not described to cause these lesions. The gene expression analysis showed an anabolic activity of Nandrosol in Longissimus dorsi muscle, where myosin heavy chain (MYH) was significantly up-regulated. An IGF1 increase was weakly significant only in Vastus lateralis muscle. In conclusion, the anatomo-histopathological observations and the MYH mRNA up-regulation in Longissimus dorsi muscle confirm the androgenic treatment in experimental animals. The biosensor assay was not enough sensitive to detect residues in urines and only the direct chemical analysis of urine samples confirmed both β-agonist and SARM treatment.
Collapse
Affiliation(s)
- Sara Divari
- Department of Veterinary Science, University of Turin, 10095 Grugliasco (Turin), Italy.
| | - Enrica Berio
- Department of Veterinary Science, University of Turin, 10095 Grugliasco (Turin), Italy
| | - Paola Pregel
- Department of Veterinary Science, University of Turin, 10095 Grugliasco (Turin), Italy
| | - Alessandra Sereno
- Department of Veterinary Science, University of Turin, 10095 Grugliasco (Turin), Italy
| | - Luca Chiesa
- Department of Veterinary Science and Public Health, University of Milan, 20133 Milan, Italy
| | - Radmila Pavlovic
- Department of Veterinary Science and Public Health, University of Milan, 20133 Milan, Italy; Department of Chemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Sara Panseri
- Department of Veterinary Science and Public Health, University of Milan, 20133 Milan, Italy
| | - Toine F H Bovee
- RIKILT - Institute of Food Safety, PO Box 230, NL-6700 AE Wageningen, The Netherlands
| | - Bartolomeo Biolatti
- Department of Veterinary Science, University of Turin, 10095 Grugliasco (Turin), Italy
| | - Francesca T Cannizzo
- Department of Veterinary Science, University of Turin, 10095 Grugliasco (Turin), Italy
| |
Collapse
|
16
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
17
|
Carson JA, Hardee JP, VanderVeen BN. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Semin Cell Dev Biol 2015; 54:53-67. [PMID: 26593326 DOI: 10.1016/j.semcdb.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed.
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA.
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| | - Brandon N VanderVeen
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC, 29208, USA
| |
Collapse
|
18
|
Carson JA, Manolagas SC. Effects of sex steroids on bones and muscles: Similarities, parallels, and putative interactions in health and disease. Bone 2015; 80:67-78. [PMID: 26453497 PMCID: PMC4600533 DOI: 10.1016/j.bone.2015.04.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/31/2022]
Abstract
Estrogens and androgens influence the growth and maintenance of bones and muscles and are responsible for their sexual dimorphism. A decline in their circulating levels leads to loss of mass and functional integrity in both tissues. In the article, we highlight the similarities of the molecular and cellular mechanisms of action of sex steroids in the two tissues; the commonality of a critical role of mechanical forces on tissue mass and function; emerging evidence for an interplay between mechanical forces and hormonal and growth factor signals in both bones and muscles; as well as the current state of evidence for or against a cross-talk between muscles and bone. In addition, we review evidence for the parallels in the development of osteoporosis and sarcopenia with advancing age and the potential common mechanisms responsible for the age-dependent involution of these two tissues. Lastly, we discuss the striking difference in the availability of several drug therapies for the prevention and treatment of osteoporosis, as compared to none for sarcopenia. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- James A Carson
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| |
Collapse
|
19
|
Nilsen TS, Thorsen L, Fosså SD, Wiig M, Kirkegaard C, Skovlund E, Benestad HB, Raastad T. Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy. Scand J Med Sci Sports 2015; 26:1026-35. [DOI: 10.1111/sms.12543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Affiliation(s)
- T. S. Nilsen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - L. Thorsen
- Department of Oncology; Oslo University Hospital; Oslo Norway
| | - S. D. Fosså
- Department of Oncology; Oslo University Hospital; Oslo Norway
| | - M. Wiig
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - C. Kirkegaard
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
- Department of Oncology; Oslo University Hospital; Oslo Norway
| | - E. Skovlund
- Norwegian Institute of Public Health and School of Pharmacy; University of Oslo; Oslo Norway
| | - H. B. Benestad
- Department of Physiology; Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| | - T. Raastad
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| |
Collapse
|
20
|
Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis. Neurobiol Aging 2014; 35:1929-38. [PMID: 24630363 DOI: 10.1016/j.neurobiolaging.2014.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.
Collapse
|
21
|
Hamson DK, Wainwright SR, Taylor JR, Jones BA, Watson NV, Galea LAM. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats. Endocrinology 2013; 154:3294-304. [PMID: 23782943 DOI: 10.1210/en.2013-1129] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders.
Collapse
Affiliation(s)
- D K Hamson
- Department of Psychology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Alvarado M, Lara-García M, Cuevas E, Berbel P, Pacheco P. Denervation and Castration Effects on the Cross-Sectional Area of Pubococcygeus Muscle Fibers in Male Rats. Anat Rec (Hoboken) 2013; 296:1634-9. [DOI: 10.1002/ar.22760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 05/02/2013] [Accepted: 05/25/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Mayvi Alvarado
- Instituto de Neuroetología, Universidad Veracruzana; Xalapa Veracruz Mexico
| | - Miguel Lara-García
- Instituto de Neuroetología, Universidad Veracruzana; Xalapa Veracruz Mexico
| | - Estela Cuevas
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala; Tlaxcala Mexico
| | - Pere Berbel
- Instituto de Neurociencias; Universidad Miguel Hernández; Alicante Spain
| | - Pablo Pacheco
- Instituto de Neuroetología, Universidad Veracruzana; Xalapa Veracruz Mexico
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; D.F. Mexico
| |
Collapse
|
23
|
White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 2013; 365:174-86. [PMID: 23116773 PMCID: PMC3529800 DOI: 10.1016/j.mce.2012.10.019] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 09/14/2012] [Accepted: 10/18/2012] [Indexed: 01/07/2023]
Abstract
Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C(2)C(12) myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C(2)C(12) myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24 h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt/mTOR signaling. In summary, androgen withdrawal decreases muscle myofibrillar protein synthesis through Akt/mTORC1 signaling, which is independent of AMPK activation, and readily reversible by anabolic steroid administration. Acute Akt activation in C(2)C(12) myotubes is sensitive to a high concentration of testosterone, and low concentrations of testosterone can activate mTOR signaling independent of Akt.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Androgens/pharmacology
- Animals
- Cell Line
- Enzyme Activation
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1
- Mice
- Mice, Inbred C57BL
- Multiprotein Complexes
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle Strength
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Nandrolone/analogs & derivatives
- Nandrolone/pharmacology
- Nandrolone Decanoate
- Orchiectomy
- Phosphorylation
- Protein Processing, Post-Translational
- Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases
- Testosterone/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- James P. White
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Song Gao
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Melissa J. Puppa
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Stephen L. Welle
- Department of Medicine, University of Rochester Medical School, Rochester, NY
| | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Applies Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC
| |
Collapse
|
24
|
Light VA, Montgomery RD, Akingbemi BT. Sex hormone regulation of collagen concentrations in cranial cruciate ligaments of sexually immature male rabbits. Am J Vet Res 2012; 73:1186-93. [PMID: 22849679 DOI: 10.2460/ajvr.73.8.1186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the effects of gonadectomy on collagen homeostasis in cranial cruciate ligaments of male rabbits. ANIMALS 30 sexually immature (16-week-old) male New Zealand White rabbits. PROCEDURES Rabbits were randomly assigned to 5 groups of 6 rabbits each: sexually intact, placebo (control group); castrated, placebo; castrated, testosterone; castrated, dihydrotestosterone; and castrated, 17β-estradiol (E(2)). Control rabbits underwent a sham operation, and all other rabbits underwent gonadectomy. At the time of gonadectomy, the placebo and sex hormones were administered via slow-release pellets implanted subcutaneously as assigned. After 21 days of hormone supplementation, measurements were obtained of serum testosterone and E(2) concentrations, ligament collagen characteristics, and androgen receptor, estrogen receoptor α, and matrix metalloproteinase expression. RESULTS Following gonadectomy and hormone supplementation, the treatment groups differed in serum testosterone and E(2) concentrations to various degrees. Collagen concentrations were lower and fiber diameters higher in the absence of sex hormones, in association with the degrees of estrogen receptor a and androgen receptor expression. Although differences were detected among the groups in matrix metalloproteinase expression, these differences were not significant. CONCLUSIONS AND CLINICAL RELEVANCE Sex hormones appeared to play a role in cranial cruciate ligament homeostasis in male rabbits. Physiologic changes triggered by the lack of sex hormones following gonadectomy in sexually immature rabbits may potentially predispose those rabbits to orthopedic injuries.
Collapse
Affiliation(s)
- Victoria A Light
- Department of Anatomy, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
25
|
O'Connor EK, Ivey JR, Bowles DK. Differential effects of androgens on coronary blood flow regulation and arteriolar diameter in intact and castrated swine. Biol Sex Differ 2012; 3:10. [PMID: 22620281 PMCID: PMC3469392 DOI: 10.1186/2042-6410-3-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022] Open
Abstract
Background Low endogenous testosterone levels have been shown to be a risk factor for the development of cardiovascular disease and cardiovascular benefits associated with testosterone replacement therapy are being advocated; however, the effects of endogenous testosterone levels on acute coronary vasomotor responses to androgen administration are not clear. The objective of this study was to compare the effects of acute androgen administration on in vivo coronary conductance and in vitro coronary microvascular diameter in intact and castrated male swine. Methods Pigs received intracoronary infusions of physiologic levels (1–100 nM) of testosterone, the metabolite 5α-dihydrotestosterone, and the epimer epitestosterone while left anterior descending coronary blood flow and mean arterial pressure were continuously monitored. Following sacrifice, coronary arterioles were isolated, cannulated, and exposed to physiologic concentrations (1–100 nM) of testosterone, 5α-dihydrotestosterone, and epitestosterone. To evaluate effects of the androgen receptor on acute androgen dilation responses, real-time PCR and immunohistochemistry for androgen receptor were performed on conduit and resistance coronary vessels. Results In vivo, testosterone and 5α-dihydrotestosterone produced greater increases in coronary conductance in the intact compared to the castrated males. In vitro, percent maximal dilation of microvessels was similar between intact and castrated males for testosterone and 5α-dihydrotestosterone. In both studies epitestosterone produced significant increases in conductance and microvessel diameter from baseline in the intact males. Androgen receptor mRNA expression and immunohistochemical staining were similar in intact and castrated males. Conclusions Acute coronary vascular responses to exogenous androgen administration are increased by endogenous testosterone, an effect unrelated to changes in androgen receptor expression.
Collapse
Affiliation(s)
- Erin K O'Connor
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | | | | |
Collapse
|
26
|
AIZAWA KATSUJI, IEMITSU MOTOYUKI, MAEDA SEIJI, MESAKI NOBORU, USHIDA TAKASHI, AKIMOTO TAKAYUKI. Endurance Exercise Training Enhances Local Sex Steroidogenesis in Skeletal Muscle. Med Sci Sports Exerc 2011; 43:2072-80. [DOI: 10.1249/mss.0b013e31821e9d74] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Imamura T. Epigenetic setting for long-term expression of estrogen receptor α and androgen receptor in cells. Horm Behav 2011; 59:345-52. [PMID: 20619266 DOI: 10.1016/j.yhbeh.2010.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene expression in cells. The effects prevail at hundreds of gene loci in the proximity of estrogen- and androgen-responsive elements and many more such loci through intra- and even inter-chromosomal level regulation. Such a memory system should be active in a flexible manner during the early development of vertebrates, and later replaced to establish more stable marks on genomic DNA. In mammals, DNA methylation is utilized as a very stable mark for silencing of the ERα and AR isoform expression during cancer cell and normal brain development. The factors affecting the DNA methylation of the ERα and AR genes in cells include estrogen and androgen. Since testosterone induces brain masculinization through its aromatization to estradiol in a narrow time window of the perinatal stage in rodents, the autoregulation of estrogen receptors, especially the predominant form of ERα, at the level of DNA methylation to set up the "cell memory" affecting the sexually differentiated status of brain function has been attracting increasing attention. The alternative usage of the androgen-AR system for brain masculinization and estrogenic regulation of AR expression in some species imply that the DNA methylation pattern of the AR gene can be established by closely related but different systems for sex steroid-induced phenomena, including brain masculinization.
Collapse
Affiliation(s)
- Takuya Imamura
- Laboratory for Biodiversity, Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
28
|
Hiruntrakul A, Nanagara R, Emasithi A, Borer KT. Effect of Endurance Exercise on Resting Testosterone Levels in Sedentary Subjects. Cent Eur J Public Health 2010; 18:169-72. [DOI: 10.21101/cejph.a3589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Aizawa K, Iemitsu M, Maeda S, Otsuki T, Sato K, Ushida T, Mesaki N, Akimoto T. Acute exercise activates local bioactive androgen metabolism in skeletal muscle. Steroids 2010; 75:219-23. [PMID: 20045012 DOI: 10.1016/j.steroids.2009.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/25/2022]
Abstract
Androgens, such as testosterone, play important roles in regulation of diverse physiological process of target tissues. Recently, we reported that steroidogenic enzymes exist in skeletal muscle and regulate local production of testosterone in response to exercise. Testosterone is transformed into a bioactive androgen metabolite, dihydrotestosterone (DHT) by 5alpha-reductase. However, it is unclear whether exercise stimulates local bioactive androgen metabolism in the skeletal muscle in both sexes. In the present study, we examined sex differences in the levels of dehydroepiandrosterone (DHEA), free testosterone, DHT, and steroidogenesis-related enzymes 5alpha-reductase and androgen receptor (AR) in rat's skeletal muscle before and after a single bout of exercise. Basal muscular free testosterone and DHT levels were higher in males than females, whereas the levels of DHEA did not differ between the sexes. Muscular DHEA, free testosterone, and DHT levels were increased in both sexes after the exercise. There were no differences of 5alpha-reductase and AR transcripts and proteins between the sexes, and the expression of 5alpha-reductase was significantly increased in both sexes after the exercise. Finally, the expression of AR was significantly higher in female rats, but not in males after the exercise. These data suggest that acute exercise enhances the local bioactive androgen metabolism in the skeletal muscle of both sexes.
Collapse
Affiliation(s)
- Katsuji Aizawa
- Laboratory of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Pires-Oliveira M, Maragno ALGC, Parreiras-e-Silva LT, Chiavegatti T, Gomes MD, Godinho RO. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol (1985) 2010; 108:266-73. [DOI: 10.1152/japplphysiol.00490.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle atrophy induced by denervation and metabolic diseases has been associated with increased ubiquitin ligase expression. In the present study, we evaluate the influence of androgens on muscle ubiquitin ligases atrogin-1/MAFbx/FBXO32 and Murf-1/Trim63 expression and its correlation with maintenance of muscle mass by using the testosterone-dependent fast-twitch levator ani muscle (LA) from normal or castrated adult male Wistar rats. Gene expression was determined by qRT-PCR and/or immunoblotting. Castration induced progressive loss of LA mass (30% of control, 90 days) and an exponential decrease of LA cytoplasm-to-nucleus ratio (nuclear domain; 22% of control after 60 days). Testosterone deprivation induced a 31-fold increase in LA atrogin-1 mRNA and an 18-fold increase in Murf-1 mRNA detected after 2 and 7 days of castration, respectively. Acute (24 h) testosterone administration fully repressed atrogin-1 and Murf-1 mRNA expression to control levels. Atrogin-1 protein was also increased by castration up to 170% after 30 days. Testosterone administration for 7 days restored atrogin-1 protein to control levels. In addition to the well known stimulus of protein synthesis, our results show that testosterone maintains muscle mass by repressing ubiquitin ligases, indicating that inhibition of ubiquitin-proteasome catabolic system is critical for trophic action of androgens in skeletal muscle. Besides, since neither castration nor androgen treatment had any effect on weight or ubiquitin ligases mRNA levels of extensor digitorum longus muscle, a fast-twitch muscle with low androgen sensitivity, our study shows that perineal muscle LA is a suitable in vivo model to evaluate regulation of muscle proteolysis, closely resembling human muscle responsiveness to androgens.
Collapse
Affiliation(s)
| | - Ana Leticia G. C. Maragno
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas T. Parreiras-e-Silva
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tiago Chiavegatti
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo; and
| | - Marcelo D. Gomes
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rosely O. Godinho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo; and
| |
Collapse
|
31
|
Hoffman JR, Kraemer WJ, Bhasin S, Storer T, Ratamess NA, Haff GG, Willoughby DS, Rogol AD. Position stand on androgen and human growth hormone use. J Strength Cond Res 2009; 23:S1-S59. [PMID: 19620932 DOI: 10.1519/jsc.0b013e31819df2e6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hoffman, JR, Kraemer, WJ, Bhasin, S, Storer, T, Ratamess, NA, Haff, GG, Willoughby, DS, and Rogol, AD. Position stand on Androgen and human growth hormone use. J Strength Cond Res 23(5): S1-S59, 2009-Perceived yet often misunderstood demands of a sport, overt benefits of anabolic drugs, and the inability to be offered any effective alternatives has fueled anabolic drug abuse despite any consequences. Motivational interactions with many situational demands including the desire for improved body image, sport performance, physical function, and body size influence and fuel such negative decisions. Positive countermeasures to deter the abuse of anabolic drugs are complex and yet unclear. Furthermore, anabolic drugs work and the optimized training and nutritional programs needed to cut into the magnitude of improvement mediated by drug abuse require more work, dedication, and preparation on the part of both athletes and coaches alike. Few shortcuts are available to the athlete who desires to train naturally. Historically, the NSCA has placed an emphasis on education to help athletes, coaches, and strength and conditioning professionals become more knowledgeable, highly skilled, and technically trained in their approach to exercise program design and implementation. Optimizing nutritional strategies are a vital interface to help cope with exercise and sport demands (). In addition, research-based supplements will also have to be acknowledged as a strategic set of tools (e.g., protein supplements before and after resistance exercise workout) that can be used in conjunction with optimized nutrition to allow more effective adaptation and recovery from exercise. Resistance exercise is the most effective anabolic form of exercise, and over the past 20 years, the research base for resistance exercise has just started to develop to a significant volume of work to help in the decision-making process in program design (). The interface with nutritional strategies has been less studied, yet may yield even greater benefits to the individual athlete in their attempt to train naturally. Nevertheless, these are the 2 domains that require the most attention when trying to optimize the physical adaptations to exercise training without drug use.Recent surveys indicate that the prevalence of androgen use among adolescents has decreased over the past 10-15 years (). The decrease in androgen use among these students may be attributed to several factors related to education and viable alternatives (i.e., sport supplements) to substitute for illegal drug use. Although success has been achieved in using peer pressure to educate high school athletes on behaviors designed to reduce the intent to use androgens (), it has not had the far-reaching effect desired. It would appear that using the people who have the greatest influence on adolescents (coaches and teachers) be the primary focus of the educational program. It becomes imperative that coaches provide realistic training goals for their athletes and understand the difference between normal physiological adaptation to training or that is pharmaceutically enhanced. Only through a stringent coaching certification program will academic institutions be ensured that coaches that they hire will have the minimal knowledge to provide support to their athletes in helping them make the correct choices regarding sport supplements and performance-enhancing drugs.The NSCA rejects the use of androgens and hGH or any performance-enhancing drugs on the basis of ethics, the ideals of fair play in competition, and concerns for the athlete's health. The NSCA has based this position stand on a critical analysis of the scientific literature evaluating the effects of androgens and human growth hormone on human physiology and performance. The use of anabolic drugs to enhance athletic performance has become a major concern for professional sport organizations, sport governing bodies, and the federal government. It is the belief of the NSCA that through education and research we can mitigate the abuse of androgens and hGH by athletes. Due to the diversity of testosterone-related drugs and molecules, the term androgens is believed to be a more appropriate term for anabolic steroids.
Collapse
Affiliation(s)
- Jay R Hoffman
- Department of Health and Exercise Science, The College of New Jersey, Ewing, 08628, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
White JP, Baltgalvis KA, Sato S, Wilson LB, Carson JA. Effect of nandrolone decanoate administration on recovery from bupivacaine-induced muscle injury. J Appl Physiol (1985) 2009; 107:1420-30. [PMID: 19745189 DOI: 10.1152/japplphysiol.00668.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although testosterone administration elicits well-documented anabolic effects on skeletal muscle mass, the enhancement of muscle regeneration after injury has not been widely examined. The purpose of this study was to determine whether anabolic steroid administration improves skeletal muscle regeneration from bupivacaine-induced injury. Male C57BL/6 mice were castrated 2 wk before muscle injury induced by an intramuscular bupivacaine injection into the tibialis anterior (TA) muscle. Control mice received an intramuscular PBS injection. Anabolic steroid [nandrolone decanoate (ND), 6 mg/kg] or sesame seed oil was administered at the time of initial injury and continued every 7 days for the study's duration. Mice were randomly assigned to one of four treatment groups for 5, 14, or 42 days of recovery, as follows: 1) control (uninjured); 2) ND only (uninjured + ND); 3) bupivacaine only (injured); or 4) bupivacaine + ND (injured + ND). TA morphology, protein, and gene expression were analyzed at 14 and 42 days after injury; protein expression was analyzed at 5 days after injury. After 14 days of recovery, the injury and injury + ND treatments induced small-diameter myofiber incidence and also decreased mean myofiber area. The increase in small-myofiber incidence was 65% greater in injury + ND muscle compared with injury alone. At 14 days, injury + ND induced a fivefold increase in muscle IGF-I mRNA expression, which was greater than injury alone. Muscle Akt activity and glycogen synthetase kinase-3beta activity were also induced by injury + ND at 14 days of recovery, but not by injury alone. ND had a main effect for increasing muscle MyoD and cyclin D1 mRNA expression at 14 days. After 42 days of recovery, injury + ND increased large-diameter myofiber incidence compared with injury only. Nandrolone decanoate (ND) administration can enhance castrated mouse muscle regeneration during the recovery from bupivacaine-induced injury.
Collapse
Affiliation(s)
- James P White
- Integrative Muscle Biology Laboratory, Exercise Science Department, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
33
|
Kim HJ, Lee WJ. Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Mol Cells 2009; 28:189-94. [PMID: 19705083 DOI: 10.1007/s10059-009-0118-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 01/06/2023] Open
Abstract
The modulating effect of IGF-I on the regulation of AR gene expression and activation in skeletal muscle cells remains poorly understood. In this study, the effects of IGF-I treatment on AR induction and activation in the absence of AR ligands were examined. Differentiating C2C12 cells were treated with different concentrations (0-250 ng/ml) of IGF-I or for various periods of time (0-60 min) of 250 ng/ml IGF-I. Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent increase in total AR and phosphorylated AR (Ser 213). IGF-I treatment also led to significantly increased AR mRNA expression when compared with the control. The levels of skeletal alpha-actin and myogenin mRNA, known target genes of AR, were also significantly upregulated after 5 or 10 min of treatment with IGF-I. Confocal images revealed that IGF-I stimulated nuclear localization of AR in the absence of ligands. In addition, an electrophoretic mobility shift assay indicated that IGF-I stimulated the AR DNA binding activity in a time-dependent manner. The present results suggest that IGF-I stimulates the expression and activation of AR by ligand-independent mechanism in differentiating C2C12 mouse skeletal muscle cells.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Exercise Science, College of Health Sciences, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
34
|
Ophoff J, Van Proeyen K, Callewaert F, De Gendt K, De Bock K, Vanden Bosch A, Verhoeven G, Hespel P, Vanderschueren D. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 2009; 150:3558-66. [PMID: 19264874 DOI: 10.1210/en.2008-1509] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Muscle frailty is considered a major cause of disability in the elderly and chronically ill. However, the exact role of androgen receptor (AR) signaling in muscle remains unclear. Therefore, a postmitotic myocyte-specific AR knockout (mARKO) mouse model was created and investigated together with a mouse model with ubiquitous AR deletion. Muscles from mARKO mice displayed a marked reduction in AR protein (60-88%). Interestingly, body weights and lean body mass were lower in mARKO vs. control mice (-8%). The weight of the highly androgen-sensitive musculus levator ani was significantly reduced (-46%), whereas the weights of other peripheral skeletal muscles were not or only slightly reduced. mARKO mice had lower intra-abdominal fat but did not demonstrate a cortical or trabecular bone phenotype, indicating that selective ablation of the AR in myocytes affected male body composition but not skeletal homeostasis. Furthermore, muscle contractile performance in mARKO mice did not differ from their controls. Myocyte-specific AR ablation resulted in a conversion of fast toward slow fibers, without affecting muscle strength or fatigue. Similar results were obtained in ubiquitous AR deletion, showing lower body weight, whereas some but not all muscle weights were reduced. The percent slow fibers was increased, but no changes in muscle strength or fatigue could be detected. Together, our findings show that myocyte AR signaling contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. The levator ani weight remains the most sensitive and specific marker of AR-mediated anabolic action on muscle.
Collapse
MESH Headings
- Absorptiometry, Photon
- Animals
- Blotting, Western
- Creatine Kinase, MM Form/genetics
- Female
- Glycogen/metabolism
- Immunohistochemistry
- Intra-Abdominal Fat/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Microscopy, Fluorescence
- Muscle Cells/metabolism
- Muscle Fatigue/genetics
- Muscle Fatigue/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle Strength/genetics
- Muscle Strength/physiology
- Muscles/metabolism
- Muscles/physiology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/physiology
- Satellite Cells, Skeletal Muscle/metabolism
- Succinate Dehydrogenase/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Jill Ophoff
- Department ofExperimental Medicine, Laboratory for Experimental Medicine and Endocrinology, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chuang KH, Altuwaijri S, Li G, Lai JJ, Chu CY, Lai KP, Lin HY, Hsu JW, Keng P, Wu MC, Chang C. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. ACTA ACUST UNITED AC 2009; 206:1181-99. [PMID: 19414555 PMCID: PMC2715023 DOI: 10.1084/jem.20082521] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neutrophils, the major phagocytes that form the first line of cell-mediated defense against microbial infection, are produced in the bone marrow and released into the circulation in response to granulocyte-colony stimulating factor (G-CSF). Here, we report that androgen receptor knockout (ARKO) mice are neutropenic and susceptible to acute bacterial infection, whereas castration only results in moderate neutrophil reduction in mice and humans. Androgen supplement can restore neutrophil counts via stabilizing AR in castrated mice, but not in ARKO and testicular feminization mutant (Tfm) mice. Our results show that deletion of the AR gene does not influence myeloid lineage commitment, but significantly reduces the proliferative activity of neutrophil precursors and retards neutrophil maturation. CXCR2-dependent migration is also decreased in ARKO neutrophils as compared with wild-type controls. G-CSF is unable to delay apoptosis in ARKO neutrophils, and ARKO mice show a poor granulopoietic response to exogenous G-CSF injection. In addition, AR can restore G-CSF–dependent granulocytic differentiation upon transduction into ARKO progenitors. We further found that AR augments G-CSF signaling by activating extracellular signal-regulated kinase 1/2 and also by sustaining Stat3 activity via diminishing the inhibitory binding of PIAS3 to Stat3. Collectively, our findings demonstrate an essential role for AR in granulopoiesis and host defense against microbial infection.
Collapse
Affiliation(s)
- Kuang-Hsiang Chuang
- George Whipple Laboratory for Cancer Research, Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hamson DK, Morris JA, Breedlove SM, Jordan CL. Time course of adult castration-induced changes in soma size of motoneurons in the rat spinal nucleus of the bulbocavernosus. Neurosci Lett 2009; 454:148-51. [PMID: 19429073 DOI: 10.1016/j.neulet.2009.02.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 11/28/2022]
Abstract
The spinal nucleus of the bulbocavernosus (SNB) innervates striated muscles, the bulbocavernosus and levator ani (BC/LA), which control penile reflexes. Castration results in shrinkage in the size of SNB somata and dendrites, as well as BC/LA muscle mass. However, there is no information about how quickly these regressive changes occur compared to the rapid effects of castration upon penile reflexes, which are greatly diminished a few days after surgery. Therefore we examined the time course of change in the size of SNB somata after castration of adult male rats. Males were sacrificed 2, 14, or 28 days after either castration or sham surgery and somata were measured in the SNB and in a control population of motoneurons, the retrodorsolateral nucleus (RDLN). BC/LA weight was reduced in castrates compared to intact males 14 and 28 days post surgery, but SNB somata were significantly smaller in castrates only at 28 days after surgery. As has been previously observed, castration did not affect soma size in the RDLN. These data indicate that SNB somata respond more slowly after castration than BC/LA mass or penile reflexes, suggesting that the size of SNB somata cannot account for the loss of penile reflexes. Androgenic effects on SNB somata may contribute to aspects of reproductive behavior that are not apparent in penile reflexes tested ex copula.
Collapse
Affiliation(s)
- Dwayne K Hamson
- Neuroscience Program and Department of Psychology, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, United States.
| | | | | | | |
Collapse
|
37
|
Genistein-Induced Histomorphometric and Hormone Secreting Changes in the Adrenal Cortex in Middle-Aged Rats. Exp Biol Med (Maywood) 2009; 234:148-56. [DOI: 10.3181/0807-rm-231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The soybean phytoestrogen, genistein, is increasingly consumed as an alternative therapeutic for age-related diseases, namely cardiovascular conditions, cancer and osteoporosis. Besides estrogenic/antiestrogenic action, this isoflavone exerts a prominent inhibitory effect on tyrosine kinase and the steroidogenic enzyme families, thus affecting hormonal homeostasis. The aim of this study was to examine the effects of genistein on: histomorphometric features of the adrenal cortex, blood concentrations of aldosterone, corticosterone and dehydroepiandrosterone (DHEA) and adrenal tissue corticosterone content in orchidectomized middle-aged male rats. Sixteen-month-old Wistar rats were divided into sham-operated (SO), orchidectomized (Orx) and genistein-treated orchidectomized (Orx+G) groups. Genistein (30 mg/kg/day) was administered subcutaneously for three weeks, while the control groups received the vehicle alone. The adrenal cortex was analysed histologically and morphometrically. Circulating concentrations of aldosterone, corticosterone and DHEA, as well as adrenal tissue corticosterone levels, were determined by immunoassay. When compared to the SO group, orchidectomy decreased the ZG and ZR cell volume by 43% and 29%, respectively ( P < 0.05). Serum concentrations of aldosterone and DHEA were markedly lower [13% and 41%, respectively ( P < 0.05)], while serum and adrenal tissue levels of corticosterone did not change after orchidectomy. Orchidectomy followed by genistein treatment increased the ZG, ZF and ZR cell volume by 54%, 34% and 77%, respectively ( P < 0.05), compared to the untreated orchidectomized group. Histological analysis revealed noticeable vacuolization of the ZG and ZF cells in the Orx+G group. Serum aldosterone and corticosterone concentrations together with adrenal tissue corticosterone were 47%, 31% and 44% lower, respectively ( P < 0.05), whereas serum DHEA concentration was 342% higher ( P < 0.05) in this group in comparison with the Orx group. This study shows that in orchidectomized middle-aged rats, genistein can cause the shunting of metabolic pathways in the adrenals, supporting DHEA secretion and inhibiting corticosterone and aldosterone secretion.
Collapse
|
38
|
Ganesan K, Tiwari M, Balachandran C, Manohar BM, Puvanakrishnan R. Estrogen and testosterone attenuate extracellular matrix loss in collagen-induced arthritis in rats. Calcif Tissue Int 2008; 83:354-64. [PMID: 18931819 DOI: 10.1007/s00223-008-9183-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
Rheumatoid arthritis (RA) is a sexually dimorphic, autoimmune inflammatory disorder affecting the joints. Joint disability in RA results primarily from loss of matrix components (collagen and glycosoaminoglycan) in the cartilage and synovium. This study was carried out to understand the effect of physiological levels of testosterone, estrogen, and progesterone on oxidative stress-induced changes in matrix composition in rat synovium in arthritis. Arthritis induction in castrated and ovariectomized rats resulted in enhanced oxidative stress and this was assessed by lipid peroxidation levels and depletion of antioxidants. This, in turn, led to significantly (p < 0.01) increased levels of TNF-alpha and matrix metalloproteinase-2 (MMP-2), subsequently resulting in loss of collagen, elastin, and glycosoaminoglycan (GAG) and disorganization of reticulin as evidenced by biochemical quantitation and also by staining for collagen, reticulin, and elastin. Treatment with physiological doses of dihydrotestosterone (25 mg topically) and estrogen (5 microg/0.1 ml subcutaneously) restored the antioxidant levels significantly (p < 0.05) and reduced the levels of TNF-alpha and MMP-2, with estrogen exhibiting a higher potency. This, in turn, attenuated the damage to reticulin organization as well as the loss of collagen and GAG in the articular tissues. However, elastin loss could not be attenuated by either treatment. Progesterone (2 mg/0.1 ml subcutaneously) was not shown to have any significance in disease modification, and on the contrary, it inhibited the protective effects of estrogen. However, progesterone contributed to increased collagen levels in the tissues.
Collapse
Affiliation(s)
- Kalaivani Ganesan
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | | | | | | | | |
Collapse
|
39
|
Ganesan K, Balachandran C, Manohar BM, Puvanakrishnan R. Comparative studies on the interplay of testosterone, estrogen and progesterone in collagen induced arthritis in rats. Bone 2008; 43:758-65. [PMID: 18599392 DOI: 10.1016/j.bone.2008.05.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 05/09/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
Rheumatoid arthritis (RA) is a sexually dimorphic autoimmune disorder exhibiting a higher disease prevalence and severity among females. This study was carried out to understand the role of the major sex hormones viz., testosterone, estrogen and progesterone on the severity in arthritis. The interplay of the sex hormones was studied in a rat model of collagen induced arthritis (CIA). The parameters used for analyzing the disease severity included paw volume, radiology, histopathology of joint, markers for bone turnover, cytokine profile, levels of pain mediator (prostaglandin E(2)) and immune response to type II collagen. Arthritis induction to castrated and ovariectomised rats resulted in enhanced inflammation thereby indicating the importance of sex hormones. Treatment with physiological doses of dihydrotestosterone and estrogen attenuated the inflammation, with estrogen exhibiting higher potency. Progesterone was not shown to have any significance in disease modification; however, when progesterone was administered in combination with estrogen, the protective effects of estrogen were noticed to decrease.
Collapse
Affiliation(s)
- Kalaivani Ganesan
- Department of Biotechnology, Central Leather Research Institute, Adyar, Chennai, India
| | | | | | | |
Collapse
|
40
|
Abstract
Athletes and bodybuilders have recognized for several decades that the use of anabolic steroids can promote muscle growth and strength but it is only relatively recently that these agents are being revisited for clinical purposes. Anabolic steroids are being considered for the treatment of cachexia associated with chronic disease states, and to address loss of muscle mass in the elderly, but nevertheless their efficacy still needs to be demonstrated in terms of improved physical function and quality of life. In sport, these agents are performance enhancers, this being particularly apparent in women, although there is a high risk of virilization despite the favourable myotrophic-androgenic dissociation that many xenobiotic steroids confer. Modulation of androgen receptor expression appears to be key to partial dissociation, with consideration of both intracellular steroid metabolism and the topology of the bound androgen receptor interacting with co-activators. An anticatabolic effect, by interfering with glucocorticoid receptor expression, remains an attractive hypothesis. Behavioural changes by non-genomic and genomic pathways probably help motivate training. Anabolic steroids continue to be the most common adverse finding in sport and, although apparently rare, designer steroids have been synthesized in an attempt to circumvent the dope test. Doping with anabolic steroids can result in damage to health, as recorded meticulously in the former German Democratic Republic. Even so, it is important not to exaggerate the medical risks associated with their administration for sporting or bodybuilding purposes but to emphasize to users that an attitude of personal invulnerability to their adverse effects is certainly misguided.
Collapse
Affiliation(s)
- A T Kicman
- King's College London, Drug Control Centre, Department of Forensic Science and Drug Monitoring, London, UK.
| |
Collapse
|
41
|
Alvarado M, Cuevas E, Lara-García M, Camacho M, Carrillo P, Hudson R, Pacheco P. Effect of Gonadal Hormones on the Cross-Sectional Area of Pubococcygeus Muscle Fibers in Male Rat. Anat Rec (Hoboken) 2008; 291:586-92. [DOI: 10.1002/ar.20694] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Abstract
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic group of motoneurones that innervates the bulbocavernosus (BC) and levator ani (LA), skeletal muscles that attach to the base of the penis. In many species, including mice, rats and hamsters, the LA and BC have been found to be highly responsive to androgen and, in rats, these muscles mediate several effects of androgen on the SNB system. However, characterising the SNB system in mice is important because of the availability of genetic models in this species. In the present study, we examined AR expression in skeletal muscles of C57/BlJ6 adult male mice using immunoblotting and immunocytochemistry, comparing the BC/LA to the androgen-unresponsive extensor digitorum longus (EDL). We found similar differences in AR expression for these muscles in the mouse as previously reported for rats. In mice, the BC/LA contains more AR protein than does the EDL. At the cellular level, the LA contains a higher percentage of AR positive myonuclei and fibroblasts than does the EDL. Finally, AR expression is enriched at the neuromuscular junction of mouse LA fibres. The increased expression of AR in the LA compared to the EDL in both muscle fibres and fibroblasts indicates that each cell type may critically mediate androgen action on the SNB system in mice.
Collapse
Affiliation(s)
- J A Johansen
- Neuroscience Program and Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
43
|
Mendler L, Baka Z, Kovács-Simon A, Dux L. Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem Biophys Res Commun 2007; 361:237-42. [PMID: 17658471 DOI: 10.1016/j.bbrc.2007.07.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/08/2007] [Indexed: 11/21/2022]
Abstract
Myostatin is an important negative regulator of skeletal muscle growth, while androgens are strong positive effectors. In order to investigate the possible interaction between myostatin and androgen pathways, we followed myostatin expression in the androgen-dependent levator ani (LA) muscle of the rat as a function of androgen status. By testosterone deprivation (castration), we induced LA growth arrest in young male rats, whilst atrophy in adult ones, however, both processes could be reversed by testosterone supplementation. After castration, a significant up-regulation of active myostatin protein (and its propeptide) was found, whereas the subsequent testosterone treatment reduced myostatin protein levels to normal values in both young and adult rats. Similarly, a testosterone-induced suppression of myostatin mRNA levels was observed in castrated adult but not in young animals. Altogether, androgens seem to have strong negative impact on myostatin expression, which might be a key factor in the weight regulation of LA muscle.
Collapse
Affiliation(s)
- Luca Mendler
- Institute of Biochemistry, Faculty of General Medicine, University of Szeged, Dóm tér 9., 6720 Szeged, Hungary.
| | | | | | | |
Collapse
|
44
|
Cunha TS, Tanno AP, Marcondes FK, Perez SEA, Selistre-Araújo HS. [Nandrolone administration does not promote hypertrophy of soleus muscle in rats]. ACTA ACUST UNITED AC 2007; 50:532-40. [PMID: 16936995 DOI: 10.1590/s0004-27302006000300017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/18/2005] [Indexed: 11/22/2022]
Abstract
Anabolic androgenic steroids (AAS) are compounds formed from testosterone or one of its derivatives, which are largely used by amateur e professional athletes to improve the athletic performance. However, the scientific information about the relation between the use of AAS and muscle hypertrophy is controversial. The aim of this study was to evaluate the effects of testosterone and physical training on muscle hypertrophy. Male Wistar rats received i.m. injections of Deca-Durabolin or vehicle during 6 weeks. Trained rats were submitted to a resistance physical training, by jumping up and down in water carrying an overload. Sedentary and trained animals were anesthetized and sacrificed. Soleus muscle was removed for the quantification of total protein and DNA concentration. In the end of the treatment, body weight of trained animals treated with vehicle or AAS was lower than the body weight of respective sedentary. Total protein concentration and the ratio muscle weight/body weight of all experimental groups were not altered. Trained group treated with AAS presented lower DNA concentration than trained group treated with vehicle. The administration of nandrolone decanoate did not promote hypertrophy on soleus muscle, not even when the use of AAS was associated to resistance physical training.
Collapse
Affiliation(s)
- Tatiana S Cunha
- Departamento de Ciências Fisiológicas, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Av. Limeira 901, 13414-903 Piracicaba, SP
| | | | | | | | | |
Collapse
|
45
|
Axell AM, MacLean HE, Plant DR, Harcourt LJ, Davis JA, Jimenez M, Handelsman DJ, Lynch GS, Zajac JD. Continuous testosterone administration prevents skeletal muscle atrophy and enhances resistance to fatigue in orchidectomized male mice. Am J Physiol Endocrinol Metab 2006; 291:E506-16. [PMID: 16621900 DOI: 10.1152/ajpendo.00058.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Androgens promote anabolism in skeletal muscle; however, effects on subsequent muscle function are less well defined because of a lack of reliable experimental models. We established a rigorous model of androgen withdrawal and administration in male mice and assessed androgen regulation of muscle mass, structure, and function. Adult C57Bl/6J male mice were orchidectomized (Orx) or sham-operated (Sham) and received 10 wk of continuous testosterone (T) or control treatment (C) via intraperitoneal implants. Mass, fiber cross-sectional area (CSA), and in vitro contractile function were assessed for fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscles. After 10 wk, Orx+C mice had reduced body weight gain (P < 0.05), seminal vesicle mass (P < 0.01), and levator ani muscle mass (P < 0.001) compared with Sham+C mice, and these effects were prevented with testosterone treatment. Orx+T mice had greater EDL (P < 0.01) and SOL (P < 0.01) muscle mass compared with Orx+C mice; however, median fiber CSA was not significantly altered in these muscles. EDL and SOL muscle force was greater in Sham+T compared with Orx+C mice (P < 0.05) in proportion to muscle mass. Unexpectedly, Orx+T mice had increased fatigue resistance of SOL muscle compared with Orx+C mice (P < 0.001). We used a rigorous model of androgen withdrawal and administration in male mice to demonstrate an essential role of androgens in the maintenance of muscle mass and force. In addition, we showed that testosterone treatment increases resistance to fatigue of slow- but not fast-twitch muscle.
Collapse
Affiliation(s)
- Anna-Maree Axell
- Dept. of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kraemer WJ, Spiering BA, Volek JS, Ratamess NA, Sharman MJ, Rubin MR, French DN, Silvestre R, Hatfield DL, Van Heest JL, Vingren JL, Judelson DA, Deschenes MR, Maresh CM. Androgenic Responses to Resistance Exercise. Med Sci Sports Exerc 2006; 38:1288-96. [PMID: 16826026 DOI: 10.1249/01.mss.0000227314.85728.35] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this investigation was to determine the effects of 3 wk of L-carnitine L-tartrate (LCLT) supplementation and post-resistance-exercise (RE) feeding on hormonal and androgen receptor (AR) responses. METHODS Ten resistance-trained men (mean+/-SD: age, 22+/-1 yr; mass, 86.3+/-15.3 kg; height, 181+/-11 cm) supplemented with LCLT (equivalent to 2 g of L-carnitine per day) or placebo (PL) for 21 d, provided muscle biopsies for AR determinations, then performed two RE protocols: one followed by water intake, and one followed by feeding (8 kcal.kg body mass, consisting of 56% carbohydrate, 16% protein, and 28% fat). RE protocols were randomized and included serial blood draws and a 1-h post-RE biopsy. After a 7-d washout period, subjects crossed over, and all experimental procedures were repeated. RESULTS LCLT supplementation upregulated (P<0.05) preexercise AR content compared with PL (12.9+/-5.9 vs 11.2+/-4.0 au, respectively). RE increased (P<0.05) AR content compared with pre-RE values in the PL trial only. Post-RE feeding significantly increased AR content compared with baseline and water trials for both LCLT and PL. Serum total testosterone concentrations were suppressed (P<0.05) during feeding trials with respect to corresponding water and pre-RE values. Luteinizing hormone demonstrated subtle, yet significant changes in response to feeding and LCLT. CONCLUSION In summary, these data demonstrated that: 1) feeding after RE increased AR content, which may result in increased testosterone uptake, and thus enhanced luteinizing hormone secretion via feedback mechanisms; and 2) LCLT supplementation upregulated AR content, which may promote recovery from RE.
Collapse
Affiliation(s)
- William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269-1110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Borst SE, Conover CF. Orchiectomized Fischer 344 male rat models body composition in hypogonadal state. Life Sci 2006; 79:411-5. [PMID: 16507309 DOI: 10.1016/j.lfs.2006.01.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/08/2005] [Accepted: 01/16/2006] [Indexed: 12/01/2022]
Abstract
The hypogonadal state in men is accompanied by substantial decreases in muscle and bone mass and by an increase in adiposity. Most of the strains of orchiectomized (ORX) rat that have been used to model this state display substantial losses in bone, but only subtle changes in adiposity and muscle mass. In order to identify a rat model displaying a robust catabolic response to ORX, we studied three strains: Fischer 344 (F344), Brown Norway and Wistar. ORX caused a significant and sustained decrease in weight gained by F344, but only a trend toward reduced weight gain in Brown Norway rats and a modest reduction weight gain in Wistar rats that was significant only after 56days. ORX suppressed food intake in F344 rats, and to a lesser degree in Brown Norway and Wistar rats. ORX reduced muscle mass significantly in F344 rats, but not in Brown Norway or Wistar rats. ORX increased adiposity moderately in F344 rats and substantially in Wistar rats. ORX caused a marked reduction in prostate mass and increase in bone resorption in all three strains. Thus, F344 was the only strain in which ORX produced substantial decreases in food intake, body weight and muscle mass with increased adiposity and increased bone resorption. We conclude that the F344 rat displays a broad range of catabolic effects following ORX and is the best rat model for studying the androgenic pathway and strategies for reversing catabolic changes induced by hypogonadism.
Collapse
Affiliation(s)
- Stephen E Borst
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA.
| | | |
Collapse
|
48
|
Monks DA, Kopachik W, Breedlove SM, Jordan CL. Anabolic responsiveness of skeletal muscles correlates with androgen receptor protein but not mRNA. Can J Physiol Pharmacol 2006; 84:273-7. [PMID: 16900954 DOI: 10.1139/y05-157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anabolic effects of androgens on skeletal muscle are well documented, but the physiological and biochemical bases of these effects are poorly understood. Skeletal muscles that differ in their androgen responsiveness can be used to examine these mechanisms. We compared androgen receptor mRNA and protein levels of the rat levator ani, a perineal skeletal muscle that depends on androgens for its normal maintenance and function with that of the rat extensor digitorum longus, a limb muscle that does not require androgens. Western immunoblotting indicated that androgen receptor protein is significantly elevated in the levator ani relative to the extensor digitorum longus. Surprisingly, steady state androgen receptor mRNA levels were equivalent in these muscles, as determined by Northern blot analysis and quantitative RT-PCR. These results suggest that androgen responsiveness of skeletal muscles is determined by the level of androgen receptor protein in a particular muscle and that androgen receptor protein content is regulated by translational or post-translational mechanisms.
Collapse
Affiliation(s)
- Douglas A Monks
- Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| | | | | | | |
Collapse
|
49
|
McClung JM, Mehl KA, Thompson RW, Lowe LL, Carson JA. Nandrolone decanoate modulates cell cycle regulation in functionally overloaded rat soleus muscle. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1543-52. [PMID: 15886356 DOI: 10.1152/ajpregu.00285.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functionally overloading rat soleus muscle by synergist ablation induces a rapid increase in mass. Muscle remodeling during the first week of overload is critical for the overload-induced growth. Anabolic steroid modulation of this overload-induced remodeling response is not well understood. The purpose of this study was to determine whether pretreatment with nandrolone decanoate, a clinically administered anabolic steroid, alters muscle morphology and gene expression related to muscle growth during the initiation of functional overload in the rat soleus muscle. Adult (5 mo) male Fisher 344 × Brown Norway rats were randomly assigned to control (Sham), 3-day functional overload (OV), nandrolone decanoate administration (ND), or 3-day functional overload with nandrolone decanoate administration (OV+ND) treatment groups. Morphologically, OV increased the percentage of small (361%) and large (150%) fibers and expanded the ECM 50%. ND administration decreased the 3-day OV induction of small fibers 51% and nuclei associated with the ECM 20%. ND administration also attenuated the induction of cell cycle regulator p21 (64%) and myogenin (37%) mRNAs after 3 days of overload. These data demonstrate that nandrolone decanoate pretreatment can alter morphological and cell cycle regulator expression related to muscle growth at the onset of functional overload.
Collapse
Affiliation(s)
- Joseph M McClung
- Integrative Muscle Biology Laboratory, Division of Applied Physiology, Exercise Science Department, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
50
|
Williams MB, Hernandez J, Thompson I. LUTEINIZING HORMONE-RELEASING HORMONE AGONIST EFFECTS ON SKELETAL MUSCLE: HOW HORMONAL THERAPY IN PROSTATE CANCER AFFECTS MUSCULAR STRENGTH. J Urol 2005; 173:1067-71. [PMID: 15758703 DOI: 10.1097/01.ju.0000143193.81585.5c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Since the discovery of Huggins in 1941 demonstrating the androgen dependence of prostate cancer cells, the use of pharmacological therapies to decrease systemic androgen concentrations has been one of the main treatment options for prostate cancer. Despite their efficacy luteinizing hormone releasing hormone agonists (LHRHas) have a number of side effects, of which many have not been fully investigated in humans. This review focuses on the effects of LHRHas on skeletal muscle in 3 main areas, namely effects at the androgen receptor, at the neuromuscular junction and on skeletal muscle myofibers. Since prostate cancer is predominantly a disease of elderly individuals, the aging effects of LHRHa therapy on skeletal muscle are magnified and of clinical importance. MATERIALS AND METHODS A comprehensive MEDLINE search was performed of pertinent studies in the literature relating to the use of LHRHa and skeletal muscle. RESULTS LHRHas affect 3 primary sites within the skeletal muscle system, namely androgen receptor, the neuromuscular junction and second messenger systems, including insulin-like growth factor-1. All sites have been demonstrated to lead to a decrease in isokinetic exercise strength in large muscle groups. CONCLUSIONS The musculoskeletal effects of LHRHas for the treatment of prostate cancer should be counteracted via a program of exercise strength training to decrease the morbidity associated with skeletal muscle weakness.
Collapse
|