1
|
Gonzalez-Rothi EJ, Allen LL, Seven YB, Ciesla MC, Holland AE, Santiago JV, Mitchell GS. Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury. Exp Neurol 2024; 378:114808. [PMID: 38750949 DOI: 10.1016/j.expneurol.2024.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Low-dose (< 2 h/day), acute intermittent hypoxia (AIH) elicits multiple forms of serotonin-dependent phrenic motor plasticity and is emerging as a promising therapeutic strategy to restore respiratory and non-respiratory motor function after spinal cord injury (SCI). In contrast, high-dose (> 8 h/day), chronic intermittent hypoxia (CIH) undermines some forms of serotonin-dependent phrenic motor plasticity and elicits pathology. CIH is a hallmark of sleep disordered breathing, which is highly prevalent in individuals with cervical SCI. Interestingly, AIH and CIH preconditioning differentially impact phrenic motor plasticity. Although mechanisms of AIH-induced plasticity in the phrenic motor system are well-described in naïve rats, we know little concerning how these mechanisms are affected by chronic SCI or intermittent hypoxia preconditioning. Thus, in a rat model of chronic, incomplete cervical SCI (lateral spinal hemisection at C2 (C2Hx), we assessed serotonin type 2A, 2B and 7 receptor expression in and near phrenic motor neurons and compared: 1) intact vs. chronically injured rats; and 2) the impact of preconditioning with varied "doses" of intermittent hypoxia (IH). While there were no effects of chronic injury or intermittent hypoxia alone, CIH affected multiple receptors in rats with chronic C2Hx. Specifically, CIH preconditioning (8 h/day; 28 days) increased serotonin 2A and 7 receptor expression exclusively in rats with chronic C2Hx. Understanding the complex, context-specific interactions between chronic SCI and CIH and how this ultimately impacts phrenic motor plasticity is important as we leverage AIH-induced motor plasticity to restore breathing and other non-respiratory motor functions in people with chronic SCI.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Olea E, Valverde-Pérez E, Docio I, Prieto-Lloret J, Aaronson PI, Rocher A. Pulmonary Vascular Responses to Chronic Intermittent Hypoxia in a Guinea Pig Model of Obstructive Sleep Apnea. Int J Mol Sci 2024; 25:7484. [PMID: 39000591 PMCID: PMC11242077 DOI: 10.3390/ijms25137484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Experimental evidence suggests that chronic intermittent hypoxia (CIH), a major hallmark of obstructive sleep apnea (OSA), boosts carotid body (CB) responsiveness, thereby causing increased sympathetic activity, arterial and pulmonary hypertension, and cardiovascular disease. An enhanced circulatory chemoreflex, oxidative stress, and NO signaling appear to play important roles in these responses to CIH in rodents. Since the guinea pig has a hypofunctional CB (i.e., it is a natural CB knockout), in this study we used it as a model to investigate the CB dependence of the effects of CIH on pulmonary vascular responses, including those mediated by NO, by comparing them with those previously described in the rat. We have analyzed pulmonary artery pressure (PAP), the hypoxic pulmonary vasoconstriction (HPV) response, endothelial function both in vivo and in vitro, and vascular remodeling (intima-media thickness, collagen fiber content, and vessel lumen area). We demonstrate that 30 days of the exposure of guinea pigs to CIH (FiO2, 5% for 40 s, 30 cycles/h) induces pulmonary artery remodeling but does not alter endothelial function or the contractile response to phenylephrine (PE) in these arteries. In contrast, CIH exposure increased the systemic arterial pressure and enhanced the contractile response to PE while decreasing endothelium-dependent vasorelaxation to carbachol in the aorta without causing its remodeling. We conclude that since all of these effects are independent of CB sensitization, there must be other oxygen sensors, beyond the CB, with the capacity to alter the autonomic control of the heart and vascular function and structure in CIH.
Collapse
Affiliation(s)
- Elena Olea
- Departamento de Enfermería, Facultad de Enfermería Universidad de Valladolid, 47005 Valladolid, Spain
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
| | - Esther Valverde-Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Inmaculada Docio
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Jesus Prieto-Lloret
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Asunción Rocher
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
3
|
V. S. O. N. Cavalcante A, Fonseca JD, Araujo Cruz HR, Nascimento VF, Santana Silva JP, Lins CA, Bernardes Neto SCG, Lima ÍND. Neural respiratory drive during maximal voluntary ventilation in individuals with hypertension: A case-control study. PLoS One 2024; 19:e0305044. [PMID: 38861578 PMCID: PMC11166319 DOI: 10.1371/journal.pone.0305044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Neural respiratory drive (NRD) is measured using a non-invasive recording of respiratory electromyographic signal. The parasternal intercostal muscle can assess the imbalance between the load and capacity of respiratory muscles and presents a similar pattern to diaphragmatic activity. We aimed to analyze the neural respiratory drive in seventeen individuals with hypertension during quite breathing and maximal voluntary ventilation (MVV) (103.9 ± 5.89 vs. 122.6 ± 5 l/min) in comparison with seventeen healthy subjects (46.5 ± 2.5 vs. 46.4 ± 2.4 years), respectively. The study protocol was composed of quite breathing during five minutes, maximum inspiratory pressure followed by maximal ventilatory ventilation (MVV) was recorded once for 15 seconds. Anthropometric measurements were collected, weight, height, waist, hip, and calf circumferences, waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), BMI, and conicity index (CI). Differences between groups were analyzed using the unpaired t-test or Mann-Whitney test to determine the difference between groups and moments. A significance level of 5% (p<0,05) was adopted for all statistical analyses. The group of individuals with hypertension presented higher values when compared to the healthy group for neural respiratory drive (EMGpara% 17.9±1.3 vs. 13.1±0.8, p = 0.0006) and neural respiratory drive index (NRDi (AU) 320±25 vs. 205.7±15,p = 0.0004) during quiet breathing and maximal ventilatory ventilation (EMGpara% 29.3±2.7 vs. 18.3±0.8, p = 0.000, NRDi (AU) 3140±259.4 vs. 1886±73.1,p<0.0001), respectively. In conclusion, individuals with hypertension presented higher NRD during quiet breathing and maximal ventilatory ventilation when compared to healthy individuals.
Collapse
Affiliation(s)
- Andressa V. S. O. N. Cavalcante
- Faculdade de Ciências da Saúde do Trairi (FACISA), Programa de Pós-Graduação em Ciências da Reabilitação, Santa Cruz, Rio Grande do Norte, Brazil
| | - Jéssica Danielle Fonseca
- Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Helen Rainara Araujo Cruz
- Faculdade de Ciências da Saúde do Trairi (FACISA), Laboratório de Motricidade e Fisiologia Humana, Santa Cruz, Rio Grande do Norte, Brazil
| | - Viviane Fabrícia Nascimento
- Faculdade de Ciências da Saúde do Trairi (FACISA), Laboratório de Motricidade e Fisiologia Humana, Santa Cruz, Rio Grande do Norte, Brazil
| | - João Pedro Santana Silva
- Faculdade de Ciências da Saúde do Trairi (FACISA), Laboratório de Motricidade e Fisiologia Humana, Santa Cruz, Rio Grande do Norte, Brazil
| | - Caio Alano Lins
- Faculdade de Ciências da Saúde do Trairi (FACISA), Programa de Pós-Graduação em Ciências da Reabilitação, Santa Cruz, Rio Grande do Norte, Brazil
| | - Saint-Clair Gomes Bernardes Neto
- Faculdade de Ciências da Saúde do Trairi (FACISA), Programa de Pós-Graduação em Ciências da Reabilitação, Santa Cruz, Rio Grande do Norte, Brazil
| | - Íllia Nadinne Dantas Lima
- Faculdade de Ciências da Saúde do Trairi (FACISA), Programa de Pós-Graduação em Ciências da Reabilitação, Santa Cruz, Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Self AA, Mesarwi OA. Intermittent Versus Sustained Hypoxemia from Sleep-disordered Breathing: Outcomes in Patients with Chronic Lung Disease and High Altitude. Sleep Med Clin 2024; 19:327-337. [PMID: 38692756 DOI: 10.1016/j.jsmc.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.
Collapse
Affiliation(s)
- Alyssa A Self
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA
| | - Omar A Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Bhagavan H, Wei AD, Oliveira LM, Aldinger KA, Ramirez JM. Chronic intermittent hypoxia elicits distinct transcriptomic responses among neurons and oligodendrocytes within the brainstem of mice. Am J Physiol Lung Cell Mol Physiol 2024; 326:L698-L712. [PMID: 38591125 PMCID: PMC11380971 DOI: 10.1152/ajplung.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.
Collapse
Affiliation(s)
- Hemalatha Bhagavan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Department of Neurology, University of Washington, Seattle, Washington, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| |
Collapse
|
6
|
Karlen-Amarante M, Glovak ZT, Huff A, Oliveira LM, Ramirez JM. Postinspiratory and preBötzinger complexes contribute to respiratory-sympathetic coupling in mice before and after chronic intermittent hypoxia. Front Neurosci 2024; 18:1386737. [PMID: 38774786 PMCID: PMC11107097 DOI: 10.3389/fnins.2024.1386737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling. This study investigates the role of the postinspiratory complex (PiCo) and preBötzinger complex (preBötC) in respiratory-sympathetic coupling under control conditions and following exposure to chronic intermittent hypoxia (CIH) for 21 days (5% O2-80 bouts/day). The surface of the ventral brainstem was exposed in urethane (1.5 g/kg) anesthetized, spontaneously breathing adult mice. Cholinergic (ChAT), glutamatergic (Vglut2), and neurons that co-express ChAT and Vglut2 at PiCo, as well as Dbx1 and Vglut2 neurons at preBötC, were optogenetically stimulated while recording activity from the diaphragm (DIA), vagus nerve (cVN), and cervical sympathetic nerve (cSN). Following CIH exposure, baseline cSN activity increased, breathing frequency increased, and expiratory time decreased. In control mice, stimulating PiCo specific cholinergic-glutamatergic neurons caused a sympathetic burst during all phases of the respiratory cycle, whereas optogenetic activation of cholinergic-glutamatergic PiCo neurons in CIH mice increased sympathetic activity only during postinspiration and late expiration. Stimulation of glutamatergic PiCo neurons increased cSN activity during the postinspiratory phase in control and CIH mice. Optogenetic stimulation of ChAT containing neurons in the PiCo area did not affect sympathetic activity under control or CIH conditions. Stimulating Dbx1 or Vglut2 neurons in preBötC evoked an inspiration and a concomitant cSN burst under control and CIH conditions. Taken together, these results suggest that PiCo and preBötC contribute to respiratory-sympathetic coupling, which is altered by CIH, and may contribute to the hypertension observed in patients with OSA.
Collapse
Affiliation(s)
- Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Zachary T. Glovak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Luiz M. Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Appiah CB, Gardner JJ, Farmer GE, Cunningham RL, Cunningham JT. Chronic intermittent hypoxia-induced hypertension: the impact of sex hormones. Am J Physiol Regul Integr Comp Physiol 2024; 326:R333-R345. [PMID: 38406843 PMCID: PMC11381015 DOI: 10.1152/ajpregu.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Obstructive sleep apnea, a common form of sleep-disordered breathing, is characterized by intermittent cessations of breathing that reduce blood oxygen levels and contribute to the development of hypertension. Hypertension is a major complication of obstructive sleep apnea that elevates the risk of end-organ damage. Premenopausal women have a lower prevalence of obstructive sleep apnea and cardiovascular disease than men and postmenopausal women, suggesting that sex hormones play a role in the pathophysiology of sleep apnea-related hypertension. The lack of protection in men and postmenopausal women implicates estrogen and progesterone as protective agents but testosterone as a permissive agent in sleep apnea-induced hypertension. A better understanding of how sex hormones contribute to the pathophysiology of sleep apnea-induced hypertension is important for future research and possible hormone-based interventions. The effect of sex on the pathophysiology of sleep apnea and associated intermittent hypoxia-induced hypertension is of important consideration in the screening, diagnosis, and treatment of the disease and its cardiovascular complications. This review summarizes our current understanding of the impact of sex hormones on blood pressure regulation in sleep apnea with a focus on sex differences.
Collapse
Affiliation(s)
- Cephas B Appiah
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - George E Farmer
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, School of Biomedical Sciences, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, United States
| |
Collapse
|
8
|
Herlihy R, Frasson Dos Reis L, Gvritishvili A, Kvizhinadze M, Dybas E, Malhotra A, Fenik VB, Rukhadze I. Chronic intermittent hypoxia attenuates noradrenergic innervation of hypoglossal motor nucleus. Respir Physiol Neurobiol 2024; 321:104206. [PMID: 38142024 PMCID: PMC10872249 DOI: 10.1016/j.resp.2023.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The state-dependent noradrenergic activation of hypoglossal motoneurons plays an important role in the maintenance of upper airway patency and pathophysiology of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, contributes to the risk for developing neurodegenerative disorders in OSA patients. Using anterograde tracer, channelrhodopsin-2, we mapped axonal projections from noradrenergic A7 and SubCoeruleus neurons to hypoglossal nucleus in DBH-cre mice and assessed the effect of CIH on these projections. We found that CIH significantly reduced the number of axonal projections from SubCoeruleus neurons to both dorsal (by 68%) and to ventral (by73%) subregions of the hypoglossal motor nucleus compared to sham-treated animals. The animals' body weight was also negatively affected by CIH. Both effects, the decrease in axonal projections and body weight, were more pronounced in male than female mice, which was likely caused by less sensitivity of female mice to CIH as compared to males. The A7 neurons appeared to have limited projections to the hypoglossal nucleus. Our findings suggest that CIH-induced reduction of noradrenergic innervation of hypoglossal motoneurons may exacerbate progression of OSA, especially in men.
Collapse
Affiliation(s)
- Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Leonardo Frasson Dos Reis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Anzor Gvritishvili
- VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA
| | - Maya Kvizhinadze
- VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA
| | - Elizabeth Dybas
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Atul Malhotra
- University of California San Diego, San Diego, CA 92093, USA
| | - Victor B Fenik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA.
| | - Irma Rukhadze
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Pereyra K, Las Heras A, Toledo C, Díaz-Jara E, Iturriaga R, Del Rio R. Chemogenetic inhibition of NTS astrocytes normalizes cardiac autonomic control and ameliorate hypertension during chronic intermittent hypoxia. Biol Res 2023; 56:57. [PMID: 37932867 PMCID: PMC10626729 DOI: 10.1186/s40659-023-00463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is characterized by recurrent episodes of chronic intermittent hypoxia (CIH), which has been linked to the development of sympathoexcitation and hypertension. Furthermore, it has been shown that CIH induced inflammation and neuronal hyperactivation in the nucleus of the solitary tract (NTS), a key brainstem region involved in sympathetic and cardiovascular regulation. Since several studies have proposed that NTS astrocytes may mediate neuroinflammation, we aimed to determine the potential contribution of NTS-astrocytes on the pathogenesis of CIH-induced hypertension. RESULTS Twenty-one days of CIH induced autonomic imbalance and hypertension in rats. Notably, acute chemogenetic inhibition (CNO) of medullary NTS astrocytes using Designer Receptors Exclusively Activated by Designers Drugs (DREADD) restored normal cardiac variability (LF/HF: 1.1 ± 0.2 vs. 2.4 ± 0.2 vs. 1.4 ± 0.3, Sham vs. CIH vs. CIH + CNO, respectively) and markedly reduced arterial blood pressure in rats exposed to CIH (MABP: 82.7 ± 1.2 vs. 104.8 ± 4.4 vs. 89.6 ± 0.9 mmHg, Sham vs. CIH vs. CIH + CNO, respectively). In addition, the potentiated sympathoexcitation elicit by acute hypoxic chemoreflex activation in rats exposed to CIH was also completely abolished by chemogenetic inhibition of NTS astrocytes using DREADDs. CONCLUSION Our results support a role for NTS astrocytes in the maintenance of heightened sympathetic drive and hypertension during chronic exposure to intermittent hypoxia mimicking OSA.
Collapse
Affiliation(s)
- Katherin Pereyra
- Laboratory of Cardiorespiratory Control, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexandra Las Heras
- Laboratory of Cardiorespiratory Control, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratory of Cardiorespiratory Control, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología y Medicina en Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
- Department of Cell Biology and Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
11
|
Cetin-Atalay R, Meliton AY, Ozcan C, Woods PS, Sun KA, Fang Y, Hamanaka RB, Mutlu GM. Loss of heme oxygenase 2 causes reduced expression of genes in cardiac muscle development and contractility and leads to cardiomyopathy in mice. PLoS One 2023; 18:e0292990. [PMID: 37844118 PMCID: PMC10578579 DOI: 10.1371/journal.pone.0292990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder that affects a significant portion of the adult population. In addition to causing excessive daytime sleepiness and neurocognitive effects, OSA is an independent risk factor for cardiovascular disease; however, the underlying mechanisms are not completely understood. Using exposure to intermittent hypoxia (IH) to mimic OSA, we have recently reported that mice exposed to IH exhibit endothelial cell (EC) activation, which is an early process preceding the development of cardiovascular disease. Although widely used, IH models have several limitations such as the severity of hypoxia, which does not occur in most patients with OSA. Recent studies reported that mice with deletion of hemeoxygenase 2 (Hmox2-/-), which plays a key role in oxygen sensing in the carotid body, exhibit spontaneous apneas during sleep and elevated levels of catecholamines. Here, using RNA-sequencing we investigated the transcriptomic changes in aortic ECs and heart tissue to understand the changes that occur in Hmox2-/- mice. In addition, we evaluated cardiac structure, function, and electrical properties by using echocardiogram and electrocardiogram in these mice. We found that Hmox2-/- mice exhibited aortic EC activation. Transcriptomic analysis in aortic ECs showed differentially expressed genes enriched in blood coagulation, cell adhesion, cellular respiration and cardiac muscle development and contraction. Similarly, transcriptomic analysis in heart tissue showed a differentially expressed gene set enriched in mitochondrial translation, oxidative phosphorylation and cardiac muscle development. Analysis of transcriptomic data from aortic ECs and heart tissue showed loss of Hmox2 gene might have common cellular network footprints on aortic endothelial cells and heart tissue. Echocardiographic evaluation showed that Hmox2-/- mice develop progressive dilated cardiomyopathy and conduction abnormalities compared to Hmox2+/+ mice. In conclusion, we found that Hmox2-/- mice, which spontaneously develop apneas exhibit EC activation and transcriptomic and functional changes consistent with heart failure.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Cevher Ozcan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, United States of America
| | - Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
Rodriguez J, Escobar JB, Cheung EC, Kowalik G, Russo R, Dyavanapalli J, Alber BR, Harral G, Gill A, Melkie M, Jain V, Schunke KJ, Mendelowitz D, Kay MW. Hypothalamic Oxytocin Neuron Activation Attenuates Intermittent Hypoxia-Induced Hypertension and Cardiac Dysfunction in an Animal Model of Sleep Apnea. Hypertension 2023; 80:882-894. [PMID: 36794581 PMCID: PMC10027399 DOI: 10.1161/hypertensionaha.122.20149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Obstructive sleep apnea is a prevalent and poorly treated cardiovascular disease that leads to hypertension and autonomic imbalance. Recent studies that restore cardiac parasympathetic tone using selective activation of hypothalamic oxytocin neurons have shown beneficial cardiovascular outcomes in animal models of cardiovascular disease. This study aimed to determine if chemogenetic activation of hypothalamic oxytocin neurons in animals with existing obstructive sleep apnea-induced hypertension would reverse or blunt the progression of autonomic and cardiovascular dysfunction. METHODS Two groups of rats were exposed to chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea, for 4 weeks to induce hypertension. During an additional 4 weeks of exposure to CIH, 1 group was treated with selective activation of hypothalamic oxytocin neurons while the other group was untreated. RESULTS Hypertensive animals exposed to CIH and treated with daily hypothalamic oxytocin neuron activation had lower blood pressure, faster heart rate recovery times after exercise, and improved indices of cardiac function compared with untreated hypertensive animals. Microarray analysis suggested that, compared with treated animals, untreated animals had gene expression profiles associated with cellular stress response activation, hypoxia-inducible factor stabilization, and myocardial extracellular matrix remodeling and fibrosis. CONCLUSIONS In animals already presenting with CIH-induced hypertension, chronic activation of hypothalamic oxytocin neurons blunted the progression of hypertension and conferred cardioprotection after an additional 4 weeks of CIH exposure. These results have significant clinical translation for the treatment of cardiovascular disease in patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Jeannette Rodriguez
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Joan B Escobar
- Department of Pharmacology and Physiology (J.B.E., E.C.C., J.D., D.M.), The George Washington University, Washington, DC
| | - Emily C Cheung
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
- Department of Pharmacology and Physiology (J.B.E., E.C.C., J.D., D.M.), The George Washington University, Washington, DC
| | - Grant Kowalik
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Rebekah Russo
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology (J.B.E., E.C.C., J.D., D.M.), The George Washington University, Washington, DC
| | - Bridget R Alber
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Grey Harral
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Aman Gill
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Makeda Melkie
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| | - Vivek Jain
- Department of Medicine (V.J.), The George Washington University, Washington, DC
| | - Kathryn J Schunke
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
- Department of Anatomy, Biochemistry & Physiology, University of Hawaii, Honolulu, HI (K.J.S.)
| | - David Mendelowitz
- Department of Pharmacology and Physiology (J.B.E., E.C.C., J.D., D.M.), The George Washington University, Washington, DC
| | - Matthew W Kay
- Department of Biomedical Engineering (J.R., E.C.C., G.K., R.R., B.R.A., G.H., A.G., M.M., K.J.S., M.W.K.), The George Washington University, Washington, DC
| |
Collapse
|
13
|
Giampá SQC, Lorenzi-Filho G, Drager LF. Obstructive sleep apnea and metabolic syndrome. Obesity (Silver Spring) 2023; 31:900-911. [PMID: 36863747 DOI: 10.1002/oby.23679] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 03/04/2023]
Abstract
Metabolic syndrome (MS) is a heterogeneous condition associated with increased cardiovascular risk. There is growing evidence from experimental, translational, and clinical investigations that has suggested that obstructive sleep apnea (OSA) is associated with prevalent and incident components of MS and MS itself. The biological plausibility is supportive, primarily related to one of the main features of OSA, namely intermittent hypoxia: increased sympathetic activation with hemodynamic repercussions, increased hepatic glucose output, insulin resistance through adipose tissue inflammation, pancreatic β-cell dysfunction, hyperlipidemia through the worsening of fasting lipid profiles, and the reduced clearance of triglyceride-rich lipoproteins. Although there are multiple related pathways, the clinical evidence relies mainly on cross-sectional data preventing any causality assumptions. The overlapping presence of visceral obesity or other confounders such as medications challenges the ability to understand the independent contribution of OSA on MS. In this review, we revisit the evidence on how OSA/intermittent hypoxia could mediate adverse effects of MS parameters independent of adiposity. Particular attention is devoted to discussing recent evidence from interventional studies. This review describes the research gaps, the challenges in the field, perspectives, and the need for additional high-quality data from interventional studies addressing the impact of not only established but promising therapies for OSA/obesity.
Collapse
Affiliation(s)
- Sara Q C Giampá
- Graduate Program in Cardiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano F Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Tete B, Albdewi MA, Nkodila A, Muhala B, Akilimali P, Bisuta S, Makulo JR, Kayembe JM. Prevalence of risk and factors associated with obstructive sleep apnea-hypopnea syndrome in an adult population in Kinshasa, Democratic Republic of Congo. J Sleep Res 2023; 32:e13637. [PMID: 35624083 DOI: 10.1111/jsr.13637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is an underdiagnosed and lesser known disease in sub-Saharan Africa. We believe that this is the first descriptive and analytical cross-sectional study in Kinshasa (from February 1 to October 31, 2021), which included respondents aged ≥18 years. The study aimed to determine the prevalence of the risk and factors associated with OSAHS. Each participant signed a free and informed consent. Statistical analyses were performed using XLStat 2020 and the Statistical Package for the Social Sciences version 24 for Windows. Odds ratios (ORs) were calculated to determine the degree of association between these variables and a high risk of OSAHS. The significance threshold was p < 0.05 and confidence interval (CI) at 95%. There were 4,162 participants, including 2,287 men (54.9%), with an mean (SD) age of 32 ± 12.6 years. The prevalence of OSAS risk was 17.4% and 7.9% for men and women, respectively. The associated risk factors were male sex (OR 4, 95% CI 3.20-5.54), hypertension (OR 6.7, 95% CI 4.87-9.30), age ≥60 years (OR 8.7, 95% CI 4.07-18.88), obesity/overweight (OR 1.94, 95% CI 1.13-3.78), and excessive daytime sleepiness (OR 2.63, 95% CI 2.05-3.56). The risk of OSAS in Kinshasa is high and it increases with age, male sex, obesity, and hypertension. The Snoring, Tiredness, Observed apnea, high blood Pressure, Body mass index, Age, Neck circumference, and male Gender (STOP-BANG) questionnaire is an easy-to-use tool for diagnostic orientation.
Collapse
Affiliation(s)
- Boniface Tete
- Sleep Exploration Unit, Department of Internal Medicine, Department of Pulmonology, University of Kinshasa-Faculty of Medicine, University Clinics of Kinshasa, Kinshasa, Democratic Republic of Congo.,Sleep Exploration Unit, Pulmonology Department, Centre Hospitalier Arpajon, Arpajon, France
| | - Mohamad Ammar Albdewi
- Sleep Exploration Unit, Pulmonology Department, Centre Hospitalier Arpajon, Arpajon, France
| | - Aliocha Nkodila
- Department of Family Medicine and Primary Health Care, Protestant University in Congo-Faculty of Medicine, Kinshasa, Democratic Republic of Congo
| | - Blaise Muhala
- Department of Mathematics and Computer Science, University of Kinshasa-Faculty of Science, Kinshasa, Democratic Republic of Congo
| | - Pierre Akilimali
- School of Public Health, University of Kinshasa-Faculty of Medicine, Kinshasa, Democratic Republic of Congo
| | - Serge Bisuta
- Sleep Exploration Unit, Department of Internal Medicine, Department of Pulmonology, University of Kinshasa-Faculty of Medicine, University Clinics of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean Robert Makulo
- Department of Internal Medicine, Department of Nephrology, University of Kinshasa-Faculty of Medicine, University Clinics of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean Marie Kayembe
- Sleep Exploration Unit, Department of Internal Medicine, Department of Pulmonology, University of Kinshasa-Faculty of Medicine, University Clinics of Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
15
|
Luo B, Li Y, Zhu M, Cui J, Liu Y, Liu Y. Intermittent Hypoxia and Atherosclerosis: From Molecular Mechanisms to the Therapeutic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1438470. [PMID: 35965683 PMCID: PMC9365608 DOI: 10.1155/2022/1438470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Intermittent hypoxia (IH) has a dual nature. On the one hand, chronic IH (CIH) is an important pathologic feature of obstructive sleep apnea (OSA) syndrome (OSAS), and many studies have confirmed that OSA-related CIH (OSA-CIH) has atherogenic effects involving complex and interacting mechanisms. Limited preventive and treatment methods are currently available for this condition. On the other hand, non-OSA-related IH has beneficial or detrimental effects on the body, depending on the degree, duration, and cyclic cycle of hypoxia. It includes two main states: intermittent hypoxia in a simulated plateau environment and intermittent hypoxia in a normobaric environment. In this paper, we compare the two types of IH and summarizes the pathologic mechanisms and research advances in the treatment of OSA-CIH-induced atherosclerosis (AS), to provide evidence for the systematic prevention and treatment of OSAS-related AS.
Collapse
Affiliation(s)
- Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
16
|
Khan ZA, Sumsuzzman DM, Choi J, Kamenos G, Hong Y. Pre- and post-conditioning with poly I:C exerts neuroprotective effect against cerebral ischemia injury in animal models: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1168-1182. [PMID: 35510663 PMCID: PMC9253751 DOI: 10.1111/cns.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/08/2022] [Accepted: 04/07/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Toll-like receptor (TLR) agonist polyinosinic-polycytidylic acid (poly I:C) exerts neuroprotective effects against cerebral ischemia (CI), but concrete evidence supporting its exact mechanism of action is unclear. METHODS We evaluated the neuroprotective role of poly I:C by assessing CI indicators such as brain infarct volume (BIV), neurological deficit score (N.S.), and signaling pathway proteins. Moreover, we performed a narrative review to illustrate the mechanism of action of TLRs and their role in CI. Our search identified 164 articles and 10 met the inclusion criterion. RESULTS Poly I:C reduces BIV and N.S. (p = 0.00 and p = 0.03). Interestingly, both pre- and post-conditioning decrease BIV (preC p = 0.04 and postC p = 0.00) and N.S. (preC p = 0.03 and postC p = 0.00). Furthermore, poly I:C upregulates TLR3 [SMD = 0.64; CIs (0.56, 0.72); p = 0.00], downregulates nuclear factor-κB (NF-κB) [SMD = -1.78; CIs (-2.67, -0.88); p = 0.0)], and tumor necrosis factor alpha (TNF-α) [SMD = -16.83; CIs (-22.63, -11.02); p = 0.00]. CONCLUSION We showed that poly I:C is neuroprotective and acts via the TLR3/NF-κB/TNF-α pathway. Our review indicated that suppressing TLR 2/4 may illicit neuroprotection against CI. Further research on simultaneous activation of TLR3 with poly I:C and suppression of TLR 2/4 might open new vistas for the development of therapeutics against CI.
Collapse
Affiliation(s)
- Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Korea
| | - Dewan Md Sumsuzzman
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Korea
| | - Jeonghyun Choi
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Korea
| | - George Kamenos
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
| | - Yonggeun Hong
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Research Center for Aged-life Redesign (RCAR), Inje University, Gimhae, Korea.,Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea
| |
Collapse
|
17
|
Khalid MAU, Kim KH, Chethikkattuveli Salih AR, Hyun K, Park SH, Kang B, Soomro AM, Ali M, Jun Y, Huh D, Cho H, Choi KH. High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip. LAB ON A CHIP 2022; 22:1764-1778. [PMID: 35244110 DOI: 10.1039/d1lc01079d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days. The DO sensors showed a high sensitivity of 31.1 nA L mg-1 with a limit of detection (LOD) of 0.67 mg L-1 within the 0-9 mg L-1 range, whereas the ROS sensor had a higher sensitivity of 1.44 nA μm-1 with a limit of detection of 1.7 μm within the 0-300 μm range. The dynamics of the barrier tight junctions are quantified with the help of an in-house developed trans-epithelial-endothelial electrical impedance (TEEI) sensor. Immunofluorescence staining was used to evaluate the expressions of HIF-1α and tight junction protein (TJP) ZO-1. This platform can also be used to enhance bioavailability assays, drug transport studies under an oxygen-controlled environment, and even other barrier organ models, as well as for various applications like toxicity testing, disease modeling and drug screening.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Khalid
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Kyung Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | | | - Kinam Hyun
- BioSpero, Inc., Jeju-do, Republic of Korea
| | | | - Bohye Kang
- BioSpero, Inc., Jeju-do, Republic of Korea
| | - Afaque Manzoor Soomro
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, Sindh, Pakistan
| | - Muhsin Ali
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | - Yesl Jun
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Heeyeong Cho
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- BioSpero, Inc., Jeju-do, Republic of Korea
| |
Collapse
|
18
|
Khan ZA, Sumsuzzman DM, Choi J, Hong Y. Neurodegenerative effect of DAPK1 after cerebral hypoxia-ischemia is associated with its post-transcriptional and signal transduction regulations: A systematic review and meta-analysis. Ageing Res Rev 2022; 76:101593. [PMID: 35202858 DOI: 10.1016/j.arr.2022.101593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Cerebral hypoxia-ischemia (CHI) causes brain aging, neurological disorders, cognitive decline, motor function impairment, and mortality. Inhibiting death-associated protein kinase 1 (DAPK1) has shown therapeutic potential against CHI, but several reports contradict its protective function, mechanism of activation, and signal transduction. Here, we systematically reviewed the role and the activation mechanism of DAPK1, and quantitatively assess the efficacy of DAPK1 inhibition (DI) methods in neuroprotection, following a CHI in animal models. Embase and PubMed were searched for relevant studies. Overall, 13 studies met the inclusion criteria, and the SYRCLE Risk of bias tool (RoB) tool was used to assess RoB. StataSE 16 was used for meta-analysis and network meta-analysis (NMA). Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated to estimate the effect size. DI was associated with the reduction of brain infarct volume (BIV) [SMD = -1.70, 95% CI (-2.10, -1.30); p = 0.00], neurological score (N.S.), neuronal degeneration, with no change in the level of in cell death [SMD = -0.83, 95% CI (-2.00, 0.35); p = 0.17], indicating the protective role of DI against CHI. No differences were found in DAPK1 mRNA and protein levels [SMD = 0.50, 95% CI (-0.05, 1.04); p = 0.07] {single-study driven; upregulated after exclusion (p = 0.01, I2 = 36.43)}, whereas phospho-DAPK1 [SMD = -2.22, 95% CI (-3.69, -0.75); p = 0.00] was downregulated and phosphorylated myosin light chain [SMD = 3.37, 95% CI (2.51, 4.96); p = 0.00] was upregulated between CHI and sham groups. Furthermore, we performed NMA to understand the molecular level at which DI offers maximum protection against BIV. Post-transcriptional inhibition (PTI; SUCRA, 82.6%) and gene knockout showed best (KO; SUCRA, 81.3%), signal transduction inhibition (STI; SUCRA, 49.5%) offered 3rd best, while catalytic activity inhibition (CAI; SUCRA, 0.3%) exhibited the lowest reduction in BIV against CHI. The results demonstrate that DI has a neuroprotective effect against CHI and DAPK1 might be regulated at the post-transcriptional and post-translational levels after CHI. Inhibiting DAPK1 at the post-transcriptional level and blocking multiple signal transduction pathways of DAPK1 could lead to better functional recovery against CHI. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
|
19
|
Barnes LA, Mesarwi OA, Sanchez-Azofra A. The Cardiovascular and Metabolic Effects of Chronic Hypoxia in Animal Models: A Mini-Review. Front Physiol 2022; 13:873522. [PMID: 35432002 PMCID: PMC9008331 DOI: 10.3389/fphys.2022.873522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models are useful to understand the myriad physiological effects of hypoxia. Such models attempt to recapitulate the hypoxemia of human disease in various ways. In this mini-review, we consider the various animal models which have been deployed to understand the effects of chronic hypoxia on pulmonary and systemic blood pressure, glucose and lipid metabolism, atherosclerosis, and stroke. Chronic sustained hypoxia (CSH)-a model of chronic lung or heart diseases in which hypoxemia may be longstanding and persistent, or of high altitude, in which effective atmospheric oxygen concentration is low-reliably induces pulmonary hypertension in rodents, and appears to have protective effects on glucose metabolism. Chronic intermittent hypoxia (CIH) has long been used as a model of obstructive sleep apnea (OSA), in which recurrent airway occlusion results in intermittent reductions in oxyhemoglobin saturations throughout the night. CIH was first shown to increase systemic blood pressure, but has also been associated with other maladaptive physiological changes, including glucose dysregulation, atherosclerosis, progression of nonalcoholic fatty liver disease, and endothelial dysfunction. However, models of CIH have generally been implemented so as to mimic severe human OSA, with comparatively less focus on milder hypoxic regimens. Here we discuss CSH and CIH conceptually, the effects of these stimuli, and limitations of the available data.
Collapse
Affiliation(s)
- Laura A. Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Ana Sanchez-Azofra
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Servicio de Neumología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Deep Singh T. Abnormal Sleep-Related Breathing Related to Heart Failure. Sleep Med Clin 2022; 17:87-98. [PMID: 35216764 DOI: 10.1016/j.jsmc.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sleep-disordered breathing (SDB) is highly prevalent in patients with heart failure (HF). Untreated obstructive sleep apnea (OSA) and central sleep apnea (CSA) in patients with HF are associated with worse outcomes. Detailed sleep history along with polysomnography (PSG) should be conducted if SDB is suspected in patients with HF. First line of treatment is the optimization of medical therapy for HF and if symptoms persist despite optimization of the treatment, positive airway pressure (PAP) therapy will be started to treat SDB. At present, there is limited evidence to prescribe any drugs for treating CSA in patients with HF. There is limited evidence for the efficacy of continuous positive airway pressure (CPAP) or adaptive servo-ventilation (ASV) in improving mortality in patients with heart failure with reduced ejection fraction (HFrEF). There is a need to perform well-designed studies to identify different phenotypes of CSA/OSA in patients with HF and to determine which phenotype responds to which therapy. Results of ongoing trials, ADVENT-HF, and LOFT-HF are eagerly awaited to shed more light on the management of CSA in patients with HF. Until then the management of SDB in patients with HF is limited due to the lack of evidence and guidance for treating SDB in patients with HF.
Collapse
Affiliation(s)
- Tripat Deep Singh
- Academy of Sleep Wake Science, #32 St.no-9 Guru Nanak Nagar, near Gurbax Colony, Patiala, Punjab, India 147003.
| |
Collapse
|
21
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
22
|
Xia Y, You K, Xiong Y. Relationships Between Cardinal Features of Obstructive Sleep Apnea and Blood Pressure: A Retrospective Study. Front Psychiatry 2022; 13:846275. [PMID: 35463518 PMCID: PMC9027567 DOI: 10.3389/fpsyt.2022.846275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is associated with hypertension; however, the associations between cardinal features of OSA, such as intermittent hypoxia (IH) and sleep fragmentation (SF), and blood pressure remain unclear. We performed this study to address this issue. METHOD We investigated 335 subjects with the polysomnography (PSG) tests. Data, including basic characteristics, PSG parameters, and blood pressure, were collected. We calculated p-values for linear trends of blood pressure across oxygen-desaturation index (ODI)/microarousal index (MAI) quartiles. Logistic regressions were used to determine the risk factors for abnormal blood pressure and to detect the multiplicative interaction between ODI and MAI with blood pressure. RESULTS After adjusting for multiple variables, compared with subjects with lower ODI quartiles, those with higher ODI quartiles had significant higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) (p for trend = 0.010 and 0.018, respectively). And compared with subjects with lower ODI quartiles, those with higher ODI quartiles were also more likely to have abnormal DBP and hypertension after adjusting for multiple variables. Similarly, compared with subjects with lower MAI quartiles, those with higher MAI quartiles had significant higher SBP and DBP, and were more likely to have abnormal DBP and hypertension. No significant multiplicative interactions between ODI and MAI with blood pressure were detected. CONCLUSION Subjects with more severe IH/SF had significant higher blood pressure and were more likely to have abnormal DBP and hypertension than those with less severe IH/SF. No interaction between IH and SF on the relationship with blood pressure was shown.
Collapse
Affiliation(s)
- Yunyan Xia
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai You
- Department of Anesthesiology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanping Xiong
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Romero D, Jane R. Relationship between Sleep Stages and HRV response in Obstructive Sleep Apnea Patients. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5535-5538. [PMID: 34892378 DOI: 10.1109/embc46164.2021.9630148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Patients suffering from obstructive sleep apnea (OSA) usually present an increased sympathetic activity caused by the intermittent hypoxia effect on autonomic control. This study evaluated the relationship between sleep stages and the apnea duration, frequency, and type, as well as their impact on HRV markers in different groups of disease severity. The hypnogram and R-R interval signals were extracted in 81 OSA patients from night polysomnographic (PSG) recordings. The apnea-hypopnea index (AHI) defined patient classification as mild-moderate (AHI<=30, n=44) or severe (AHI>30, n=37). The normalized power in VLH, LF, and HF bands of RR series were estimated by a time-frequency approach and averaged in 1-min epochs of normal and apnea segments. The autonomic response and the impact of sleep stages were assessed in both segments to compare patient groups. Deeper sleep stages (particularly S2) concentrated the shorter and mild apnea episodes (from 10 to 40 s) compared to light (SWS) and REM sleep. Longer episodes (>50 s) although less frequent, were of similar incidence in all stages. This pattern was more pronounced for the group of severe patients. Moreover, during apnea segments, LFnu was higher (p=0.044) for the severe group, since V LFnu and HFnu presented the greatest changes when compared to normal segments. The non-REM sleep seems to better differentiate OSA patients groups, particularly through VLFnu and HFnu(p<0.001). A significant difference in both sympathetic and vagal modulation between REM and non-REM sleep was only found within the severe group. These results confirm the importance of considering sleep stages for HRV analysis to further assess OSA disease severity, beyond the traditional and clinically limited AHI values.Clinical relevance-Accounting for sleep stages during HRV analysis could better assess disease severity in OSA patients.
Collapse
|
24
|
Fernandes LG, Trenhago PR, Feijóo RA, Blanco PJ. Integrated cardiorespiratory system model with short timescale control mechanisms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3332. [PMID: 32189436 DOI: 10.1002/cnm.3332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/26/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
A compartmental model of the cardiorespiratory system featuring pulsatile blood flow and gas transport, as well as closed loop mechanisms of cardiorespiratory regulation is presented. Short timescale regulatory action includes baroreflex, peripheral and central chemoreflex feedback. The cardiorespiratory model is composed by compartments to describe blood flow and gas exchange in the major systemic and pulmonic regions. The control systems include formulations to afferent activity of arterial baroreceptor and peripheral and central chemoreceptors. Simulations described here include situations of hypoxia, hypercapnia, and hemorrhage. The overall responses of our simulations agree with physiological (experimental) and theoretical data. Our results suggest that the present model could be used to further understand the interplay among major regulatory mechanisms in the functioning of the cardiovascular and respiratory systems in cases of normal and abnormal physiological conditions.
Collapse
Affiliation(s)
- Luciano G Fernandes
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Paulo R Trenhago
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Raúl A Feijóo
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Pablo J Blanco
- Instituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Petrópolis, Rio de Janeiro, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Kinkead R, Gagnon M, Joseph V, Sériès F, Ambrozio-Marques D. Stress and Loss of Ovarian Function: Novel Insights into the Origins of Sex-Based Differences in the Manifestations of Respiratory Control Disorders During Sleep. Clin Chest Med 2021; 42:391-405. [PMID: 34353446 DOI: 10.1016/j.ccm.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The respiratory system of women and men develops and functions in distinct neuroendocrine milieus. Despite differences in anatomy and neural control, homeostasis of arterial blood gases is ensured in healthy individuals regardless of sex. This convergence in function differs from the sex-based differences observed in many respiratory diseases. Sleep-disordered breathing (SDB) results mainly from episodes of upper airway closure. This complex and multifactorial respiratory disorder shows significant sexual dimorphism in its clinical manifestations and comorbidities. Guided by recent progress from basic research, this review discusses the hypothesis that stress is necessary to reveal the sexual dimorphism of SDB.
Collapse
Affiliation(s)
- Richard Kinkead
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada.
| | - Marianne Gagnon
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Vincent Joseph
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Frédéric Sériès
- Department of Medicine, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, Québec, Canada
| | - Danuzia Ambrozio-Marques
- Department of Pediatrics, Université Laval, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, 2725 Chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| |
Collapse
|
26
|
Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021; 10:cells10081906. [PMID: 34440675 PMCID: PMC8394846 DOI: 10.3390/cells10081906] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF-κB can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of either protein involved in the NF-κB signaling pathway that have provided relevant information about the intricate processes or molecular mechanisms that control ageing. We have reviewed the relationship of NF-κB and premature ageing; the development of cancer associated with ageing and the implication of NF-κB activation in the development of age-related diseases, some of which greatly increase the risk of developing cancer.
Collapse
|
27
|
Cetin-Atalay R, Meliton AY, Wu D, Woods PS, Sun KA, Peng YJ, Nanduri J, Su X, Fang Y, Hamanaka RB, Prabhakar N, Mutlu GM. Intermittent Hypoxia-Induced Activation of Endothelial Cells Is Mediated via Sympathetic Activation-Dependent Catecholamine Release. Front Physiol 2021; 12:701995. [PMID: 34322038 PMCID: PMC8311436 DOI: 10.3389/fphys.2021.701995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a common breathing disorder affecting a significant percentage of the adult population. OSA is an independent risk factor for cardiovascular disease (CVD); however, the underlying mechanisms are not completely understood. Since the severity of hypoxia correlates with some of the cardiovascular effects, intermittent hypoxia (IH) is thought to be one of the mechanisms by which OSA may cause CVD. Here, we investigated the effect of IH on endothelial cell (EC) activation, characterized by the expression of inflammatory genes, that is known to play an important role in the pathogenesis of CVD. Exposure of C57BL/6 mice to IH led to aortic EC activation, while in vitro exposure of ECs to IH failed to do so, suggesting that IH does not induce EC activation directly, but indirectly. One of the consequences of IH is activation of the sympathetic nervous system and catecholamine release. We found that exposure of mice to IH caused elevation of circulating levels of catecholamines. Inhibition of the IH-induced increase in catecholamines by pharmacologic inhibition or by adrenalectomy or carotid body ablation prevented the IH-induced EC activation in mice. Supporting a key role for catecholamines, epinephrine alone was sufficient to cause EC activation in vivo and in vitro. Together, these results suggested that IH does not directly induce EC activation, but does so indirectly via release of catecholamines. These results suggest that targeting IH-induced sympathetic nerve activity and catecholamine release may be a potential therapeutic target to attenuate the CV effects of OSA.
Collapse
Affiliation(s)
- Rengul Cetin-Atalay
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Angelo Y Meliton
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Parker S Woods
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Kaitlyn A Sun
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States
| | - Ying-Jie Peng
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Jayasri Nanduri
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Xiaoyu Su
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Robert B Hamanaka
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Nanduri Prabhakar
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Emergency Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| | - Gökhan M Mutlu
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, United States.,Institute for Integrative Physiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
28
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
29
|
Fink AM, Burke LA, Sharma K. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats. Respir Physiol Neurobiol 2021; 288:103653. [PMID: 33716095 PMCID: PMC8112452 DOI: 10.1016/j.resp.2021.103653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
To determine how partial lesioning of the pedunculopontine nucleus (PPT) affects sleep, breathing, and blood pressure in rats, ibotenic acid (IBO) was injected bilaterally into the PPT. Sham-injected (saline) and IBO-lesioned rats were first studied under normoxic conditions (40 recordings were obtained from 15 rats, with each recording lasting for 6 daytime hours). Rats were then exposed to intermittent hypoxia for 4 ± 2 days (51 recordings from 12 rats, each lasting 6 daytime hours). The intermittent hypoxia protocol involved an oxygen decline lasting 35 s (to a nadir of 10 %) followed by a 50 s increase to normoxia. The IBO caused an estimated 53 % reduction in PPT neurons. When normoxic, IBO-lesioned rats had remarkedly normal sleep architecture, respiratory rates, and mean arterial pressure. The exposure to intermittent hypoxia evoked tachypnea in both the IBO-lesioned and sham-injected rats. When intermittently hypoxic, IBO-lesioned rats demonstrated a significant reduction in the duration of rapid eye movement (REM) sleep. We conclude that partial lesions of the PPT do not disrupt cardiorespiratory activities, but a reduction in PPT neurons impairs the ability to sustain REM sleep under hypoxic conditions.
Collapse
Affiliation(s)
- Anne M Fink
- Center for Sleep and Health Research, University of Illinois Chicago, 845 S. Damen Ave (MC 802), Room 750, Chicago, IL, 60612, United States.
| | - Larisa A Burke
- Office of Research Facilitation, University of Illinois Chicago, 845 S. Damen Ave (MC 802), Room 615, Chicago, IL, 60612, United States.
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois Chicago, 808 S Wood St (MC 512), Room 666, Chicago, IL, United States.
| |
Collapse
|
30
|
Gonzalez-Rothi EJ, Tadjalli A, Allen LL, Ciesla MC, Chami ME, Mitchell GS. Protocol-Specific Effects of Intermittent Hypoxia Pre-Conditioning on Phrenic Motor Plasticity in Rats with Chronic Cervical Spinal Cord Injury. J Neurotrauma 2021; 38:1292-1305. [PMID: 33446048 PMCID: PMC8182475 DOI: 10.1089/neu.2020.7324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
"Low-dose" acute intermittent hypoxia (AIH; 3-15 episodes/day) is emerging as a promising therapeutic strategy to improve motor function after incomplete cervical spinal cord injury (cSCI). Conversely, chronic "high-dose" intermittent hypoxia (CIH; > 80-100 episodes/day) elicits multi-system pathology and is a hallmark of sleep apnea, a condition highly prevalent in individuals with cSCI. Whereas daily AIH (dAIH) enhances phrenic motor plasticity in intact rats, it is abolished by CIH. However, there have been no direct comparisons of prolonged dAIH versus CIH on phrenic motor outcomes after chronic cSCI. Thus, phrenic nerve activity and AIH-induced phrenic long-term facilitation (pLTF) were assessed in anesthetized rats. Experimental groups included: 1) intact rats exposed to 28 days of normoxia (Nx28; 21% O2; 8 h/day), and three groups with chronic C2 hemisection (C2Hx) exposed to either: 2) Nx28; 3) dAIH (dAIH28; 10, 5-min episodes of 10.5% O2/day; 5-min intervals); or 4) CIH (IH28-2/2; 2-min episodes; 2-min intervals; 8 h/day). Baseline ipsilateral phrenic nerve activity was reduced in injured versus intact rats but unaffected by dAIH28 or IH28-2/2. There were no group differences in contralateral phrenic activity. pLTF was enhanced bilaterally by dAIH28 versus Nx28 but unaffected by IH28-2/2. Whereas dAIH28 enhanced pLTF after cSCI, it did not improve baseline phrenic output. In contrast, unlike shorter protocols in intact rats, CIH28-2/2 did not abolish pLTF in chronic C2Hx. Mechanisms of differential responses to dAIH versus CIH are not yet known, particularly in the context of cSCI. Further, it remains unclear whether enhanced phrenic motor plasticity can improve breathing after cSCI.
Collapse
Affiliation(s)
| | - Arash Tadjalli
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Latoya L. Allen
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Marissa C. Ciesla
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Mohamad El Chami
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Gordon S. Mitchell
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Barnett WH, Latash EM, Capps RA, Dick TE, Wehrwein EA, Molkov YI. Traube-Hering waves are formed by interaction of respiratory sinus arrhythmia and pulse pressure modulation in healthy men. J Appl Physiol (1985) 2020; 129:1193-1202. [PMID: 32940558 DOI: 10.1152/japplphysiol.00452.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excessive blood pressure variation is linked to the development of hypertension and other diseases. This study assesses the relative role of respiratory sinus arrhythmia (RSA) and pulse pressure (PP) on the amplitude and timing of blood pressure variability with respiration [Traube-Hering (TH) waves]. We analyzed respiratory, electrocardiogram, and blood pressure traces from healthy, supine male subjects (n = 10, mean age = 26.7 ± 1.4) during 20-min epochs of resting, slow deep breathing (SDB), and recovery. Across all epochs, blood pressure and heart rate (HR) were modulated with respiration and the magnitude of RSA; TH waves increased during SDB. The data were deconstructed using a simple mathematical model of blood pressure to dissect the relative roles of RSA and PP on TH waves. We constructed the time series of the R-wave peaks and compared the recorded TH waves with that predicted by the model. Given that cardiac output is determined by both heart rate and stroke volume, it was surprising that the magnitude of the TH waves could be captured by only HR modulation. However, RSA alone did not accurately predict the timing of TH waves relative to the respiratory cycle. Adding respiratory modulation of PP to the model corrected the phase shift showing the expected pattern of BP rising during inspiration with the peak of the TH wave during early expiration. We conclude that short-term variability of blood pressure referred to as TH waves has at least two independent mechanisms whose interaction forms their pattern: RSA and respiratory-driven changes in PP.NEW & NOTEWORTHY Variability in blood pressure has become an important metric to consider as more is learned about the link between excessive blood pressure variability and adverse health outcomes. In this study using slow deep breathing in human subjects, we found that heart rate and pulse pressure variations have comparable effects on the amplitude of blood pressure waves, and it is the common action of the two that defines the phase relationship between respiration and blood pressure oscillations.
Collapse
Affiliation(s)
- William H Barnett
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Elizaveta M Latash
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Robert A Capps
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio.,Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
32
|
Romero D, Jane R. Hypoxia-induced Effects on ECG Depolarization by Time Warping Analysis during Recurrent Obstructive Apnea. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2626-2629. [PMID: 33018545 DOI: 10.1109/embc44109.2020.9176409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we evaluated a non-linear approach to estimate morphological variations in ECG depolarization, in the context of intermittent hypoxia (IH). Obstructive apnea sequences were provoked for 15 minutes in anesthetized Sprague-Dawley rats, alternating with equal periods of normal breathing, in a recurrent obstructive sleep apnea (OSA) model. Each apnea episode lasted 15 s, while the frequency used for each sequence was randomly selected. Average heartbeats obtained before the start and at the end of each episode, were delineated to extract only the QRS wave. Then, the segmented QRS waves were non-linearly aligned using the dynamic time warping (DWT) algorithm. Morphological QRS changes in both the amplitude and temporal domains were estimated from this alignment procedure. The hypoxic and basal segments were analyzed using ECG (lead I) recordings acquired during the experiment. To assess the effects of IH over time, the changes relative to the basal QRS wave were determined, in the intervals prior to each successive events until the end of the experiment. The results showed a progressive increase in the amplitude and time-domain morphological markers of the QRS wave along the experiment, which were strongly correlated with the changes in traditional QRS markers (r ≈ 0.9). Significant changes were found between pre-apnea and hypoxic measures only for the time-domain analysis (p<0.001), probably due to the short duration of the simulated apnea episodes.Clinical relevance Increased variability in ECG depolarization morphology during recurrent hypoxic episodes would be closely related to the expression of cardiovascular dysfunction in OSA patients.
Collapse
|
33
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020; 76:300-311. [PMID: 32594802 DOI: 10.1161/hypertensionaha.120.14521] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension. The arterial baroreflex reduces arterial blood pressure variability and contributes to the arterial blood pressure set point. This set point can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla oblongata, and both are plausible causes of neurogenic hypertension. Sensory afferent dysfunction (reduced baroreceptor activity, increased renal, or carotid body afferent) contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, Ang II [angiotensin II]) or sodium. Leptin raises blood vessel sympathetic nerve activity by activating the carotid bodies and subsets of arcuate neurons. Ang II works in the lamina terminalis and probably throughout the brain stem and hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the excess sympathetic nerve activity is mediated to some extent by activation of presympathetic neurons located in the rostral ventrolateral medulla or the paraventricular nucleus of the hypothalamus. Increased activity of the orexinergic neurons also contributes to hypertension in selected models.
Collapse
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland (V.L.B.)
| |
Collapse
|
34
|
Parmaksız E, Torun Parmaksız E. Reversibility of microalbuminuria with continuous positive airway pressure treatment in obstructive sleep apnea syndrome. Int Urol Nephrol 2020; 52:1719-1724. [PMID: 32488755 DOI: 10.1007/s11255-020-02519-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Microalbuminuria is an early marker of kidney damage and an early predictor and risk factor for cardiovascular diseases. We aimed to evaluate the association between albuminuria levels in different severity obstructive sleep apnea syndrome (OSAS) cases and to find out the efficacy of CPAP treatment on microalbuminuria. MATERIALS AND METHODS We conducted a prospective study on subjects who underwent polysomnography. The polysomnographic data were recorded to establish the presence and severity of OSAS. The blood and urine samples were taken both at the time of diagnosis and 3 months after CPAP therapy. The relationship between the severity of OSAS and microalbuminuria and the effect of CPAP treatment on microalbuminuria were evaluated. RESULTS The study population consisted of 449 subjects. Better compliance to CPAP was associated with significantly reduced levels of microlbuminuria. Urinary albumin/creatinine was increased in severe cases, but the difference was not statistically significant. In the non-compliant group, microalbumin/creatinine ratio was 25.24 prior to initiation of CPAP treatment and 28.36 at the third month control visit (p = 0.25). In the compliant group, microalbumin/creatinine ratio was 49.71 prior to initiation of CPAP treatment and 22.30 at the third month control visit (p = 0.04). CONCLUSION Our study demonstrated that good compliance to CPAP therapy is associated with a decrease in microalbuminuria. Patients who used CPAP regularly had a significant decline in albumin/creatinine ratio after 3 months of CPAP therapy.
Collapse
Affiliation(s)
- Ergün Parmaksız
- Nephrology Clinic, Istanbul Kartal Dr. Lütfi Kirdar Training and Research Hospital, Kartal, Istanbul, Turkey.
| | - Elif Torun Parmaksız
- Department of Chest Diseases, Istanbul Kartal Dr. Lütfi Kirdar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
35
|
Romero D, Jane R. Non-linear HRV Analysis to Quantify the Effects of Intermittent Hypoxia Using an OSA Rat Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4994-4997. [PMID: 31946981 DOI: 10.1109/embc.2019.8857636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this paper, a non-linear HRV analysis was performed to assess fragmentation signatures observed in heartbeat time series after intermittent hypoxia (IH). Three markers quantifying short-term fragmentation levels, PIP, IALS and PSS, were evaluated on R-R interval series obtained in a rat model of recurrent apnea. Through airway obstructions, apnea episodes were periodically simulated in six anesthetized Sprague-Dawley rats. The number of apnea events per hour (AHI index) was varied during the first half of the experiment while apnea episodes lasted 15 s. For the second part, apnea episodes lasted 5, 10 or 15 s, but the AHI index was fixed. Recurrent apnea was repeated for 15-min time intervals in all cases, alternating with basal periods of the same duration. The fragmentation markers were evaluated in segments of 5 minutes, selected at the beginning and end of the experiment. The impact of the heart and breathing rates (HR and BR, respectively) on the parameter estimates was also investigated. The results obtained show a significant increase (from 5 to 10%, p <; 0.05) in fragmentation measures of heartbeat time series after IH, indicating a clear deterioration of the initial conditions. Moreover, there was a strong linear relationship (r > 0.9) between these markers and BR, as well as with the ratio given by HR/BR. Although fragmentation may be impacted by IH, we found that it is highly dependent on HR and BR values and thus, they should be considered during its calculation or used to normalize the fragmentation estimates.
Collapse
|
36
|
Ayas NT, Foster GE, Shah N, Floras J, Laher I. Could Adjunctive Pharmacology Mitigate Cardiovascular Consequences of Obstructive Sleep Apnea? Am J Respir Crit Care Med 2020; 200:551-555. [PMID: 30875238 DOI: 10.1164/rccm.201811-2097pp] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Najib T Ayas
- Sleep Disorders Program.,Division of Respiratory Medicine and.,Division of Critical Care Medicine, Department of Medicine, and.,Canadian Sleep and Circadian Network and
| | - Glen E Foster
- Canadian Sleep and Circadian Network and.,Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Neomi Shah
- Division of Pulmonary, Critical Care, and Sleep, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - John Floras
- Division of Cardiology, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Sleep and Circadian Network and
| |
Collapse
|
37
|
Melo MR, Gasparini S, Silva EF, Karlen-Amarante M, Speretta GF, Lauar MR, Pedrino GR, Menani JV, Colombari DSA, Zoccal DB, Colombari E. Renovascular hypertension elevates pulmonary ventilation in rats by carotid body-dependent mechanisms. Am J Physiol Regul Integr Comp Physiol 2020; 318:R730-R742. [PMID: 32022595 DOI: 10.1152/ajpregu.00134.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The two kidney-one clip (2K1C) renovascular hypertension depends on the renin-angiotensin system and sympathetic overactivity. The maintenance of 2K1C hypertension also depends on inputs from the carotid bodies (CB), which when activated stimulate the respiratory activity. In the present study, we investigated the importance of CB afferent activity for the ventilatory responses in 2K1C hypertensive rats and for phrenic and hypoglossal activities in in situ preparations of normotensive rats treated with angiotensin II. Silver clips were implanted around the left renal artery of male Holtzman rats (150 g) to induce renovascular hypertension. Six weeks after clipping, hypertensive 2K1C rats showed, in conscious state, elevated resting tidal volume and minute ventilation compared with the normotensive group. 2K1C rats also presented arterial alkalosis, urinary acidification, and amplified hypoxic ventilatory response. Carotid body removal (CBR), 2 wk before the experiments (4th week after clipping), significantly reduced arterial pressure and pulmonary ventilation in 2K1C rats but not in normotensive rats. Intra-arterial administration of angiotensin II in the in situ preparation of normotensive rats increased phrenic and hypoglossal activities, responses that were also reduced after CBR. Results show that renovascular hypertensive rats exhibit increased resting ventilation that depends on CB inputs. Similarly, angiotensin II increases phrenic and hypoglossal activities in in situ preparations of normotensive rats, responses that also depend on CB inputs. Results suggest that mechanisms that depend on CB inputs in renovascular hypertensive rats or during angiotensin II administration in normotensive animals increase respiratory drive.
Collapse
Affiliation(s)
- Mariana Rosso Melo
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Silvia Gasparini
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Elaine F Silva
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil.,Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Marlusa Karlen-Amarante
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Guilherme F Speretta
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mariana R Lauar
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Jose V Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Debora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
38
|
Rubin BR, Milner TA, Pickel VM, Coleman CG, Marques-Lopes J, Van Kempen TA, Kazim SF, McEwen BS, Gray JD, Pereira AC. Sex and age differentially affect GABAergic neurons in the mouse prefrontal cortex and hippocampus following chronic intermittent hypoxia. Exp Neurol 2019; 325:113075. [PMID: 31837319 DOI: 10.1016/j.expneurol.2019.113075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA), a chronic sleep disorder characterized by repetitive reduction or cessation of airflow during sleep, is widely prevalent and is associated with adverse neurocognitive sequelae including increased risk of Alzheimer's disease (AD). In humans, OSA is more common in elderly males. OSA is characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), and recent epidemiological studies point to CIH as the best predictor of neurocognitive sequelae associated with OSA. The sex- and age- specific effects of OSA-associated CIH on specific cell populations such as γ-aminobutyric acid (GABA)-ergic neurons in the hippocampus and the medial prefrontal cortex (mPFC), regions important for cognitive function, remain largely unknown. The present study examined the effect of 35 days of either moderate (10% oxygen) or severe (5% oxygen) CIH on GABAergic neurons in the mPFC and hippocampus of young and aged male and female mice as well as post-accelerated ovarian failure (AOF) female mice. In the mPFC and hippocampus, the number of GABA-labeled neurons increased in aged and young severe CIH males compared to controls but not in young moderate CIH males. This change was not representative of the individual GABAergic cell subpopulations, as the number of parvalbumin-labeled neurons decreased while the number of somatostatin-labeled neurons increased in the hippocampus of severe CIH young males only. In all female groups, the number of GABA-labeled cells was not different between CIH and controls. However, in the mPFC, CIH increased the number of parvalbumin-labeled neurons in young females and the number of somatostatin-labeled cells in AOF females but decreased the number of somatostatin-labeled cells in aged females. In the hippocampus, CIH decreased the number of somatostatin-labeled neurons in young females. CIH decreased the density of vesicular GABA transporter in the mPFC of AOF females only. These findings suggest sex-specific changes in GABAergic neurons in the hippocampus and mPFC with males showing an increase of this cell population as compared to their female counterparts following CIH. Age at exposure and severity of CIH also differentially affect the GABAergic cell population in mice.
Collapse
Affiliation(s)
- Batsheva R Rubin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Teresa A Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Christal G Coleman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, United States of America
| | - Syed Faraz Kazim
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America
| | - Ana C Pereira
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, United States of America; Department of Neurology, Icahn School of Medicine, Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
39
|
Faini A, Caravita S, Parati G, Castiglioni P. Alterations of Cardiovascular Complexity during Acute Exposure to High Altitude: A Multiscale Entropy Approach. ENTROPY 2019. [PMCID: PMC7514569 DOI: 10.3390/e21121224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stays at high altitude induce alterations in cardiovascular control and are a model of specific pathological cardiovascular derangements at sea level. However, high-altitude alterations of the complex cardiovascular dynamics remain an almost unexplored issue. Therefore, our aim is to describe the altered cardiovascular complexity at high altitude with a multiscale entropy (MSE) approach. We recorded the beat-by-beat series of systolic and diastolic blood pressure and heart rate in 20 participants for 15 min twice, at sea level and after arrival at 4554 m a.s.l. We estimated Sample Entropy and MSE at scales of up to 64 beats, deriving average MSE values over the scales corresponding to the high-frequency (MSEHF) and low-frequency (MSELF) bands of heart-rate variability. We found a significant loss of complexity at heart-rate and blood-pressure scales complementary to each other, with the decrease with high altitude being concentrated at Sample Entropy and at MSEHF for heart rate and at MSELF for blood pressure. These changes can be ascribed to the acutely increased chemoreflex sensitivity in hypoxia that causes sympathetic activation and hyperventilation. Considering high altitude as a model of pathological states like heart failure, our results suggest new ways for monitoring treatments and rehabilitation protocols.
Collapse
Affiliation(s)
- Andrea Faini
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, S.Luca Hospital, 20149 Milan, Italy; (A.F.); (S.C.)
| | - Sergio Caravita
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, S.Luca Hospital, 20149 Milan, Italy; (A.F.); (S.C.)
- Department of Management, Information and Production Engineering, University of Bergamo, 24044 Dalmine, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, S.Luca Hospital, 20149 Milan, Italy; (A.F.); (S.C.)
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| | | |
Collapse
|
40
|
Affiliation(s)
| | - Naima Covassin
- Department of Cardiovascular Diseases (N.C., V.K.S.), Mayo Clinic, Rochester, MN
| | - Virend K Somers
- Department of Cardiovascular Diseases (N.C., V.K.S.), Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Farnham MMJ, Tallapragada VJ, O'Connor ET, Nedoboy PE, Dempsey B, Mohammed S, Fong AY, Lung MSY, Derakhshan F, Wilson RJA, Pilowsky PM. PACAP-PAC1 Receptor Activation Is Necessary for the Sympathetic Response to Acute Intermittent Hypoxia. Front Neurosci 2019; 13:881. [PMID: 31496933 PMCID: PMC6712064 DOI: 10.3389/fnins.2019.00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/05/2019] [Indexed: 01/29/2023] Open
Abstract
Repetitive hypoxia is a key feature of obstructive sleep apnoea (OSA), a condition characterized by intermittent airways obstruction. Patients with OSA present with persistent increases in sympathetic activity and commonly develop hypertension. The objectives of this study were to determine if the persistent increases in sympathetic nerve activity, known to be induced by acute intermittent hypoxia (AIH), are mediated through activation of the pituitary adenylate cyclase activating polypeptide (PACAP) signaling system. Here, we show that the excitatory neuropeptide PACAP, acting in the spinal cord, is important for generating the sympathetic response seen following AIH. Using PACAP receptor knockout mice, and pharmacological agents in Sprague Dawley rats, we measured blood pressure, heart rate, pH, PaCO2, and splanchnic sympathetic nerve activity, under anaesthesia, to demonstrate that the sympathetic response to AIH is mediated via the PAC1 receptor, in a cAMP-dependent manner. We also report that both intermittent microinjection of glutamate into the rostroventrolateral medulla (RVLM) and intermittent infusion of a sub-threshold dose of PACAP into the subarachnoid space can mimic the sympathetic response to AIH. All the sympathetic responses are independent of blood pressure, pH or PaCO2 changes. Our results show that in AIH, PACAP signaling in the spinal cord helps drive persistent increases in sympathetic nerve activity. This mechanism may be a precursor to the development of hypertension in conditions of chronic intermittent hypoxia, such as OSA.
Collapse
Affiliation(s)
- Melissa M J Farnham
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | - Edward T O'Connor
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Polina E Nedoboy
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Bowen Dempsey
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Suja Mohammed
- The Heart Research Institute, Newtown, NSW, Australia.,Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Angelina Y Fong
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia.,Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mandy S Y Lung
- Faculty of Medicine, Macquarie University, North Ryde, NSW, Australia
| | - Fatemeh Derakhshan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Paul M Pilowsky
- The Heart Research Institute, Newtown, NSW, Australia.,Department of Physiology, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Chang JC, Hu WF, Lee WS, Lin JH, Ting PC, Chang HR, Shieh KR, Chen TI, Yang KT. Intermittent Hypoxia Induces Autophagy to Protect Cardiomyocytes From Endoplasmic Reticulum Stress and Apoptosis. Front Physiol 2019; 10:995. [PMID: 31447690 PMCID: PMC6692635 DOI: 10.3389/fphys.2019.00995] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Intermittent hypoxia (IH), characterized as cyclic episodes of short-period hypoxia followed by normoxia, occurs in many physiological and pathophysiological conditions such as pregnancy, athlete, obstructive sleep apnea, and asthma. Hypoxia can induce autophagy, which is activated in response to protein aggregates, in the proteotoxic forms of cardiac diseases. Previous studies suggested that autophagy can protect cells by avoiding accumulation of misfolded proteins, which can be generated in response to ischemia/reperfusion (I/R) injury. The objective of the present study was to determine whether IH-induced autophagy can attenuate endoplasmic reticulum (ER) stress and cell death. In this study, H9c2 cell line, rat primary cultured cardiomyocytes, and C57BL/6 male mice underwent IH with an oscillating O2 concentration between 4 and 20% every 30 min for 1-4 days in an incubator. The levels of LC3, an autophagy indicator protein and CHOP and GRP78 (ER stress-related proteins) were measured by Western blotting analyses. Our data demonstrated that the autophagy-related proteins were upregulated in days 1-3, while the ER stress-related proteins were downregulated on the second day after IH. Treatment with H2O2 (100 μM) for 24 h caused ER stress and increased the level of ER stress-related proteins, and these effects were abolished by pre-treatment with IH condition. In response to the autophagy inhibitor, the level of ER stress-related proteins was upregulated again. Taken together, our data suggested that IH could increase myocardial autophagy as an adaptive response to prevent the ER stress and apoptosis.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Fen Hu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Hong Lin
- PhD Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Ching Ting
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huai-Ren Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Cardiology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kun-Ruey Shieh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-I Chen
- Center for Physical Education, College of Education and Communication, Tzu Chi University, Hualien, Taiwan.,Institute of Education, College of Education and Communication, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
43
|
Prolyl 4-Hydroxylase Domain Protein 3-Inhibited Smooth-Muscle-Cell Dedifferentiation Improves Cardiac Perivascular Fibrosis Induced by Obstructive Sleep Apnea. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9174218. [PMID: 31346526 PMCID: PMC6621170 DOI: 10.1155/2019/9174218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Background Intermittent hypoxia (IH) induced by obstructive sleep apnea (OSA) is a leading factor affecting cardiovascular fibrosis. Under IH condition, smooth muscle cells (SMAs) respond by dedifferentiation, which is associated with vascular remodelling. The expression of prolyl 4-hydroxylase domain protein 3 (PHD3) increases under hypoxia. However, the role of PHD3 in OSA-induced SMA dedifferentiation and cardiovascular fibrosis remains uncertain. Methods We explored the mechanism of cardiovascular remodelling in C57BL/6 mice exposed to IH for 3 months and investigated the mechanism of PHD3 in improving the remodelling in vivo and vitro. Results In vivo remodelling showed that IH induced cardiovascular fibrosis via SMC dedifferentiation and that fibrosis improved when PHD3 was overexpressed. In vitro remodelling showed that IH induced SMA dedifferentiation, which secretes much collagen I. PHD3 overexpression in cultured SMCs reversed the dedifferentiation by degrading and inactivating HIF-1α. Conclusion OSA-induced cardiovascular fibrosis was associated with SMC dedifferentiation, and PHD3 overexpression may benefit its prevention by reversing the dedifferentiation. Therefore, PHD3 overexpression has therapeutic potential in disease treatment.
Collapse
|
44
|
Bazilio DS, Bonagamba LGH, Moraes DJA, Machado BH. Cardiovascular and respiratory profiles during the sleep-wake cycle of rats previously submitted to chronic intermittent hypoxia. Exp Physiol 2019; 104:1408-1419. [PMID: 31099915 DOI: 10.1113/ep087784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/15/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Chronic intermittent hypoxia (CIH) causes increased arterial pressure (AP), sympathetic overactivity and changes in expiratory modulation of sympathetic activity. However, changes in the short-term sleep-wake cycle pattern after CIH and their potential impact on cardiorespiratory parameters have not been reported previously. What is the main finding and its importance? Exposure to CIH for 10 days elevates AP in wakefulness and sleep but does not cause major changes in short-term sleep-wake cycle pattern. A higher incidence of muscular expiratory activity was observed in rats exposed to CIH only during wakefulness, indicating that active expiration is not required for the increase in AP in rats submitted to CIH. ABSTRACT Chronic intermittent hypoxia (CIH) increases arterial pressure (AP) and changes sympathetic-respiratory coupling. However, the alterations in the sleep-wake cycle after CIH and their potential impact on cardiorespiratory parameters remain unknown. Here, we evaluated whether CIH-exposed rats present changes in their short-term sleep-wake cycle pattern and in cardiorespiratory parameters. Male Wistar rats (∼250 g) were divided into CIH and control groups. The CIH rats were exposed to 8 h day-1 of cycles of normoxia (fraction of inspired O2 = 0.208, 5 min) followed by hypoxia (fraction of inspired O2 = 0.06, 30-40 s) for 10 days. One day after CIH, electrocorticographic activity, cervical EMG, AP and heart rate were recorded for 3 h. Plethysmographic recordings were collected for 2 h. A subgroup of control and CIH rats also had the diaphragm and oblique abdominal muscle activities recorded. Chronic intermittent hypoxia did not alter the time for sleep onset, total time awake, durations of rapid eye movement (REM) and non-REM (NREM) sleep and number of REM episodes in the 3 h recordings. However, a significant increase in the duration of REM episodes was observed. The AP and heart rate were increased in all phases of the cycle in rats exposed to CIH. Respiratory frequency and ventilation were similar between groups in all phases, but tidal volume was increased during NREM and REM sleep in rats exposed to CIH. An increase in the incidence of active expiration during wakefulness was observed in rats exposed to CIH. The data show that CIH-related hypertension is not caused by changes in the sleep-wake cycle and suggest that active expiration is not required for the increase in AP in freely moving rats exposed to CIH.
Collapse
Affiliation(s)
- Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Laouafa S, Roussel D, Marcouiller F, Soliz J, Gozal D, Bairam A, Joseph V. Roles of oestradiol receptor alpha and beta against hypertension and brain mitochondrial dysfunction under intermittent hypoxia in female rats. Acta Physiol (Oxf) 2019; 226:e13255. [PMID: 30635990 DOI: 10.1111/apha.13255] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
AIM Chronic intermittent hypoxia (CIH) induces systemic (hypertension) and central alterations (mitochondrial dysfunction underlying cognitive deficits). We hypothesized that agonists of oestradiol receptors (ER) α and β prevent CIH-induced hypertension and brain mitochondrial dysfunction. METHODS Ovariectomized female rats were implanted with osmotic pumps delivering vehicle (Veh), the ERα agonist propylpyraoletriol (PPT - 30 μg/kg/day) or the ERβ agonist diarylpropionitril (DPN - 100 μg/kg/day). Animals were exposed to CIH (21%-10% FI O2 - 10 cycles/hour - 8 hours/day - 7 days) or normoxia. Arterial blood pressure was measured after CIH or normoxia exposures. Mitochondrial respiration and H2 O2 production were measured in brain cortex with high-resolution respirometry, as well as activity of complex I and IV of the electron transport chain, citrate synthase, pyruvate, and lactate dehydrogenase (PDH and LDH). RESULTS Propylpyraoletriol but not DPN prevented the rise of arterial pressure induced by CIH. CIH exposures decreased O2 consumption, complex I activity, and increased H2 O2 production. CIH had no effect on citrate synthase activity, but decreased PDH activity and increased LDH activity indicating higher anaerobic glycolysis. Propylpyraoletriol and DPN treatments prevented all these alterations. CONCLUSIONS We conclude that in OVX female rats, the ERα agonist prevents from CIH-induced hypertension while both ERα and ERβ agonists prevent the brain mitochondrial dysfunction and metabolic switch induced by CIH. These findings may have implications for menopausal women suffering of sleep apnoea regarding hormonal therapy.
Collapse
Affiliation(s)
- Sofien Laouafa
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Damien Roussel
- CNRS, UMR 5023 Université Claude Bernard Lyon 1 Villeurbanne France
| | - François Marcouiller
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Jorge Soliz
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - David Gozal
- Department of Child Health University of Missouri School of Medicine Columbia Missouri
| | - Aida Bairam
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| | - Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Quebec City Quebec Canada
| |
Collapse
|
46
|
Guyenet PG, Stornetta RL, Holloway BB, Souza GMPR, Abbott SBG. Rostral Ventrolateral Medulla and Hypertension. Hypertension 2019; 72:559-566. [PMID: 30354763 DOI: 10.1161/hypertensionaha.118.10921] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Benjamin B Holloway
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville
| |
Collapse
|
47
|
Lee I, Woo JH, Lee M, Jeon TJ, Kim SM. Hypoxic Physiological Environments in a Gas-Regulated Microfluidic Device. MICROMACHINES 2018; 10:mi10010016. [PMID: 30597832 PMCID: PMC6356689 DOI: 10.3390/mi10010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022]
Abstract
Hypoxic environment is known as one of the critical factors in various physiological/pathological processes. It is imperative to recapitulate oxygen level in microscale for human physiology/pathology induced by hypoxia. Herein, we propose an oxygen-regulating system that can be applied to in vitro tissue models. We fabricated a microdevice with a gas-permeable membrane, allowing oxygen diffusion without direct contact to cells. We verified the formation of oxygen level less than 2% O2 concentration inside the device through computational simulation and experiments. H9c2 heart myoblasts were exposed to hypoxic condition in the device, and their cell viability were investigated. We anticipate that our system will be integrated with a platform to study hypoxia-induced human physiology and pathology as an efficient oxygen-regulating system.
Collapse
Affiliation(s)
- Insu Lee
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea.
| | - Jin Hyuk Woo
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea.
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
- Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Tae-Joon Jeon
- Department of Bioengineering, Inha University, Incheon 22212, Korea.
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea.
| |
Collapse
|
48
|
Abstract
People living at sea level experience intermittent hypoxia (IH) as a consequence of sleep apnea, which is a highly prevalent respiratory disorder. Sleep apnea patients and rodents exposed to IH exhibit autonomic dysfunction manifested as increased sympathetic nerve activity and hypertension. This article highlights physiologic basis of autonomic disturbances by IH, which involves abnormal activation of the carotid body (CB) chemo reflex by reactive oxygen species (ROS).We further evaluate major molecular mechanisms underlying IH-induced ROS generation including transcriptional activation of genes encoding pro-oxidant enzymes by hypoxia-inducible factor (HIF)-1 and transcriptional repression of anti-oxidant enzyme genes by DNA methylation. Lastly, evidence is presented for CB neural activity as a major regulator of HIF-1 activation and DNA methylation by IH in the chemo reflex pathway.
Collapse
|
49
|
Joseph V. Cardiovascular sequelae of sleep apnea: In your brain and in your gut. EBioMedicine 2018; 38:9-10. [PMID: 30472086 PMCID: PMC6306487 DOI: 10.1016/j.ebiom.2018.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Vincent Joseph
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department de Pédiatrie, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
50
|
Farmer GE, Balapattabi K, Bachelor ME, Little JT, Cunningham JT. AT 1a influences GABAA-mediated inhibition through regulation of KCC2 expression. Am J Physiol Regul Integr Comp Physiol 2018; 315:R972-R982. [PMID: 30156863 PMCID: PMC6295501 DOI: 10.1152/ajpregu.00105.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
Abstract
The median preoptic nucleus (MnPO) is an integrative site involved in body fluid homeostasis, cardiovascular control, thermoregulation, and sleep homeostasis. Angiotensin II (ANG II), a neuropeptide shown to have excitatory effects on MnPO neurons, is of particular interest with regard to its role in body fluid homeostasis and cardiovascular control. The present study investigated the role of angiotensin type 1a (AT1a) receptor activation on neuronal excitability in the MnPO. Male Sprague-Dawley rats were infused with an adeno-associated virus with an shRNA against the AT1a receptor or a scrambled control. In vitro loose-patch voltage-clamp recordings of spontaneous action potential activity were made from labeled MnPO neurons in response to brief focal application of ANG II or the GABAA receptor agonist muscimol. Additionally, tissue punches from MnPO were taken to asses mRNA and protein expression. AT1a receptor knockdown neurons were insensitive to ANG II and showed a marked reduction in GABAA-mediated inhibition. The reduction in GABAA-mediated inhibition was not associated with reductions in mRNA or protein expression of GABAA β-subunits. Knockdown of the AT1a receptor was associated with a reduction in the potassium-chloride cotransporter KCC2 mRNA as well as a reduction in pS940 KCC2 protein. The impaired GABAA-mediated inhibition in AT1a knockdown neurons was recovered by bath application of phospholipase C and protein kinase C activators. The following study indicates that AT1a receptor activation mediates the excitability of MnPO neurons, in part, through the regulation of KCC2. The regulation of KCC2 influences the intracellular [Cl-] and the subsequent efficacy of GABAA-mediated currents.
Collapse
Affiliation(s)
- George E Farmer
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth , Fort Worth, Texas
| |
Collapse
|