1
|
Abdul-Al O, Zunquin G, El Hage R. Effects of Two Types of Resistance Training Modalities (Hypertrophy vs. Contrast Training) on Bone Parameters in a Group of Healthy Elderly Women. J Clin Densitom 2024; 27:101521. [PMID: 39181062 DOI: 10.1016/j.jocd.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
The aim of the present study was to explore the effects of two types of resistance training modalities (hypertrophy training vs. contrast training) on bone health parameters in a group of healthy elderly women. Forty-nine healthy elderly women whose ages range between 60 and 70 years were included in this study. The study population was randomly divided into three groups: hypertrophy training group (HTG; n=16), contrast training group (CTG; n=16) and control group (CG; n=17). Bone mineral density (BMD) values at the whole body (WB), lumbar spine (L1-L4), total hip (TH) and femoral neck (FN) were measured by DXA before and after 12 months of resistance training. Composite indices of femoral neck strength were calculated. WB BMD, L1-L4 BMD, TH BMD and FN BMD increased in the contrast training group. WB BMD and L1-L4 BMD increased in the hypertrophy training group, while TH BMD and FN BMD remained unchanged. Significant decreases in WB BMD, L1-L4 BMD, TH BMD and FN BMD were observed in the control group. The contrast training group showed the highest improvements in BMD values compared to the two other groups. Both experimental groups (HTG and CTG) showed similar significant improvements in composite indices of femoral neck strength and muscular strength. In conclusion, contrast training and hypertrophy training can stimulate bone gain at clinically important sites of osteoporotic fractures in elderly women.
Collapse
Affiliation(s)
- Obaida Abdul-Al
- Laboratoire Mouvement, Equilibre, Performance, Santé (MEPS), Université de Pau et des Pays de l'Adour, Campus Montaury, 64600 Anglet, France; Department of Physical Education, Faculty of Arts and Sciences, University of Balamand, PO Box 100 Tripoli, Lebanon
| | - Gautier Zunquin
- Laboratoire Mouvement, Equilibre, Performance, Santé (MEPS), Université de Pau et des Pays de l'Adour, Campus Montaury, 64600 Anglet, France
| | - Rawad El Hage
- Department of Physical Education, Faculty of Arts and Sciences, University of Balamand, PO Box 100 Tripoli, Lebanon.
| |
Collapse
|
2
|
Bakhtiari H, Nouri A, Tolouei-Rad M. Fatigue Performance of 3D-Printed Poly-Lactic-Acid Bone Scaffolds with Triply Periodic Minimal Surface and Voronoi Pore Structures. Polymers (Basel) 2024; 16:2145. [PMID: 39125172 PMCID: PMC11314528 DOI: 10.3390/polym16152145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Bone scaffolds serve a crucial role in tissue engineering, particularly in facilitating bone regeneration where natural repair is insufficient. Despite advancements in the fabrication of polymeric bone scaffolds, the challenge remains to optimize their mechanical resilience. Specifically, research on the fatigue behaviour of polymeric bone scaffolds is scarce. This study investigates the influence of pore architecture on the mechanical performance of poly-lactic-acid (PLA) scaffolds under quasi-static and cyclic compression. PLA scaffolds with a 60% porosity were fabricated using extrusion-based 3D printing in various designs: Gyroid, Lidinoid, Fischer-Koch, IWP, and Voronoi. Results demonstrated that Gyroid scaffolds had the highest compressive strength (6.6 MPa), followed by Lidinoid, Fischer-Koch, IWP, and Voronoi designs. Increased strut thickness was linked to higher compressive strength. However, normalized fatigue resistance showed a different pattern. While scaffolds resisted fatigue cycles at low strain amplitudes, fatigue damage was observed at higher strains. Voronoi structures exhibited the highest normalized fatigue performance, enduring around 58,000 cycles at 85% strain amplitude, followed by Gyroid, Fischer-Koch, Lidinoid, and IWP structures. Enhanced fatigue performance in different topologies correlated with the minimum cross-sectional area of scaffolds. Given the importance of both static and fatigue strength, the Gyroid topology emerges as the superior choice overall.
Collapse
Affiliation(s)
- Hamed Bakhtiari
- Centre for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - Alireza Nouri
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia;
| | - Majid Tolouei-Rad
- Centre for Advanced Materials and Manufacturing (CAMM), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia;
| |
Collapse
|
3
|
Barak MM. Cortical and Trabecular Bone Modeling and Implications for Bone Functional Adaptation in the Mammalian Tibia. Bioengineering (Basel) 2024; 11:514. [PMID: 38790379 PMCID: PMC11118124 DOI: 10.3390/bioengineering11050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Bone modeling involves the addition of bone material through osteoblast-mediated deposition or the removal of bone material via osteoclast-mediated resorption in response to perceived changes in loads by osteocytes. This process is characterized by the independent occurrence of deposition and resorption, which can take place simultaneously at different locations within the bone due to variations in stress levels across its different regions. The principle of bone functional adaptation states that cortical and trabecular bone tissues will respond to mechanical stimuli by adjusting (i.e., bone modeling) their morphology and architecture to mechanically improve their mechanical function in line with the habitual in vivo loading direction. This principle is relevant to various research areas, such as the development of improved orthopedic implants, preventative medicine for osteopenic elderly patients, and the investigation of locomotion behavior in extinct species. In the present review, the mammalian tibia is used as an example to explore cortical and trabecular bone modeling and to examine its implications for the functional adaptation of bones. Following a short introduction and an exposition on characteristics of mechanical stimuli that influence bone modeling, a detailed critical appraisal of the literature on cortical and trabecular bone modeling and bone functional adaptation is given. By synthesizing key findings from studies involving small mammals (rodents), large mammals, and humans, it is shown that examining both cortical and trabecular bone structures is essential for understanding bone functional adaptation. A combined approach can provide a more comprehensive understanding of this significant physiological phenomenon, as each structure contributes uniquely to the phenomenon.
Collapse
Affiliation(s)
- Meir M Barak
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
4
|
Kumar R, Pathak VK. Prediction of cortical bone mineral apposition rate in response to loading using an adaptive neuro-fuzzy inference system. Comput Methods Biomech Biomed Engin 2023; 26:261-280. [PMID: 35373664 DOI: 10.1080/10255842.2022.2058322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Daily activities such as aerobic movements and athletic events found effective in mitigating bone loss as it promotes osteogenesis. Computational model considered normal strain, or strain energy density as a stimulus to predict site specific osteogenesis. This model, however, fails to predict site specific osteogenesis as cortical bone surfaces exhibit different remodelling rate to mechanical loading. Remodelling rate or mineral apposition rate depends upon the loading parameters such as loading cycle, frequency, and magnitude of strain. Therefore, the present study aims to develop an adaptive neuro-fuzzy inference system (ANFIS) model for finding a robust relationship between loading parameters like strain magnitude, frequency, and cycle, and a bone remodelling parameter i.e. mineral apposition rate (MAR). The model is trained, tested, and checked with the experimental data. The results indicate that ANFIS model outperformed state of the art Artificial Neural Network (ANN) models during the prediction of MAR at periosteal and endosteal surface. A strong corelation R2 = 0.92 and R2 = 0.97 was observed at 70% of the input data at periosteal and endosteal surface respectively. Result concludes that endosteal surface was more promisable as compared to periosteal surface in predicting accurate MAR. The outcomes of present study may be used to precisely predict site-specific osteogenesis in cortical bone as function of loading parameters.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| | - Vimal Kumar Pathak
- Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
5
|
Mechanical strain induces ex vivo expansion of periosteum. PLoS One 2022; 17:e0279519. [PMID: 36584151 PMCID: PMC9803115 DOI: 10.1371/journal.pone.0279519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022] Open
Abstract
Segmental bone defects present complex clinical challenges. Nonunion, malunion, and infection are common sequalae of autogenous bone grafts, allografts, and synthetic bone implants due to poor incorporation with the patient's bone. The current project explores the osteogenic properties of periosteum to facilitate graft incorporation. As tissue area is a natural limitation of autografting, mechanical strain was implemented to expand the periosteum. Freshly harvested, porcine periosteum was strained at 5 and 10% per day for 10 days with non-strained and free-floating samples serving as controls. Total tissue size, viability and histologic examination revealed that strain increased area to a maximum of 1.6-fold in the 10% daily strain. No change in tissue anatomy or viability via MTT or Ki67 staining and quantification was observed among groups. The osteogenic potential of the mechanical expanded periosteum was then examined in vivo. Human cancellous allografts were wrapped with 10% per day strained, fresh, free-floating, or no porcine periosteum and implanted subcutaneously into female, athymic mice. Tissue was collected at 8- and 16-weeks. Gene expression analysis revealed a significant increase in alkaline phosphatase and osteocalcin in the fresh periosteum group at 8-weeks post implantation compared to all other groups. Values among all groups were similar at week 16. Additionally, histological assessment with H&E and Masson-Goldner Trichrome staining showed that all periosteal groups outperformed the non-periosteal allograft, with fresh periosteum demonstrating the highest levels of new tissue mineralization at the periosteum-bone interface. Overall, mechanical expansion of the periosteum can provide increased area for segmental healing via autograft strategies, though further studies are needed to explore culture methodology to optimize osteogenic potential.
Collapse
|
6
|
Suzue M, Kuroshima S, Uto Y, Uchida Y, Sawase T. Controlled mechanical early loads improve bone quality and quantity around implants: An in vivo experimental study. Clin Oral Implants Res 2022; 33:1049-1067. [PMID: 35950682 DOI: 10.1111/clr.13989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of early loads on bone quality and quantity around implants and to compare the effects of early loads on bone quality and quantity with the effects of conventional loads. MATERIALS AND METHODS Grade IV-titanium implants with buttress threads were placed in rat maxillary bone 4 weeks after extraction of first molars. A controlled mechanical load (10 N, 3 Hz, 1,800 cycles, 2 days/week) was started via the implants 1 and 3 weeks after implant placement for 2 weeks (early and conventional loads, respectively). Bone quality, defined as distribution of bone cells, types and orientation of collagen fibers, and production of semaphorin3A, its receptor neuropilin-1, and sclerostin, were quantitatively evaluated. RESULTS Early loads substantially and positively affected bone quality by changing the preferential alignment of collagen fibers with increased production of type I and III collagens, semaphorin3A, and neuropilin-1, increased osteoblast numbers, decreased production of sclerostin, and decreased osteoclast numbers both inside and outside the implant threads, when compared with non-loaded conditions. Conventional loads changed bone quality around implants slightly. Interestingly, early loads had significantly stronger effects on bone quality and quantity based on the evaluation parameters than conventional loads. CONCLUSIONS This is the first report to provide scientific evidence for load initiation time based on both bone quality and quantity around implants. These new findings show that implants with buttress threads transmitted early loads optimally to bone tissue by improving bone quality and quantity inside and outside the implant threads.
Collapse
Affiliation(s)
- Masayoshi Suzue
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yusuke Uchida
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
O'Bryan SJ, Giuliano C, Woessner MN, Vogrin S, Smith C, Duque G, Levinger I. Progressive Resistance Training for Concomitant Increases in Muscle Strength and Bone Mineral Density in Older Adults: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1939-1960. [PMID: 35608815 PMCID: PMC9325860 DOI: 10.1007/s40279-022-01675-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Older adults experience considerable muscle and bone loss that are closely interconnected. The efficacy of progressive resistance training programs to concurrently reverse/slow the age-related decline in muscle strength and bone mineral density (BMD) in older adults remains unclear. OBJECTIVES We aimed to quantify concomitant changes in lower-body muscle strength and BMD in older adults following a progressive resistance training program and to determine how these changes are influenced by mode (resistance only vs. combined resistance and weight-bearing exercises), frequency, volume, load, and program length. METHODS MEDLINE/PubMed and Embase databases were searched for articles published in English before 1 June, 2021. Randomized controlled trials reporting changes in leg press or knee extension one repetition maximum and femur/hip or lumbar spine BMD following progressive resistance training in men and/or women ≥ 65 years of age were included. A random-effects meta-analysis and meta-regression determined the effects of resistance training and the individual training characteristics on the percent change (∆%) in muscle strength (standardized mean difference) and BMD (mean difference). The quality of the evidence was assessed using the Cochrane risk-of-bias tool (version 2.0) and Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria. RESULTS Seven hundred and eighty studies were identified and 14 were included. Progressive resistance training increased muscle strength (∆ standardized mean difference = 1.1%; 95% confidence interval 0.73, 1.47; p ≤ 0.001) and femur/hip BMD (∆ mean difference = 2.77%; 95% confidence interval 0.44, 5.10; p = 0.02), but not BMD of the lumbar spine (∆ mean difference = 1.60%; 95% confidence interval - 1.44, 4.63; p = 0.30). The certainty for improvement was greater for muscle strength compared with BMD, evidenced by less heterogeneity (I2 = 78.1% vs 98.6%) and a higher overall quality of evidence. No training characteristic significantly affected both outcomes (p > 0.05), although concomitant increases in strength and BMD were favored by higher training frequencies, increases in strength were favored by resistance only and higher volumes, and increases in BMD were favored by combined resistance plus weight-bearing exercises, lower volumes, and higher loads. CONCLUSIONS Progressive resistance training programs concomitantly increase lower-limb muscle strength and femur/hip bone mineral density in older adults, with greater certainty for strength improvement. Thus, to maximize the efficacy of progressive resistance training programs to concurrently prevent muscle and bone loss in older adults, it is recommended to incorporate training characteristics more likely to improve BMD.
Collapse
Affiliation(s)
- Steven J O'Bryan
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia.
| | - Catherine Giuliano
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
| | - Mary N Woessner
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
| | - Sara Vogrin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Cassandra Smith
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Institute for Nutrition Research, School of Health and Medical Sciences, Edith Cowan University, Perth, WA, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHeS), Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Kast S, Shojaa M, Kohl M, von Stengel S, Gosch M, Jakob F, Kerschan-Schindl K, Kladny B, Klöckner N, Lange U, Middeldorf S, Peters S, Schoene D, Sieber C, Thomasius F, Uder M, Kemmler W. Effects of different exercise intensity on bone mineral density in adults: a comparative systematic review and meta-analysis. Osteoporos Int 2022; 33:1643-1657. [PMID: 35304613 PMCID: PMC9499891 DOI: 10.1007/s00198-022-06329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 10/25/2022]
Abstract
PURPOSE The primary objective of the present systematic review and meta-analysis was to determine the effect of differing exercise intensity on (areal) bone mineral density (BMD) at lumbar spine and hip in adults by a comparative meta-analysis. METHODS A systematic review of the literature according to the PRISMA statement included: (a) exercise trials, (b) with ≥two study arms that compared different exercise intensities, (c) intervention ≥6 months, (d) BMD assessments at lumbar spine (LS) or hip. Five electronic databases were scanned without language restrictions up to July 2021. The present analysis of exercise intensity was conducted as a mixed-effect meta-analysis and applied "type of exercise" and "study duration" as moderator in subgroup analyses. Outcome measures were standardized mean differences (SMD) for BMD changes at the LS, and hip. RESULTS Eleven exercise studies with 26 study arms were included. Although the effect of high-intensity exercise was more pronounced on LS-BMD (SMD: 0.19, 95%-CI: 0.61 to -0.23) and hip-ROI (0.17, 0.38 to -0.04), we did not observe significant differences between the groups (LS-BMD: p=0.373 and hip-BMD: p=0.109). We observed a substantial level of heterogeneity between the trials for LS- but not for hip-BMD. Applying "type of exercise" and "study duration" as moderators did not significantly modify the differences between low and high exercise intensity on BMD at LS or hip. CONCLUSION There is insufficient evidence for a superior effect of high-intensity exercise on areal BMD at lumbar spine and hip in people aged 50 years and older. Varying exercise intensity with periods of lower exercise intensity intermitted by higher intensity might be a promising option to address the issue of exercise intensities in intervention studies.
Collapse
Affiliation(s)
- S Kast
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
| | - M Shojaa
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Institute of Health Science, Department Population-Based Medicine, University Hospital Tübingen, Tübingen, Germany
| | - M Kohl
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Department of Med. and Life Sciences, University of Furtwangen, Schwenningen, Germany
| | - S von Stengel
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
| | - M Gosch
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Paracelsus Medical University Nürnberg and General Hospital Nürnberg, Nürnberg, Germany
| | - F Jakob
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Bernhard Heine Zentrum für Bewegungsforschung, University of Würzburg, Würzburg, Germany
| | - K Kerschan-Schindl
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Austrian Society for Bone and Mineral Research, Vienna, Austria
| | - B Kladny
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- German Society for Orthopaedics and Trauma, Berlin, Germany
| | - N Klöckner
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Deutsche Rheuma-Liga Bundesverband e.V., Bonn, Germany
| | - U Lange
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- German Society for Physical and Rehabilitative Medicine, Dresden, Germany
| | - S Middeldorf
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- International Musculoskeletal Pain Society, Berlin, Germany
| | - S Peters
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- German Association for Health-Related Fitness and Exercise Therapy, Hürth-Efferen, Germany
| | - D Schoene
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
| | - C Sieber
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- European Geriatric Medicine Society (EuGMS), Institute for Biomedicine of Aging, FAU Erlangen-Nürnberg, Nürnberg, Germany
| | - F Thomasius
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Osteology Umbrella Association Germany, Austria, Switzerland, Frankfurt, Germany
| | - M Uder
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany
- Institute of Radiology, FAU-Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - W Kemmler
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
- Research and Writing Group on Austria/Germany/Suisse S3 Guideline "Exercise and Fracture Prevention", Bonn, Germany.
- Institute of Radiology, FAU-Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Kiapour A, Seim HB, Atkinson BL, Lalor PA, Block JE. Bone Mineralization and Spinal Fusion Evaluation of a Truss-based Interbody Fusion Device: Ovine Finite Element Analysis with Confirmatory In Vivo Outcomes. Spine (Phila Pa 1976) 2022; 47:E319-E327. [PMID: 34593736 PMCID: PMC8912963 DOI: 10.1097/brs.0000000000004256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Finite element analysis (FEA) and in vivo ovine spinal interbody fusion study. OBJECTIVE To determine comparative load-induced strain amplitudes, bone mineralization and fusion outcomes associated with different diameter struts in a truss-based interbody fusion device. SUMMARY OF BACKGROUND DATA Additive manufacturing technology has been employed to develop implants that actively participate in the fusion process. The truss device enables the optimal transfer of compressive and tensile stresses via the struts. Mechanobiologic principles postulate that strut diameter can be regulated to allow different magnitudes of strain distribution within the struts which may affect fusion rates. METHODS Modeling of strain distributions as a function of strut diameter (0.75, 1.0, 1.25, and 1.5 mm) employed FEA that simulated physiologic loading conditions. A confirmatory in vivo ovine lumbar spinal interbody fusion study compared fusion scores and bone histomorphometric variables for cages with 0.75 and 1.5 mm strut diameters. Outcomes were compared at 3-, 6-, and 12-month follow-up intervals. RESULTS FEA showed an inverse association between strut diameter and peak strain amplitude. Cages with 1.0, 1.25, and 1.5 mm struts had peak strain values that were 36%, 60%, and 73% lower than the 0.75 mm strut strain value. In vivo results showed the mean fusion score for the 0.75 mm diameter strut cage was significantly greater by 3-months versus the 1.5 mm strut cage, and remained significantly higher at each subsequent interval (P < 0.001 for all comparisons). Fusion rates were 95%, 100%, and 100% (0.75 mm) and 72.7%, 86.4%, and 95.8% (1.5 mm) at 3, 6, and 12 months. Thinner struts had greater mineralized bone tissue and less fibrous/chondral tissue than the thicker struts at each follow-up. CONCLUSION Validating FEA estimates, cages with smaller diameter struts exhibited more rapid fusion consolidation and more aggressive osseointegration compared with cages with larger diameters struts.Level of Evidence: 4.
Collapse
Affiliation(s)
- Ali Kiapour
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | |
Collapse
|
10
|
Spain L, Yang L, Wilkinson JM, McCloskey E. Transmission of whole body vibration - Comparison of three vibration platforms in healthy subjects. Bone 2021; 144:115802. [PMID: 33309990 DOI: 10.1016/j.bone.2020.115802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022]
Abstract
The potential of whole body vibration (WBV) to maintain or enhance musculoskeletal strength during ageing is of increasing interest, with both low and high magnitude WBV having been shown to maintain or increase bone mineral density (BMD) at the lumbar spine and femoral neck. The aim of this study was to determine how a range of side alternating and vertical WBV platforms deliver vibration stimuli up through the human body. Motion capture data were collected for 6 healthy adult participants whilst standing on the Galileo 900, Powerplate Pro 5 and Juvent 100 WBV platforms. The side alternating Galileo 900 WBV platform delivered WBV at 5-30 Hz and amplitudes of 0-5 mm. The Powerplate Pro 5 vertical WBV platform delivered WBV at 25 and 30 Hz and amplitude settings of 'Low' and 'High'. The Juvent 1000 vertical WBV platform delivered a stimulus at a frequency between 32 and 37 Hz and amplitude 10 fold lower than either the Galileo or Powerplate, resulting in accelerations of 0.3 g. Motion capture data were recorded using an 8 camera Vicon Nexus system with 21 reflective markers placed at anatomical landmarks between the toe and the forehead. Vibration was expressed as vertical RMS accelerations along the z-axis which were calculated as the square root of the mean of the squared acceleration values in g. The Juvent 1000 did not deliver detectable vertical RMS accelerations above the knees. In contrast, the Powerplate Pro 5 and Galileo 900 delivered vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine. The maximum vertical RMS accelerations at the anterior superior iliac spine (ASIS) were 1.00 g ±0.30 and 0.85 g ±0.49 for the Powerplate and Galileo respectively. For similar accelerations at the ASIS, the Galileo achieved greater accelerations within the lower limbs, whilst the Powerplate recorded higher accelerations in the thoracic spine at T10. The Powerplate Pro 5 and Galileo 900 deliver vertical RMS accelerations sufficiently to reach the femoral neck and lumbar spine, whereas the Juvent 1000 did not deliver detectable vertical RMS accelerations above the knee. The side alternating Galileo 900 showed greater attenuation of the input accelerations than the vertical vibrations of the Powerplate Pro 5. The platforms differ markedly in the transmission of vibration with strong influences of frequency and amplitude. Researchers need to take account of the differences in transmission between platforms when designing and comparing trials of whole body vibration.
Collapse
Affiliation(s)
- Lucy Spain
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Lang Yang
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - J Mark Wilkinson
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Eugene McCloskey
- Academic Unit of Bone Metabolism, Metabolic Bone Centre, Sorby Wing, EU14, E Floor, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK; NIHR Bone Biomedical Research Unit, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK.
| |
Collapse
|
11
|
Carriero A, Javaheri B, Bassir Kazeruni N, Pitsillides AA, Shefelbine SJ. Age and Sex Differences in Load-Induced Tibial Cortical Bone Surface Strain Maps. JBMR Plus 2021; 5:e10467. [PMID: 33778328 PMCID: PMC7990149 DOI: 10.1002/jbm4.10467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano‐adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load‐related strains vary with age and sex. In this study, full‐field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a noninvasive murine tibial model. Strain maps indicate a nonuniform strain field across the tibial surface, with axial compressive loads resulting in tension on the medial side of the tibia because of its curved shape. The load‐induced surface strain patterns and magnitudes show sexually dimorphic changes with aging. A comparison of the average and peak tensile strains indicates that the magnitude of strain at a given load generally increases during maturation, with tibias in female mice having higher strains than in males. The data further reveal that postmaturation aging is linked to sexually dimorphic changes in average and maximum strains. The strain maps reported here allow for loading male and female C57BL/6J mouse legs in vivo at the observed ages to create similar increases in bone surface average or peak strain to more accurately explore bone mechano‐adaptation differences with age and sex. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alessandra Carriero
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Behzad Javaheri
- School of Mathematics, Computer Science and Engineering, City University of London London UK
| | | | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences Royal Veterinary College London UK
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering and Department of Bioengineering Northeastern University Boston MA USA
| |
Collapse
|
12
|
Shojaa M, von Stengel S, Kohl M, Schoene D, Kemmler W. Effects of dynamic resistance exercise on bone mineral density in postmenopausal women: a systematic review and meta-analysis with special emphasis on exercise parameters. Osteoporos Int 2020; 31:1427-1444. [PMID: 32399891 PMCID: PMC7360540 DOI: 10.1007/s00198-020-05441-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
This systematic review and meta-analysis set out to determine the effect of dynamic resistance exercise (DRT) on areal bone mineral density (aBMD) in postmenopausal women and derive evidence-based recommendations for optimized training protocols. A systematic review of the literature according to the PRISMA statement included (a) controlled trials, (b) of isolated DRT with at least one exercise and one control group, (c) with intervention durations ≥ 6 months, (d) aBMD assessments at lumbar spine or proximal femur, (e) in cohorts of postmenopausal women. We searched eight electronic databases up to March 2019 without language restrictions. The meta-analysis was performed using a random-effects model. Standardized mean differences (SMD) for BMD changes at lumbar spine (LS), femoral neck (FN), and total hip (TH) were defined as outcome measures. Moderators of the exercise effects, i.e., "intervention length," "type of DRT," "training frequency," "exercise intensity," and "exercise volume," were addressed by sub-group analyses. The study was registered in the international prospective register of systematic reviews (PROSPERO) under ID: CRD42018095097. Seventeen articles with 20 exercise and 18 control groups were eligible. SMD average is 0.54 (95% CI 0.22-0.87) for LS-BMD, 0.22 (0.07-0.38) for FN-BMD, and 0.48 (0.22-0.75) for TH-BMD changes (all p ≤ 0.015). While sub-group analysis for FN-BMD revealed no differences within categories of moderators, lower training frequency (< 2 sessions/week) resulted in significantly higher BMD changes at LS and TH compared to higher training frequency (≥ 2 sessions/week). Additionally, free weight training was significantly superior to DRT devices for improving TH-BMD. This work provided further evidence for significant, albeit only low-moderate, effects of DRT on LS-, FN-, and TH-BMD. Unfortunately, sub-analysis results did not allow meaningful exercise recommendations to be derived. This systematic review and meta-analysis observed a significant low-moderate effect of dynamic resistance exercise on bone mineral density changes in postmenopausal women. However, sub-group analyses focusing on exercise characteristics found no results that enable the derivation of meaningful exercise recommendations in the area of exercise and osteoporosis prevention or therapy.
Collapse
Affiliation(s)
- M Shojaa
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - S von Stengel
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - M Kohl
- Department of Medical and Life Sciences, University of Furtwangen, Schwenningen, Germany
| | - D Schoene
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - W Kemmler
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany.
| |
Collapse
|
13
|
Terhune CE, Sylvester AD, Scott JE, Ravosa MJ. Internal architecture of the mandibular condyle of rabbits is related to dietary resistance during growth. J Exp Biol 2020; 223:jeb220988. [PMID: 32127379 DOI: 10.1242/jeb.220988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Although there is considerable evidence that bone responds to the loading environment in which it develops, few analyses have examined phenotypic plasticity or bone functional adaptation in the masticatory apparatus. Prior work suggests that masticatory morphology is sensitive to differences in food mechanical properties during development; however, the importance of the timing/duration of loading and variation in naturalistic diets is less clear. Here, we examined microstructural and macrostructural differences in the mandibular condyle in four groups of white rabbits (Oryctolagus cuniculus) raised for a year on diets that varied in mechanical properties and timing of the introduction of mechanically challenging foods, simulating seasonal variation in diet. We employed sliding semilandmarks to locate multiple volumes of interest deep to the mandibular condyle articular surface, and compared bone volume fraction, trabecular thickness and spacing, and condylar size/shape among experimental groups. The results reveal a shared pattern of bony architecture across the articular surface of all treatment groups, while also demonstrating significant among-group differences. Rabbits raised on mechanically challenging diets have significantly increased bone volume fraction relative to controls fed a less challenging diet. The post-weaning timing of the introduction of mechanically challenging foods also influences architectural properties, suggesting that bone plasticity can extend well into adulthood and that bony responses to changes in loading may be rapid. These findings demonstrate that bony architecture of the mandibular condyle in rabbits responds to variation in mechanical loading during an organism's lifetime and has the potential to track dietary variation within and among species.
Collapse
Affiliation(s)
- Claire E Terhune
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremiah E Scott
- Department of Medical Anatomical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Matthew J Ravosa
- Departments of Biological Sciences, Aerospace & Mechanical Engineering, and Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Mustafy T, Londono I, Moldovan F, Villemure I. Isolated Cyclic Loading During Adolescence Improves Tibial Bone Microstructure and Strength at Adulthood. JBMR Plus 2020; 4:e10349. [PMID: 32258967 PMCID: PMC7117850 DOI: 10.1002/jbm4.10349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Bone is a unique living tissue, which responds to the mechanical stimuli regularly imposed on it. Adolescence facilitates a favorable condition for the skeleton that enables the exercise to positively influence bone architecture and overall strength. However, it is still dubious for how long the skeletal benefits gained in adolescence is preserved at adulthood. The current study aims to use a rat model to investigate the effects of in vivo low- (LI), medium- (MI), and high- (HI) intensity cyclic loadings applied during puberty on longitudinal bone development, morphometry, and biomechanics during adolescence as well as at adulthood. Forty-two young (4-week-old) male rats were randomized into control, sham, LI, MI, and HI groups. After a 5 day/week for 8 weeks cyclic loading regime applied on the right tibia, loaded rats underwent a subsequent 41-week, normal cage activity period. Right tibias were removed at 52 weeks of age, and a comprehensive assessment was performed using μCT, mechanical testing, and finite element analysis. HI and MI groups exhibited reduced body weight and food intake at the end of the loading period compared with shams, but these effects disappeared afterward. HI cyclic loading increased BMD, bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular spacing after loading. All loading-induced benefits, except BMD, persisted until the end of the normal cage activity period. Moreover, HI loading induced enhanced bone area, periosteal perimeter, and moment of inertia, which remained up to the 52nd week. After the normal cage activity at adulthood, the HI group showed increased ultimate force and stress, stiffness, postyield displacement and energy, and toughness compared with the sham group. Overall, our findings suggest that even though both trabecular and cortical bone drifted through age-related changes during aging, HI cyclic loading performed during adolescence can render lifelong benefits in bone microstructure and biomechanics. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Tanvir Mustafy
- Department of Mechanical EngineeringÉcole Polytechnique of MontréalMontréalQuébecCanada
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
| | - Irène Londono
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
| | - Florina Moldovan
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
- Department of Stomatology, Faculty of DentistryUniversité de MontréalMontréalQuébecCanada
| | - Isabelle Villemure
- Department of Mechanical EngineeringÉcole Polytechnique of MontréalMontréalQuébecCanada
- Department of PediatricsSainte‐Justine University Hospital CenterMontréalQuébecCanada
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Osteoporosis is an age-related disorder characterized by bone loss and increased fracture susceptibility. Whether this is due to reduced loading in less active elderly individuals or inherent modifications in bone cells is uncertain. We suppose that osteoporosis is nonetheless prima facie evidence for impaired mechanoadaptation; either capacity to accrue new bone declines, or the stimulus for such accrual is absent/can no longer be triggered in the aged. Herein, we provide only sufficient background to enable a focus on recent advances which seek to address such dilemmas. RECENT FINDINGS Recent advances from innovative high-impact loading regimes emphasize the priming of mechanoadaptation in the aged, such that low-to-moderate intensity loading becomes beneficial. These new findings lead us to speculate that aged bone mechanoadaptation is not driven solely by strain magnitude but is instead sensitive to high strain gradients. Impaired mechanoadaptation is a feature of the aged skeleton. Recent advances indicate that novel interventional loading regimes can restore mechanoadaptive capacity, enabling new approaches for retaining bone health in the aged. Innovative exercise paradigms appear to be capable of "hacking" into the osteogenic signal produced by exercise such that low-to-moderate intensity activities may also become more beneficial. Deciphering the underpinning mechanism(s) will also enable new pharmacological intervention for retaining bone health in the aged.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
16
|
Davison S, Chen L, Gray D, McEnroe B, O'Brien I, Kozerski A, Caruso J. Exercise-based correlates to calcaneal osteogenesis produced by a chronic training intervention. Bone 2019; 128:115049. [PMID: 31454536 DOI: 10.1016/j.bone.2019.115049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/29/2022]
Abstract
Thirty workouts on a gravity-independent device (Impulse Training Systems, Newnan GA) evoked significant calcaneal bone mineral content (BMC, +29%) and density (BMD, +33%) gains. High speeds and impact loads were produced per repetition. We examined exercise performance variables from the 30-workout intervention to identify correlates to delta (∆) calcaneal BMC and BMD variance. Workouts included hip extension and seated calf press exercises done with subject's left legs. ∆ values were obtained from the first and 12th workouts for the hip extension movement, and for the first and 24th workouts for the seated calf press exercise. Per exercise the following variables were quantified: peak force (∆PF), peak acceleration (∆PA), impulse (∆I), and dwell times (∆DT). Dwell times are the elapsed time between the end of the eccentric phase, and the start of the next repetition's concentric phase. Pearson Coefficients assessed correlations between performance and criterion variables. With hip extension ∆DT calculated with data from the first and 12th workouts, there were significant correlations with calcaneal ∆BMC (r = -0.64) and ∆BMD (r = -0.63). With seated calf press ∆DT derived as the difference from the first and 24th workouts, there was a significant correlation with calcaneal ∆BMC (r = -0.48), but only a trend (r = -0.45) with ∆BMD as the criterion. No other variables correlated with significant amounts of calcaneal ∆BMC and ∆BMD variance. Negative correlations infer shorter dwell times evoked greater gains. The gravity-independent device warrants continued inquiry to treat and abate calcaneal losses.
Collapse
Affiliation(s)
- Steve Davison
- Impulse Training Systems, Newnan, GA 30263, United States of America
| | - Ling Chen
- University of Louisville, Louisville, KY 40292, United States of America
| | - Dane Gray
- University of Louisville, Louisville, KY 40292, United States of America
| | - Bailey McEnroe
- University of Louisville, Louisville, KY 40292, United States of America
| | - Ian O'Brien
- University of Louisville, Louisville, KY 40292, United States of America
| | - Amy Kozerski
- University of Louisville, Louisville, KY 40292, United States of America
| | - John Caruso
- University of Louisville, Louisville, KY 40292, United States of America.
| |
Collapse
|
17
|
High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats. Sci Rep 2019; 9:13128. [PMID: 31511559 PMCID: PMC6739374 DOI: 10.1038/s41598-019-49432-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µε), uphill running (850 µε) and jumping (1250 µε) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.
Collapse
|
18
|
Canalicular fluid flow induced by loading waveforms: A comparative analysis. J Theor Biol 2019; 471:59-73. [DOI: 10.1016/j.jtbi.2019.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
|
19
|
Enhanced bone healing in porous Ti implanted rabbit combining bioactive modification and mechanical stimulation. J Mech Behav Biomed Mater 2018; 86:336-344. [PMID: 30007182 DOI: 10.1016/j.jmbbm.2018.06.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
To improve the bone healing efficiency of porous titanium implants, desired biological properties of implants are mandatory, involving bioactivity, osteoconductivity, osteoinductivity and a stable environment. In this study, bare porous titanium (abbr. pTi) with the porosity of 70% was fabricated by vacuum diffusion bonding of titanium meshes. Hydroxyapatite-coated pTi (abbr. Hap-pTi) was obtained by successively subjecting pTi to alkali heat treatment, pre-calcification and simulated body fluid. Both pTi and Hap-pTi were respectively implanted into the tibia defect model (ϕ10 mm × 6 mm) in New Zealand white rabbits, then subjected to non-invasively axial compressive loads at high-magnitude low-frequency (HMLF), which were denoted as F-pTi and F-Hap-pTi, respectively. Bone repairing efficiencies were analyzed by postoperative X-ray examination, optical observation and HE staining after 14 and 30 days of implantation. ALP and OCN contents in serum were also examined at 30 days. Results showed that the sham group and sham group with mechanical stimulation (abbr. F-sham) preferably caused bone fractures. Qualitatively, Hap-pTi reduced the risk of bone fractures and enhanced bone healing slightly more effectively compared to bared pTi. However, both Hap-pTi combined with mechanical stimulation and F-pTi in the case of bioactive modification could result in a higher bone healing efficiency (F-Hap-pTi). The molecular signaling investigation of ALP and OCN contents in serum further revealed a probable synergistic effect of Hap coating coupling with HMLF compression on improving bone repairing efficiency. It provides a candidate of clinically applicable therapy for osseous defects.
Collapse
|
20
|
Tiwari AK, Kumar N. Establishing the relationship between loading parameters and bone adaptation. Med Eng Phys 2018; 56:16-26. [DOI: 10.1016/j.medengphy.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
|
21
|
Javaheri B, Carriero A, Wood M, De Souza R, Lee PD, Shefelbine S, Pitsillides AA. Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response. Sci Rep 2018; 8:6636. [PMID: 29703931 PMCID: PMC5924380 DOI: 10.1038/s41598-018-25084-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022] Open
Abstract
Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | - Alessandra Carriero
- The City College of New York, Department of Biomedical Engineering, 160 Convent Avenue, New York, NY, 10031, USA
| | - Maria Wood
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Roberto De Souza
- Universidade Federal de Mato Grosso (UFMT), Departamento de Clínica, Av. Fernando Corrêa da Costa, 2367 - Boa Esperança, Cuiabá, 78060-900, Brazil
| | - Peter D Lee
- Manchester X-Ray Imaging Facility, University of Manchester, Research Complex at Harwell, RAL, Didcot, OX11 0FA, UK
| | - Sandra Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
22
|
Strains in trussed spine interbody fusion implants are modulated by load and design. J Mech Behav Biomed Mater 2018; 80:203-208. [DOI: 10.1016/j.jmbbm.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/06/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
|
23
|
Abstract
PURPOSE OF REVIEW Due to older people's low sports participation rates, exercise frequency may be the most critical component for designing exercise protocols that address fracture risk. The aims of the present article were to review and summarize the independent effect of exercise frequency (ExFreq) on the main determinants of fracture prevention, i.e., bone strength, fall frequency, and fall impact in older adults. RECENT FINDINGS Evidence collected last year suggests that there is a critical dose of ExFreq that just affects bone (i.e., BMD). Corresponding data for fall-related fracture risk are still sparse and inconsistent, however. The minimum effective dose (MED) of ExFreq that just favorably affects BMD at the lumbar spine and femoral neck has been found to vary between 2.1 and 2.5 sessions/week. Although this MED cannot necessarily be generalized to other cohorts, we speculate that this "critical exercise frequency" might not significantly vary among adult cohorts.
Collapse
Affiliation(s)
- Wolfgang Kemmler
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany.
| | - Simon von Stengel
- Institute of Medical Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Matthias Kohl
- Department of Medical and Life Sciences, University of Furtwangen, Jakob-Kienzle-Straße 17, Furtwangen im Schwarzwald, Germany
| |
Collapse
|
24
|
Komrakova M, Stuermer EK, Tezval M, Stuermer KM, Dullin C, Schmelz U, Doell C, Durkaya-Burchhardt N, Fuerst B, Genotte T, Sehmisch S. Evaluation of twelve vibration regimes applied to improve spine properties in ovariectomized rats. Bone Rep 2017. [PMCID: PMC5736857 DOI: 10.1016/j.bonr.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While whole-body vibration (WBV) has recently been introduced as a non-pharmacological therapy for osteoporosis, studies have shown that it has no significant effect on the lumbar spine in older women. However, the vibration protocols differed among studies, and the major factor influencing the outcomes is unclear. The intention of the present study was to evaluate the effect of WBV—vertical (v) or horizontal (h) and of different frequencies and application regimes (1 × or 2 ×/d)—on lumbar spine properties in ovariectomized rats (Ovx). Three experiments were conducted. Thirteen-week old female Sprague–Dawley rats were Ovx or left intact (Non-Ovx). After eight weeks, all of the rats underwent metaphyseal osteotomy of the tibiae. Five days later, the rats were divided into six groups (n = 15): 1) intact, 2) Ovx, and 3–6) Ovx exposed to WBV. In Experiment 1, groups 3–6 underwent 35 Hz-v, 50 Hz-v, 70 Hz-v, and 90 Hz-v, respectively. In Experiment 2, groups 3–6 underwent 30 Hz-h, 50 Hz-h, 70 Hz-h, and 90 Hz-h, respectively. In Experiment 3, groups 3–6 underwent 35 Hz-v, 70 Hz-v, 35 Hz-h, and 70 Hz-h, respectively. Vibration exposure was 15 min 1 ×/d in Experiment 1 and 2 and 2 ×/d in Experiment 3 for up to 30 days. Vertebral bodies were used in micro-computed tomography, biomechanical, ashing, and gene expression analyses. Vertical vibrations applied once a day favorably affected bone volume fraction (BV/TV) and Ca2 +/PO43 − and decreased Rankl gene expression. When applied twice a day, v-vibrations diminished mineral content. Horizontal vibrations (1 ×/d) reduced Ca2 +/PO43 − ratio and Opg mRNA level, whereas h-vibration (2 ×/d) normalized OC serum levels. Many of the other measured parameters did not reveal any significant differences between the vibrated groups and the untreated Ovx group. The effect of ovariectomy was confirmed by atrophied uterus, impaired biomechanical properties, and bone mineral density and BV/TV of the vertebral body. The findings of the present study indicate that application frequency rate and direction of vibration might influence spine response differently. However, we were unable to find any clearly beneficial or harmful effect of vibration regimes on the osteopenic lumbar spine in rats. Whole body vibration (WBV) has been introduced as therapy for osteoporosis. WBV had no significant effect on lumbar spine in older women. WBVs of different frequencies and types were investigated in osteopenic rats. Horizontal, vertical WBVs and application frequency differently affected spine. Any clearly beneficial or harmful effect of WBVs on lumbar spine was identified.
Collapse
|
25
|
Sherk VD, Carpenter RD, Giles ED, Higgins JA, Oljira RM, Johnson GC, Mills S, Maclean PS. Ibuprofen before Exercise Does Not Prevent Cortical Bone Adaptations to Training. Med Sci Sports Exerc 2017; 49:888-895. [PMID: 28079706 DOI: 10.1249/mss.0000000000001194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a nonsteroidal anti-inflammatory drug (NSAID) before a single bout of mechanical loading can reduce bone formation response. It is unknown whether this translates to an attenuation of bone strength and structural adaptations to exercise training. PURPOSE This study aimed to determine whether nonsteroidal anti-inflammatory drug use before exercise prevents increases in bone structure and strength in response to weight-bearing exercise. METHODS Adult female Wistar rats (n = 43) were randomized to ibuprofen (IBU) or vehicle (VEH) and exercise (EX) or sedentary (SED) groups in a 2 × 2 (drug and activity) ANCOVA design with body weight as the covariate, and data are reported as mean ± SE. IBU drops (30 mg·kg BW) or VEH (volume equivalent) were administered orally 1 h before the bout of exercise. Treadmill running occurred 5 d·wk for 60 min·d at 20 m·min with a 5° incline for 12 wk. Micro-CT, mechanical testing, and finite element modeling were used to quantify bone characteristics. RESULTS Drug-activity interactions were not significant. Exercise increased tibia cortical cross-sectional area (EX = 5.67 ± 0.10, SED = 5.37 ± 0.10 mm, P < 0.01) and structural estimates of bone strength (Imax: EX = 5.16 ± 0.18, SED = 4.70 ± 0.18 mm, P < 0.01; SecModPolar: EX = 4.01 ± 0.11, SED = 3.74 ± 0.10 mm, P < 0.01). EX had increased failure load (EX = 243 ± 9, SED = 202 ± 7 N, P < 0.05) and decreased distortion in response to a 200-N load (von Mises stress at tibia-fibula junction: EX = 48.2 ± 1.3, SED = 51.7 ± 1.2 MPa, P = 0.01). There was no effect of ibuprofen on any measurement tested. Femur results revealed similar patterns. CONCLUSION Ibuprofen before exercise did not prevent the skeletal benefits of exercise in female rats. However, exercise that engenders higher bone strains may be required to detect an effect of ibuprofen.
Collapse
Affiliation(s)
- Vanessa D Sherk
- 1Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO; 2Department of Mechanical Engineering, University of Colorado Denver, Denver, CO; and 3Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. Intracranial and hierarchical perspective on dietary plasticity in mammals. ZOOLOGY 2017; 124:30-41. [PMID: 28867598 DOI: 10.1016/j.zool.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022]
Abstract
The effect of dietary properties on craniofacial form has been the focus of numerous functional studies, with increasingly more work dedicated to the importance of phenotypic plasticity. As bone is a dynamic tissue, morphological variation related to differential loading is well established for many masticatory structures. However, the adaptive osteogenic response of several cranial sites across multiple levels of bony organization remains to be investigated. Here, rabbits were obtained at weaning and raised for 48 weeks until adulthood in order to address the naturalistic influence of altered loading on the long-term development of masticatory and non-masticatory elements. Longitudinal data from micro-computed tomography (μCT) scans were used to test the hypothesis that variation in cortical bone formation and biomineralization in masticatory structures is linked to increased stresses during oral processing of mechanically challenging foods. It was also hypothesized that similar parameters for neurocranial structures would be minimally affected by varying loads as this area is characterized by low strains during mastication and reduced hard-tissue mechanosensitivity. Hypotheses were supported regarding bone formation for maxillomandibular and neurocranial elements, though biomineralization trends of masticatory structures did not mirror macroscale findings. Varying osteogenic responses in masticatory elements suggest that physiological adaptation, and corresponding variation in skeletal performance, may reside differentially at one level of bony architecture, potentially affecting the accuracy of behavioral and in silico reconstructions. Together, these findings underscore the complexity of bone adaptation and highlight functional and developmental variation in determinants of skull form.
Collapse
Affiliation(s)
- Erin M Franks
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeremiah E Scott
- Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA.
| | - Kevin R McAbee
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Joseph P Scollan
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Meghan M Eastman
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Ravosa
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
27
|
Ireland A, Capozza RF, Cointry GR, Nocciolino L, Ferretti JL, Rittweger J. Meagre effects of disuse on the human fibula are not explained by bone size or geometry. Osteoporos Int 2017; 28:633-641. [PMID: 27734100 DOI: 10.1007/s00198-016-3779-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
UNLABELLED Fibula response to disuse is unknown; we assessed fibula bone in spinal cord injury (SCI) patients and able-bodied counterparts. Group differences were smaller than in the neighbouring tibia which could not be explained by bone geometry. Differential adaptation of the shank bones may indicate previously unknown mechanoadaptive behaviours of bone. INTRODUCTION The fibula supports only a small and highly variable proportion of shank compressive load (-8 to +19 %), and little is known about other kinds of stresses. Hence, whilst effects of habitual loading on tibia are well-known, fibula response to disuse is difficult to predict. METHODS Therefore, we assessed fibular bone strength using peripheral quantitative computed tomography (pQCT) at 5 % increments from 5 to 90 % distal-proximal tibia length in nine participants with long-term spinal cord injury (SCI; age 39.2 ± 6.2 years, time since injury 17.8 ± 7.4 years), representing a cross-sectional model of long-term disuse and in nine able-bodied counterparts of similar age (39.6 ± 7.8 years), height and mass. RESULTS There was no group difference in diaphyseal fibula total bone mineral content (BMC) (P = 0.22, 95 % CIs -7.4 % to -13.4 % and +10.9 % to +19.2 %). Site by group interactions (P < 0.001) revealed 27 and 22 % lower BMC in SCI at 5 and 90 % (epiphyseal) sites only. Cortical bone geometry differed at mid and distal diaphysis, with lower endocortical circumference and greater cortical thickness in SCI than able-bodied participants in this region only (interactions both P < 0.01). Tibia bone strength was also assessed; bone by group interactions showed smaller group differences in fibula than tibia for all bone parameters, with opposing effects on distal diaphysis geometry in the two bones (all Ps < 0.001). CONCLUSIONS These results suggest that the structure of the fibula diaphysis is not heavily influenced by compressive loading, and only mid and distal diaphysis are influenced by bending and/or torsional loads. The fibula is less influenced by disuse than the tibia, which cannot satisfactorily be explained by differences in bone geometry or relative changes in habitual loading in disuse. Biomechanical study of the shank loading environment may give new information pertaining to factors influencing bone mechanoadaptation.
Collapse
Affiliation(s)
- A Ireland
- School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| | - R F Capozza
- Center of P-Ca Metabolism Studies (CEMFoC), National University of Rosario, Rosario, Argentina
| | - G R Cointry
- Center of P-Ca Metabolism Studies (CEMFoC), National University of Rosario, Rosario, Argentina
| | - L Nocciolino
- Center of P-Ca Metabolism Studies (CEMFoC), National University of Rosario, Rosario, Argentina
| | - J L Ferretti
- Center of P-Ca Metabolism Studies (CEMFoC), National University of Rosario, Rosario, Argentina
| | - J Rittweger
- Division of Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
REN LI, WANG ZHE, HUANG LINGWEI, YANG PENGFEI, SHANG PENG. TECHNOLOGIES FOR STRAIN ASSESSMENT FROM WHOLE BONE TO MINERALIZED OSTEOID LEVEL: A CRITICAL REVIEW. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone has distinctive structures and mechanical properties at the whole bone, perilacunar and mineralized osteoid levels. A systematic understanding of bone strain magnitudes at different anatomical levels and their internal interactions is the prerequisite to advances in bone mechanobiology. However, due to the intrinsic shortcomings of the strain-measuring technologies, the systematic assessment of bone strain at different anatomical levels under physiological conditions and a deep understanding of their internal interactions are still restricted. To promote technological advances and provide systematic and valuable information for mechanical engineers and bone biomechanical researchers, the most useful methods for measuring bone strain at different anatomical levels are demonstrated in this review, and suggestions for the future development of the technologies and their potential integrated applications are proposed.
Collapse
Affiliation(s)
- LI REN
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - ZHE WANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - LINGWEI HUANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENGFEI YANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| | - PENG SHANG
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 127 Youyi Xilu, Xi'an 710072, P. R. China
| |
Collapse
|
29
|
Caffrey JP, Cory E, Wong VW, Masuda K, Chen AC, Hunt JP, Ganey TM, Sah RL. Ex vivo loading of trussed implants for spine fusion induces heterogeneous strains consistent with homeostatic bone mechanobiology. J Biomech 2016; 49:4090-4097. [PMID: 27836500 DOI: 10.1016/j.jbiomech.2016.10.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
Abstract
A truss structure was recently introduced as an interbody fusion cage. As a truss system, some of the connected elements may be in a state of compression and others in tension. This study aimed to quantify both the mean and variance of strut strains in such an implant when loaded in a simulated fusion condition with vertebral body or contoured plastic loading platens ex vivo. Cages were each instrumented with 78 fiducial spheres, loaded between platens (vertebral body or contoured plastic), imaged using high resolution micro-CT, and analyzed for deformation and strain of each of the 221 struts. With repeated loading of a cage by vertebral platens, the distribution (variance, indicated by SD) of strut strains widened from 50N control (4±114με, mean±SD) to 1000N (-23±273με) and 2000N (-48±414με), and between 1000N and 2000N. With similar loading of multiple cages, the strain distribution at 2000N (23±389με) increased from 50N control. With repeated loading by contoured plastic platens, induced strains at 2000N had a distribution similar to that induced by vertebral platens (84±426με). In all studies, cages exhibited increases in strut strain amplitude when loaded from 50N to 1000N or 2000N. Correspondingly, at 2000N, 59-64% of struts exhibited strain amplitudes consistent with mechanobiologically-regulated bone homeostasis. At 2000N, vertically-oriented struts exhibited deformation of -2.87±2.04μm and strain of -199±133με, indicating overall cage compression. Thus, using an ex vivo 3-D experimental biomechanical analysis method, a truss implant can have strains induced by physiological loading that are heterogeneous and of amplitudes consistent with mechanobiological bone homeostasis.
Collapse
Affiliation(s)
- Jason P Caffrey
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA
| | - Esther Cory
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA
| | - Van W Wong
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California-San Diego, 9500 Gilman Drive MC 0863, La Jolla, CA 92093-0863, USA
| | - Albert C Chen
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA
| | - Jessee P Hunt
- 4WEB Medical, 6170 Research Road, Suite 219, Frisco, TX 75033, USA
| | - Timothy M Ganey
- Atlanta Medical Center, 303 Parkway Drive NE, Box 227, Atlanta, GA 30312, USA
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA 92093-0412, USA; Department of Orthopedic Surgery, University of California-San Diego, 9500 Gilman Drive MC 0863, La Jolla, CA 92093-0863, USA; Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, 9500 Gilman Dr. MC 0412, La Jolla, CA 92093-0412, USA.
| |
Collapse
|
30
|
Hichijo N, Tanaka E, Kawai N, van Ruijven LJ, Langenbach GEJ. Effects of Decreased Occlusal Loading during Growth on the Mandibular Bone Characteristics. PLoS One 2015; 10:e0129290. [PMID: 26062027 PMCID: PMC4465670 DOI: 10.1371/journal.pone.0129290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bone mass and mineralization are largely influenced by loading. The purpose of this study was to evaluate the reaction of the entire mandibular bone in response to decreased load during growth. It is hypothesized that decreased muscular loading will lead to bone changes as seen during disuse, i.e. loss of bone mass. METHODS AND FINDINGS Ten 21-day-old Wistar strain male rats were divided into two groups (each n=5) and fed on either a hard- or soft-diet for 11 weeks. Micro-computed tomography was used for the investigation of bone mineralization, bone volume, bone volume fraction (BV/TV) and morphological analysis. Mandibular mineralization patterns were very consistent, showing a lower degree of mineralization in the ramus than in the corpus. In the soft-diet group, mineralization below the molars was significantly increased (p<0.05) compared to the hard diet group. Also, bone volume and BV/TV of the condyle and the masseter attachment were decreased in the soft-diet group (p<0.05). Morphological analysis showed inhibited growth of the ramus in the soft-diet group (p<0.05). CONCLUSION Decreased loading by a soft diet causes significant changes in the mandible. However, these changes are very region-specific, probably depending on the alterations in the local loading regime. The results suggest that muscle activity during growth is very important for bone quality and morphology.
Collapse
Affiliation(s)
- Natsuko Hichijo
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| | - Nobuhiko Kawai
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Leo J. van Ruijven
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| | - Geerling E. J. Langenbach
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Nicholson VP, McKean MR, Slater GJ, Kerr A, Burkett BJ. Low-Load Very High-Repetition Resistance Training Attenuates Bone Loss at the Lumbar Spine in Active Post-menopausal Women. Calcif Tissue Int 2015; 96:490-9. [PMID: 25772806 DOI: 10.1007/s00223-015-9976-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
This study determined the effect of 6 months of low-load very high-repetition resistance training on bone mineral density (BMD) and body composition in nonosteoporotic middle-aged and older women. Fifty healthy, active community-dwelling women aged 56-75 years took part in the two-group, repeated-measures randomized controlled trial. Participants either undertook 6 months of low-load very high-repetition resistance training in the form of BodyPump™ or served as control participants. Outcome measures included BMD at the lumbar spine, hip, and total body; total fat mass; fat-free soft tissue mass and maximal isotonic strength. Significant group-by-time interactions were found for lumbar spine BMD and maximal strength in favor of the BodyPump™ group. No favorable effects were found for hip BMD, total body BMD, total fat mass, or fat-free soft tissue mass. Three participants withdrew from the intervention group due to injury or fear of injury associated with training. Under the conditions used in this research, low-load very high-repetition resistance training is effective at attenuating losses in lumbar spine BMD compared to controls in healthy, active women aged over 55 years but did not influence hip and total body BMD or fat mass and fat-free soft tissue mass.
Collapse
Affiliation(s)
- Vaughan P Nicholson
- School of Health and Sport Sciences, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD, 4556, Australia,
| | | | | | | | | |
Collapse
|
32
|
Judex S, Koh TJ, Xie L. Modulation of bone's sensitivity to low-intensity vibrations by acceleration magnitude, vibration duration, and number of bouts. Osteoporos Int 2015; 26:1417-28. [PMID: 25614140 DOI: 10.1007/s00198-014-3018-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Variables defining vibration-based biomechanical treatments were tested by their ability to affect the musculoskeleton in the growing mouse. Duration of a vibration bout, but not variations in vibration intensity or number of vibration bouts per day, was identified as modulator of trabecular bone formation rates. INTRODUCTION Low-intensity vibrations (LIV) may enhance musculoskeletal properties, but little is known regarding the role that individual LIV variables play. We determined whether acceleration magnitude and/or the number and duration of daily loading bouts may modulate LIV efficacy. METHODS LIV was applied to 8-week-old mice at either 0.3 g or 0.6 g for three weeks; the number of daily bouts was one, two, or four, and the duration of a single bout was 15, 30, or 60 min. A frequency of 45 Hz was used throughout. RESULTS LIV induced tibial cortical surface strains in 4-month-old mice of approximately 10 με at 0.3 g and 30 με at 0.6 g. In trabecular bone of the proximal tibial metaphysis, all single daily bout signal combinations with the exception of a single 15 min daily bout at 0.3 g (i.e., single bouts of 30 and 60 min at 0.3 g and 15 and 30 min at 0.6 g) produced greater bone formation rates (BFR/BS) than in controls. Across all signal combinations, 30 and 60 min bouts were significantly more effective than 15 min bouts in raising BFR/BS above control levels. Increasing the number of daily bouts or partitioning a single daily bout into several shorter bouts did not potentiate efficacy and in some instances led to BFR/BS that was not significantly different from those in controls. Bone chemical and muscle properties were similar across all groups. CONCLUSIONS These data may provide a basis towards optimization of LIV efficacy and indicate that in the growing mouse skeleton, increasing bout duration from 15 to 30 or 60 min positively influences BFR/BS.
Collapse
Affiliation(s)
- S Judex
- Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 213, Stony Brook, NY, 11794-5281, USA,
| | | | | |
Collapse
|
33
|
Ishikawa S, Kim Y, Kang M, Morgan DW. Effects of weight-bearing exercise on bone health in girls: a meta-analysis. Sports Med 2014; 43:875-92. [PMID: 23754172 DOI: 10.1007/s40279-013-0060-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Because growing bone possesses a greater capacity to adapt to mechanical loading than does mature bone, it is important for girls to engage in weight-bearing activities, especially since the prevalence of osteoporosis among older women is considerably higher than that of older men. In recent years, the osteogenic potential of weight-bearing activities performed by children and adolescents has received increasing attention and accumulating evidence suggests that this type of activity may improve bone health prior to adulthood and help prevent osteoporosis later in life. OBJECTIVE Because previous interventions have varied with respect to the exercise parameters studied and sometimes produced conflicting findings, this meta-analysis was undertaken to evaluate the impact of weight-bearing exercise on the bone health of female children and adolescents and quantify the influence of key moderating variables (e.g. pubertal stage, exercise mode, intervention strategy, exercise duration, frequency of exercise, programme length and study design) on skeletal development in this cohort. METHODS A comprehensive literature search was conducted using databases such as PubMed, MEDLINE, CINAHL, Web of Science, Physical Education Index, Science Direct and ProQuest. Search terms included 'bone mass', 'bone mineral', 'bone health', 'exercise' and 'physical activity'. Randomized- and non-randomized controlled trials featuring healthy prepubertal, early-pubertal and pubertal girls and measurement of areal bone mineral density (aBMD) or bone mineral content (BMC) using dual energy x-ray absorptiometry were examined. Comprehensive Meta-Analysis software was used to determine weighted mean effect sizes (ES) and conduct moderator analyses for three different regions of interest [i.e. total body, lumbar spine (LS), and femoral neck]. RESULTS From 17 included studies, 72 ES values were retrieved. Our findings revealed a small, but significant influence of weight-bearing exercise on BMC and aBMD of the LS (overall ES 0.19; 95% confidence interval (CI) 0.05, 0.33 and overall ES 0.26, 95% CI 0.09, 0.43, respectively) and BMC of the femoral neck (ES 0.23; 95% CI 0.10, 0.36). For both aBMD and BMC, overall ES was not affected by any moderator variables except frequency of exercise, such that weight-bearing activity performed for more than 3 days per week resulted in a significantly greater ES value for LS aBMD compared with programmes lasting 3 or fewer days per week [Cochran's Q statistic (Qbetween) = 4.09; p < 0.05]. CONCLUSION The impact of weight-bearing activities seems to be site specific, and a greater frequency of weight-bearing activities is related to greater aBMD of LS in growing girls. Future investigations are warranted to better understand the dose-response relationship between weight-bearing activity and bone health in girls and explore the mediating role of pubertal status in promoting skeletal development among female youth.
Collapse
Affiliation(s)
- Saori Ishikawa
- Department of Health and Human Performance, Middle Tennessee State University, P.O. Box 96, Murfreesboro, TN 37132, USA.
| | | | | | | |
Collapse
|
34
|
Carriero A, Abela L, Pitsillides AA, Shefelbine SJ. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model. J Biomech 2014; 47:2490-7. [PMID: 24835472 PMCID: PMC4071445 DOI: 10.1016/j.jbiomech.2014.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/22/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
Previous studies introduced the digital image correlation (DIC) as a viable technique for measuring bone strain during loading. In this study, we investigated the sensitivity of a DIC system in determining surface strains in a mouse tibia while loaded in compression through the knee joint. Specifically, we examined the effect of speckle distribution, facet size and overlap, initial vertical alignment of the bone into the loading cups, rotation with respect to cameras, and ex vivo loading configurations on the strain contour maps measured with a DIC system. We loaded tibiae of C57BL/6 mice (12 and 18 weeks old male) up to 12 N at 8 N/min. Images of speckles on the bone surface were recorded at 1 N intervals and DIC was used to compute strains. Results showed that speckles must have the correct size and density with respect to the facet size of choice for the strain distribution to be computed and reproducible. Initial alignment of the bone within the loading cups does not influence the strain distribution measured during peak loading, but bones must be placed in front of the camera with the same orientation in order for strains to be comparable. Finally, the ex vivo loading configurations with the tibia attached to the entire mouse, or to the femur and foot, or only to the foot, showed different strain contour maps. This work provides a better understanding of parameters affecting full field strain measurements from DIC in ex vivo murine tibial loading tests.
Collapse
Affiliation(s)
| | - Lisa Abela
- Department of Bioengineering, Imperial College London, UK
| | | | | |
Collapse
|
35
|
Ireland A, Rittweger J, Degens H. The Influence of Muscular Action on Bone Strength Via Exercise. Clin Rev Bone Miner Metab 2013. [DOI: 10.1007/s12018-013-9151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Kim PS, Shin YH, Noh SK, Jung HL, Lee CD, Kang HY. Beneficial effects of judo training on bone mineral density of high-school boys in Korea. Biol Sport 2013; 30:295-9. [PMID: 24744501 PMCID: PMC3944548 DOI: 10.5604/20831862.1077556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2013] [Indexed: 11/13/2022] Open
Abstract
Bone mineralization is strongly stimulated by weight-bearing exercise during growth and development. Judo, an Olympic combat sport, is a well-known form of strenuous and weight-bearing physical activity. Therefore, the primary goal of this study was to determine the effects of Judo practice on the bone health of male high school students in Korea. The secondary goal of this study was to measure and compare the bone mineral density (BMD) of the hands of Judo players and sedentary control subjects. Thirty Judo players (JDP) and 30 sedentary high school boys (CON) voluntarily participated in the present study, and all of the sedentary control subjects were individually matched to the Judo players by body weight. BMD was determined by using dual-energy X-ray absorptiometry (Hologic, Bedford, MA, USA). The lumbar spine, femur and forearm BMD in the JDP group were significantly greater by 22.7%, 24.5%, and 18.3%, respectively, than those in the CON group. In addition, a significant difference in the CON group was observed between the dominant hand (DH) radius (0.710 ± 0.074 g/cm(2)) and the non-dominant hand (NDH) radius (0.683 ± 0.072 g/cm(2)), but this was not observed in the JDP group (DH = 0.819 ± 0.055 g/cm(2); NDH = 810 ± 0.066 g/cm(2)) (P < 0.05). Therefore, the results of this study suggest that Judo practice during the growth period significantly improves bone health in high school male students. In addition, it seems that Judo practice could eliminate the effect of increased BMD in the dominant hand.
Collapse
Affiliation(s)
- P S Kim
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| | - Y H Shin
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| | - S K Noh
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| | - H L Jung
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| | - C D Lee
- Department of Exercise and Wellness, Arizona State University, Mesa, Arizona, USA
| | - H Y Kang
- Department of Physical Education, Kyungpook National University, Daegu, Korea
| |
Collapse
|
37
|
Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J Biomech 2013; 46:2296-302. [PMID: 23870506 DOI: 10.1016/j.jbiomech.2013.06.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
Abstract
Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell's sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04 Pa to 5 Pa. Vibrations were applied at magnitudes of 0.15 g, 1g, and 2g using frequencies of both 100 Hz and 30 Hz. After 14 d and under low fluid shear conditions associated with 100 Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30 Hz vibrations enhanced mineralization only in the 2g group. Over 3d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott-Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity.
Collapse
|
38
|
Yang X, Willie BM, Beach JM, Wright TM, van der Meulen MCH, Bostrom MPG. Trabecular bone adaptation to loading in a rabbit model is not magnitude-dependent. J Orthop Res 2013; 31:930-4. [PMID: 23423863 DOI: 10.1002/jor.22316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/28/2012] [Indexed: 02/04/2023]
Abstract
Although mechanical loading is known to influence trabecular bone adaptation, the role of specific loading parameters requires further investigation. Previous studies demonstrated that the number of loading cycles and loading duration modulate the adaptive response of trabecular bone in a rabbit model of applied loading. In the current study, we investigated the influence of load magnitude on the adaptive response of trabecular bone using the rabbit model. Cyclic compressive loads, producing peak pressures of either 0.5 or 1.0 MPa, were applied daily (5 days/week) at 1 Hz and 50 cycles/day for 4 weeks post-operatively to the trabecular bone on the lateral side of the distal right femur, while the left side served as an nonloaded control. The adaptive response was characterized by microcomputed tomography and histomorphometry. Bone volume fraction, bone mineral content, tissue mineral density, and mineral apposition rate (MAR) increased in loaded limbs compared to the contralateral control limbs. No load magnitude dependent difference was observed, which may reflect the critical role of loading compared to the operated, nonloaded contralateral limb. The increased MAR suggests that loading stimulated new bone formation rather than just maintaining bone volume. The absence of a dose-dependent response of trabecular bone observed in this study suggests that a range of load magnitudes should be examined for biophysical therapies aimed at augmenting current treatments to enhance long-term fixation of orthopedic devices.
Collapse
Affiliation(s)
- Xu Yang
- Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
39
|
Thai traditional massage increases biochemical markers of bone formation in postmenopausal women: a randomized crossover trial. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:69. [PMID: 23530566 PMCID: PMC3770450 DOI: 10.1186/1472-6882-13-69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
Background The effect of massage therapy on bone metabolism in adults has only scarcely been explored. In a randomized crossover trial, we investigated the skeletal effect of Thai traditional massage by examining the changes in biochemical markers of bone turnover. Methods Forty-eight postmenopausal women participated in the study. All volunteers were randomized to a 2-hour session of Thai traditional massage twice a week for 4 weeks and a 4-week control period after a 2-week washout, or vice versa. Twenty-one subjects were allocated to receiving Thai traditional massage first, followed by the control period, while 27 were initially allocated to the control period. Results Serum P1NP increased significantly after Thai traditional massage (P <0.01), while there was no change in serum osteocalcin or CTX. During the control period, there was no significant change in P1NP, osteocalcin or CTX compared to baseline. When age and height were taken into account, P1NP in postmenopausal women whose ages were in the middle and higher tertiles and whose heights were in the lower and middle tertiles (n = 22) had a 14.8 ± 3.3% increase in P1NP after massage (P <0.001), while no change in P1NP was found in the rest of the women (n = 26). Conclusions Thai traditional massage results in an increase in bone formation as assessed by serum P1NP, particularly in postmenopausal women who are older and have a smaller body build. Future studies with larger samples and additional design features are warranted. Trial registration ClinicalTrials.gov : NCT01627028
Collapse
|
40
|
Hoey DA, Tormey S, Ramcharan S, O'Brien FJ, Jacobs CR. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 2013; 30:2561-70. [PMID: 22969057 PMCID: PMC3533782 DOI: 10.1002/stem.1235] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Physical loading is a potent stimulus required to maintain bone homeostasis, partly through the renewal and osteogenic differentiation of mesenchymal stem cells (MSCs). However, the mechanism by which MSCs sense a biophysical force and translate that into a biochemical bone forming response (mechanotransduction) remains poorly understood. The primary cilium is a single sensory cellular extension, which has recently been shown to demonstrate a role in cellular mechanotransduction and MSC lineage commitment. In this study, we present evidence that short periods of mechanical stimulation in the form of oscillatory fluid flow (OFF) is sufficient to enhance osteogenic gene expression and proliferation of human MSCs (hMSCs). Furthermore, we demonstrate that the cilium mediates fluid flow mechanotransduction in hMSCs by maintaining OFF-induced increases in osteogenic gene expression and, surprisingly, to limit OFF-induced increases in proliferation. These data therefore demonstrate a pro-osteogenic mechanosensory role for the primary cilium, establishing a novel mechanotransduction mechanism in hMSCs. Based on these findings, the application of OFF may be a beneficial component of bioreactor-based strategies to form bone-like tissues suitable for regenerative medicine and also highlights the cilium as a potential therapeutic target for efforts to mimic loading with the aim of preventing bone loss during diseases such as osteoporosis. Furthermore, this study demonstrates a role for the cilium in controlling mechanically mediated increases in the proliferation of hMSCs, which parallels proposed models of polycystic kidney disease. Unraveling the mechanisms leading to rapid proliferation of mechanically stimulated MSCs with defective cilia could provide significant insights regarding ciliopathies and cystic diseases. Stem Cells2012;30:2561–2570
Collapse
Affiliation(s)
- David A Hoey
- Department of Biomedical Engineering, Columbia University, City of New York, New York, USA.
| | | | | | | | | |
Collapse
|
41
|
Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2012. [DOI: 10.1111/sms.12024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- W. Kemmler
- Institute of Medical Physics; University of Erlangen; Erlangen Germany
| | - S. von Stengel
- Institute of Medical Physics; University of Erlangen; Erlangen Germany
| |
Collapse
|
42
|
Halldin A, Jimbo R, Johansson CB, Wennerberg A, Jacobsson M, Albrektsson T, Hansson S. Implant stability and bone remodeling after 3 and 13 days of implantation with an initial static strain. Clin Implant Dent Relat Res 2012; 16:383-93. [PMID: 23061968 DOI: 10.1111/cid.12000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Bone is constantly exposed to dynamic and static loads, which induce both dynamic and static bone strains. Although numerous studies exist on the effect of dynamic strain on implant stability and bone remodeling, the effect of static strain needs further investigation. Therefore, the effect of two different static bone strain levels on implant stability and bone remodeling at two different implantation times was investigated in a rabbit model. METHODS Two different test implants with a diametrical expansion of 0.15 mm (group A) and 0.05 mm (group B) creating initial static bone strains of 0.045 and 0.015, respectively. The implants were inserted in the proximal tibial metaphysis of 24 rabbits to observe the biological response at implant removal. Both groups were compared to control implants (group C), with no diametrical increase. The insertion torque (ITQ) was measured to represent the initial stability and the removal torque (RTQ) was measured to analyze the effect that static strain had on implant stability and bone remodeling after 3 and 13 days of implantation time. RESULTS The ITQ and the RTQ values for test implants were significantly higher for both implantation times compared to control implants. A selection of histology samples was prepared to measure bone to implant contact (BIC). There was a tendency that the BIC values for test implants were higher compared to control implants. CONCLUSION These findings suggest that increased static bone strain creates higher implant stability at the time of insertion, and this increased stability is maintained throughout the observed period.
Collapse
Affiliation(s)
- Anders Halldin
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; Astra Tech AB, Mölndal, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang X, Torcasio A, Vandamme K, Ogawa T, van Lenthe GH, Naert I, Duyck J. Enhancement of implant osseointegration by high-frequency low-magnitude loading. PLoS One 2012; 7:e40488. [PMID: 22808172 PMCID: PMC3393711 DOI: 10.1371/journal.pone.0040488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. Methodology Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test) while the other one was not (control). The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks). The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz) or low-frequency (LF, 8 Hz) loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM), respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1) HF-LM, 40 Hz-8 µm; 2) HF-HM, 40 Hz-16 µm; 3) LF-LM, 8 Hz-41 µm; 4) LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. Principal Findings After loading for 4 weeks, HF-LM loading (40 Hz-8 µm) induced more bone-to-implant contact (BIC) at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF) was found in the 2 experimental periods. Conclusions The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz) low-magnitude (8 µm) loading. The applied load regimes failed to influence the peri-implant bone mass.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Antonia Torcasio
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Toru Ogawa
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - G. Harry van Lenthe
- Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, University of Leuven, Leuven, Belgium
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ignace Naert
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
| | - Joke Duyck
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
44
|
Trabecular bone response to mechanical loading in ovariectomized Sprague-Dawley rats depends on baseline bone quantity. J Biomech 2012; 45:2046-9. [DOI: 10.1016/j.jbiomech.2012.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 11/21/2022]
|
45
|
Karl Karlsson M, Erik Rosengren B. Physical activity as a strategy to reduce the risk of osteoporosis and fragility fractures. Int J Endocrinol Metab 2012; 10:527-36. [PMID: 23843815 PMCID: PMC3693621 DOI: 10.5812/ijem.3309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/27/2012] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
Childhood and adolescence are critical periods for the skeleton. Mechanical load has then been shown to be one of the best stimuli to enhance not only bone mass, but also structural skeletal adaptations, as both contributing to bone strength. Exercise prescription also includes a window of opportunity to improve bone strength in the late pre- and early peri-pubertal period. There is some evidence supporting the notion that skeletal gains obtained by mechanical load during growth are maintained at advanced age despite a reduction of physical activity in adulthood. The fact that former male athletes have a lower fracture risk than expected in their later years does not oppose the view that physical activity during growth and adolescence is important and it should be supported as one feasible strategy to reduce the future incidence of fragility fractures.
Collapse
Affiliation(s)
- Magnus Karl Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopaedics, Skane University Hospital, Malmo, Sweden
| | - Bjorn Erik Rosengren
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Department of Orthopaedics, Skane University Hospital, Malmo, Sweden
| |
Collapse
|
46
|
Karlsson MK, Rosengren BE. Training and bone - from health to injury. Scand J Med Sci Sports 2012; 22:e15-23. [PMID: 22429254 DOI: 10.1111/j.1600-0838.2012.01461.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 11/27/2022]
Affiliation(s)
- M. K. Karlsson
- Department of Clinical Sciences and Orthopaedics, Lund University; Clinical and Molecular Osteoporosis Research Unit; Skåne University Hospital; Malmö; Sweden
| | - B. E. Rosengren
- Department of Clinical Sciences and Orthopaedics, Lund University; Clinical and Molecular Osteoporosis Research Unit; Skåne University Hospital; Malmö; Sweden
| |
Collapse
|
47
|
Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J R Soc Interface 2012; 9:1697-704. [PMID: 22279157 DOI: 10.1098/rsif.2011.0820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to investigate the effect of controlled high- (HF) and low-frequency (LF) mechanical loading on peri-implant bone healing. Custom-made titanium implants were inserted in both tibiae of 69 adult Wistar rats. For every animal, one implant was loaded by compression through the axis of tibia (test), whereas the other one was unloaded (control). The test implants were randomly distributed among four groups receiving different loading regimes, which were determined by ex vivo calibration. Within the HF (40 Hz) or LF (2 Hz) loading category, the magnitudes were chosen as low- (LM) and high-magnitude (HM), respectively, leading to constant strain rate amplitudes for the two frequency groups. This resulted in the four loading regimes: (i) HF-LM (40 Hz-0.5 N); (ii) HF-HM (40 Hz-1 N); (iii) LF-LM (2 Hz-10 N); and (iv) LF-HM (2 Hz-20 N) loading. Loading was performed five times per week and lasted for one or four weeks. Tissue samples were processed for histology and histomorphometry (bone-to-implant contact, BIC; and peri-implant bone fraction, BF) at the cortical and medullar level. Data were analysed statistically with ANOVA and paired t-tests with the significance level set at 0.05. For the one-week experiments, an increased BF adjacent to the implant surface at the cortical level was exclusively induced by the LF-HM loading regime (2 Hz-20 N). Four weeks of loading resulted in a significant effect on BIC (and not on BF) in case of HF-LM loading (40 Hz-0.5 N) and LF-HM loading (2 Hz-20 N): BIC at the cortical level significantly increased under both loading regimes, whereas BIC at the medullar level was positively influenced only in case of HF-LM loading. Mechanical loading at both HF and LF affects osseointegration and peri-implant BF. Higher loading magnitudes (and accompanying elevated tissue strains) are required under LF loading to provoke a positive peri-implant bone response, compared with HF loading. A sustained period of loading at HF is needed to result in an overall enhanced osseointegration.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Prosthetic Dentistry, BIOMAT Research Cluster, Biomechanics Section, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
Armbrecht G, Belavý DL, Backström M, Beller G, Alexandre C, Rizzoli R, Felsenberg D. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J Bone Miner Res 2011; 26:2399-410. [PMID: 21812030 DOI: 10.1002/jbmr.482] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes.
Collapse
Affiliation(s)
- Gabriele Armbrecht
- Charité Universitätsmedizin Berlin, Center for Muscle and Bone Research, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Beller G, Belavý DL, Sun L, Armbrecht G, Alexandre C, Felsenberg D. WISE-2005: bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 2011; 49:858-66. [PMID: 21723970 DOI: 10.1016/j.bone.2011.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/19/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
To better understand the effects of prolonged bed-rest in women, 24 healthy women aged 25 to 40 years participated in 60-days of strict 6° head-down tilt bed-rest (WISE-2005). Subjects were assigned to either a control group (CON, n=8) which performed no countermeasure, an exercise group (EXE, n=8) undertaking a combination of resistive and endurance training or a nutrition group (NUT, n=8), which received a high protein diet. Using peripheral quantitative computed tomography (pQCT) and dual X-ray absorptiometry (DXA), bone mineral density (BMD) changes at various sites, body-composition and lower-leg and forearm muscle cross-sectional area were measured up to 1-year after bed-rest. Bone loss was greatest at the distal tibia and proximal femur, though losses in trabecular density at the distal radius were also seen. Some of these bone losses remained statistically significant one-year after bed-rest. There was no statistically significant impediment of bone loss by either countermeasure in comparison to the control-group. The exercise countermeasure did, however, reduce muscle cross-sectional area and lean mass loss in the lower-limb and also resulted in a greater loss of fat mass whereas the nutrition countermeasure had no impact on these parameters. The findings suggest that regional differences in bone loss occur in women during prolonged bed-rest with incomplete recovery of this loss one-year after bed-rest. The countermeasures as implemented were not optimal in preventing bone loss during bed-rest and further development is required.
Collapse
Affiliation(s)
- Gisela Beller
- Charité Universitätsmedizin Berlin, Centre of Muscle and Bone Research, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Al Nazer R, Lanovaz J, Kawalilak C, Johnston JD, Kontulainen S. Direct in vivo strain measurements in human bone-a systematic literature review. J Biomech 2011; 45:27-40. [PMID: 21889149 DOI: 10.1016/j.jbiomech.2011.08.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/26/2022]
Abstract
Bone strain is the governing stimuli for the remodeling process necessary in the maintenance of bone's structure and mechanical strength. Strain gages are the gold standard and workhorses of human bone experimental strain analysis in vivo. The objective of this systematic literature review is to provide an overview for direct in vivo human bone strain measurement studies and place the strain results within context of current theories of bone remodeling (i.e. mechanostat theory). We employed a standardized search strategy without imposing any time restriction to find English language studies indexed in PubMed and Web of Science databases that measured human bone strain in vivo. Twenty-four studies met our final inclusion criteria. Seven human bones were subjected to strain measurements in vivo including medial tibia, second metatarsal, calcaneus, proximal femur, distal radius, lamina of vertebra and dental alveolar. Peak strain magnitude recorded was 9096 με on the medial tibia during basketball rebounding and the peak strain rate magnitude was -85,500 με/s recorded at the distal radius during forward fall from standing, landing on extended hands. The tibia was the most exposed site for in vivo strain measurements due to accessibility and being a common pathologic site of stress fracture in the lower extremity. This systematic review revealed that most of the strains measured in vivo in different bones were generally within the physiological loading zone defined by the mechanostat theory, which implies stimulation of functional adaptation necessary to maintain bone mechanical integrity.
Collapse
Affiliation(s)
- R Al Nazer
- College of Kinesiology, [corrected] University of Saskatchewan, Canada.
| | | | | | | | | |
Collapse
|