1
|
Asano S, Arvapalli R, Manne NDPK, Maheshwari M, Ma B, Rice KM, Selvaraj V, Blough ER. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction. Int J Nanomedicine 2015; 10:6215-25. [PMID: 26491293 PMCID: PMC4599716 DOI: 10.2147/ijn.s89783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (P(o)) function (sham: 25.6±1.6 N/cm(2) vs CeO2: 23.4±0.8 N/cm(2) vs Sep: 15.9±1.0 N/cm(2) vs Sep+CeO2: 20.0±1.0 N/cm(2), P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat.
Collapse
Affiliation(s)
- Shinichi Asano
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | | | - Nandini D P K Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Mani Maheshwari
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bing Ma
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA
| | - Vellaisamy Selvaraj
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, USA ; Department of Pharmacology, Physiology and Toxicology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
2
|
Oliver SR, Wright VP, Parinandi N, Clanton TL. Thermal tolerance of contractile function in oxidative skeletal muscle: no protection by antioxidants and reduced tolerance with eicosanoid enzyme inhibition. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1695-705. [PMID: 18768765 DOI: 10.1152/ajpregu.90429.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms for the loss of muscle contractile function in hyperthermia are poorly understood. This study identified the critical temperature, resulting in a loss of contractile function in isolated diaphragm (thermal tolerance), and then tested the hypotheses 1) that increased reactive oxygen species (ROS) production contributes to the loss of contractile function at this temperature, and 2) eicosanoid metabolism plays an important role in preservation of contractile function in hyperthermia. Contractile function and passive force were measured in rat diaphragm bundles during and after 30 min of exposure to 40, 41, 42 or 43 degrees C. Between 40 and 42 degrees C, there were no effects of hyperthermia, but at 43 degrees C, a significant loss of active force and an increase in passive force were observed. Inhibition of ROS with the antioxidants, Tiron or Trolox, did not inhibit the loss of contractile force at 43 degrees C. Furthermore, treatment with dithiothreitol, a thiol (-SH) reducing agent, did not reverse the effects of hyperthermia. A variety of global lipoxygenase (LOX) inhibitors further depressed force during 43 degrees C and caused a significant loss of thermal tolerance at 42 degrees C. Cyclooxygenase (COX) inhibitors also caused a loss of thermal tolerance at 42 degrees C. Blockage of phospholipase with phospholipase A(2) inhibitors, bromoenol lactone or arachidonyltrifluoromethyl ketone failed to significantly prevent the loss of force at 43 degrees C. Overall, these data suggest that ROS do not play an apparent role in the loss of contractile function during severe hyperthermia in diaphragm. However, functional LOX and COX enzyme activities appear to be necessary for maintaining normal force production in hyperthermia.
Collapse
Affiliation(s)
- S Ryan Oliver
- University of Florida, Department of Applied Physiology and Kinesiology, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
6
|
Oba T, Kurono C, Nakajima R, Takaishi T, Ishida K, Fuller GA, Klomkleaw W, Yamaguchi M. H2O2 activates ryanodine receptor but has little effect on recovery of releasable Ca2+ content after fatigue. J Appl Physiol (1985) 2002; 93:1999-2008. [PMID: 12391105 DOI: 10.1152/japplphysiol.00097.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied whether hydrogen peroxide (H(2)O(2)) at </=10 microM activates the ryanodine receptor and decreases releasable Ca(2+) content in the sarcoplasmic reticulum after fatigue. Exposure of rabbit or frog skeletal muscle ryanodine receptors to 10 microM H(2)O(2) enhanced channel activity in lipid bilayers when the redox potential was defined at cis = -220 mV and trans = -180 mV. Channel activation by 10 microM H(2)O(2) was also observed when cis potential was set at -220 mV without defining trans potential, but the effect was less. Reduction of trans redox potential from -180 to -220 mV did not alter channel activity. H(2)O(2) at 500 microM failed to activate the channel when the redox potential was not controlled. Stimulation of the frog muscle fiber for 2 min (50 Hz, a duty cycle of 200 ms/s) decreased tetanus tension by approximately 50%. After 1 min, tetanus recovered rapidly to approximately 70% of control and thereafter slowly approached the control level. Amplitudes of caffeine- and 4-chloro-m-cresol-induced contractures were decreased after a 60-min rest. The decrease is not enhanced by exposure to 10 microM H(2)O(2). These results suggest that H(2)O(2) markedly activates the ryanodine receptor under the redox control in vitro, but externally applied H(2)O(2) may not play an important role in the postfatigue recovery process.
Collapse
Affiliation(s)
- Toshiharu Oba
- Department of Regulatory Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Palacio J, Gáldiz JB, Bech JJ, Mariñán M, Casadevall C, Martínez P, Gea J. [Interleukin 10 and tumor necrosis factor alpha gene expression in respiratory and peripheral muscles. Relation to sarcolemmal damage]. Arch Bronconeumol 2002; 38:311-6. [PMID: 12199930 DOI: 10.1016/s0300-2896(02)75224-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNF-alpha) has been implicated in loss of muscle mass in chronic obstructive pulmonary disease and other consumptive processes. TNF-alpha production would be related to inflammation arising from pulmonary disease itself or, alternatively, from smoking, and would be carried to the muscle through the blood stream. However, it has also been suggested that TNF-alpha may be expressed directly in muscle tissue. Regardless the site of production of TNF-alpha, its relation to subsequent muscle damage is unclear. OBJECTIVE We studied the expression of TNF-alpha and an interleukin inhibitor of its production (IL-10) in the main respiratory muscles and a peripheral muscle in the dog. METHOD Nine young, male Beagle dogs were included. From all animals we obtained a biopsy of the diaphragm (Dph) and external intercostal (ExtI) muscles and a leg muscle (internal vastus of the quadriceps, IntV). TNF-alpha and IL-10 gene expressions were measured through the analysis of messenger RNA levels, using reverse transcription and polymerase chain reaction. We also assessed sarcolemmal damage using intracellular fibronectin detection (immunohistochemistry). RESULTS The expression of both cytokines showed wide interindividual variability. On the one hand, TNF-alpha (was very low in Dph and ExtI (0.02 0.03 and 0.05 0.06 a.u., respectively), but relatively high in the IntV (0.14 0.08 a.u.). IL-10 expression, on the other hand was low in the Dph (0.06 0.05 a.u.) and slightly higher in the ExtI (2.7 1.9 a.u., p < 0.01) and IntV (1.6 1.7 a.u.). Sarcolemmal damage was minimal in all three muscles and was related to TNF-alpha expression in the peripheral muscle (r = 0.682, p < 0.05). CONCLUSIONS 1) TNF-alpha and IL-10 appear to be constitutively expressed within the skeletal muscle in dogs. 2) Basal TNF-alpha expression is lower in respiratory muscles than in peripheral muscles. 3) The expression in the latter is related to membrane damage.
Collapse
Affiliation(s)
- J Palacio
- Servicio de Neumología, Unidad de Investigación Respiratoria y Ambiental, Hospital del Mar, IMIM, Fisiopatología (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|