1
|
Basirun C, Ferlazzo ML, Howell NR, Liu GJ, Middleton RJ, Martinac B, Narayanan SA, Poole K, Gentile C, Chou J. Microgravity × Radiation: A Space Mechanobiology Approach Toward Cardiovascular Function and Disease. Front Cell Dev Biol 2021; 9:750775. [PMID: 34778261 PMCID: PMC8586646 DOI: 10.3389/fcell.2021.750775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been an increasing interest in space exploration, supported by the accelerated technological advancements in the field. This has led to a new potential environment that humans could be exposed to in the very near future, and therefore an increasing request to evaluate the impact this may have on our body, including health risks associated with this endeavor. A critical component in regulating the human pathophysiology is represented by the cardiovascular system, which may be heavily affected in these extreme environments of microgravity and radiation. This mini review aims to identify the impact of microgravity and radiation on the cardiovascular system. Being able to understand the effect that comes with deep space explorations, including that of microgravity and space radiation, may also allow us to get a deeper understanding of the heart and ultimately our own basic physiological processes. This information may unlock new factors to consider with space exploration whilst simultaneously increasing our knowledge of the cardiovascular system and potentially associated diseases.
Collapse
Affiliation(s)
- Carin Basirun
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Melanie L. Ferlazzo
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon Bérard, Lyon, France
| | - Nicholas R. Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - S. Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Kate Poole
- EMBL Australia Node in Single Molecule Science, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
David J, Scheuring RA, Morgan A, Olsen C, Sargsyan A, Grishin A. Comparison of Internal Jugular Vein Cross-Section Area During a Russian Tilt-Table Protocol and Microgravity. Aerosp Med Hum Perform 2021; 92:207-211. [PMID: 33754979 DOI: 10.3357/amhp.5600.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: To date, we lack U.S. data on the effects of the long-used Russian tilt-table training protocol known as the Russian pre-launch tilt-table training protocol on internal jugular vein cross sectional area (IJV-CSA) in microgravity.CASE REPORT: A case study of a single healthy male astronaut volunteer was used for this study. The right IJV-CSA was measured using real time ultrasound at set times throughout the Russian pre-launch tilt-table training protocol, a method of physiological preparation for microgravity using tilt-table training. In microgravity, the subjects right IJV-CSA was measured again for comparison. The mean difference from in-flight right IJV-CSA for pre-tilt (0) was 0.438 cm², for 15 was 0.887 cm², for 30 was 0.864 cm², for 50 was 1.15 cm², and for post-tilt (0) the difference was 0.305 cm².DISCUSSION: The cross-sectional areas of the subjects right IJV-CSA were significantly different between in-flight values and several angles of the Russian tilt-table protocol, except for the 0 measurement. In summary, this case-study represents the first time IJV-CSA has been compared between various angles of a tilt-table training protocol and microgravity in the same astronaut subject. The findings support prior cohort studies studying the same principles. Further investigation is merited; both to better describe the relationship between the cardiovascular effects of tilt-table simulations of microgravity and their correlating in-flight values, and to evaluate and study the Russian tilt-table protocol effects on cardiovascular physiology from a training and preparation perspective.David J, Scheuring RA, Morgan A, Olsen C, Sargsyan A, Grishin A. Comparison of internal jugular vein cross-section area during a Russian tilt-table protocol and microgravity. Aerosp Med Hum Perform. 2021; 92(3):207211.
Collapse
|
3
|
Navasiolava N, Yuan M, Murphy R, Robin A, Coupé M, Wang L, Alameddine A, Gauquelin-Koch G, Gharib C, Li Y, Custaud MA. Vascular and Microvascular Dysfunction Induced by Microgravity and Its Analogs in Humans: Mechanisms and Countermeasures. Front Physiol 2020; 11:952. [PMID: 32973543 PMCID: PMC7468431 DOI: 10.3389/fphys.2020.00952] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Weightlessness and physical inactivity have deleterious cardiovascular effects. The space environment and its ground-based models offer conditions to study the cardiovascular effects of physical inactivity in the absence of other vascular risk factors, particularly at the macro- and microcirculatory levels. However, the mechanisms involved in vascular dysfunction and remodeling are not sufficiently studied in the context of weightlessness and its analogs including models of physical inactivity. Here, we summarize vascular and microvascular changes induced by space flight and observed in models of microgravity and physical inactivity and review the effects of prophylactic strategies (i.e., countermeasures) on vascular and microvascular function. We discuss physical (e.g., exercise, vibration, lower body negative pressure, and artificial gravity) and nutritional/pharmacological (e.g., caloric restriction, resveratrol, and other vegetal extracts) countermeasures. Currently, exercise countermeasure appears to be the most effective to protect vascular function. Although pharmacological countermeasures are not currently considered to fight vascular changes due to microgravity, nutritional countermeasures are very promising. Dietary supplements/natural health products, especially plant extracts, should be extensively studied. The best prophylactic strategy is likely a combination of countermeasures that are effective not only at the cardiovascular level but also for the organism as a whole, but this strategy remains to be determined.
Collapse
Affiliation(s)
| | - Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Ronan Murphy
- School of Health and Human Performance, Faculty of Science & Health, Dublin City University, Dublin, Ireland
| | - Adrien Robin
- Clinical Research Center, CHU d'Angers, Angers, France.,Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Mickael Coupé
- Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | - Linjie Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Asmaa Alameddine
- Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| | | | - Claude Gharib
- Institut NeuroMyoGène, Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center (ACC), Beijing, China
| | - Marc-Antoine Custaud
- Clinical Research Center, CHU d'Angers, Angers, France.,Mitovasc, UMR INSERM 1083-CNRS 6015, Université d'Angers, Angers, France
| |
Collapse
|
4
|
Siamwala JH, Macias BR, Lee PC, Hargens AR. Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure. Physiol Rep 2017; 5:5/4/e13143. [PMID: 28242824 PMCID: PMC5328775 DOI: 10.14814/phy2.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 11/24/2022] Open
Abstract
The purpose of the investigation was to study lower body negative pressure recovery in response to head down tilt position in men and women. The study examined the primary hypothesis that tibial bone microvascular flow responses to HDT and lower body negative pressure (LBNP) differ in women and men. Nine women and nine men between 20 to 30 years of age participated in the study. Tibial microvascular flow, head and tibial oxygenation and calf circumference were measured using photoplethysmography (PPG), near‐infrared spectroscopy (NIRS) and strain gauge plethysmography (SGP), respectively, during sitting (control baseline), supine, 15° HDT, and 15° HDT with 25 mmHg LBNP. Tibial microvascular flow with HDT increased by 57% from supine position (from 1.4V ± 0.7 to 2.2V ± 1.0 HDT; ANOVA P < 0.05) in men but there is no significant difference between supine and HDT in women. Ten minutes of LBNP during 15oHDT restored tibial bone microvascular flows to supine levels, (from 2.2V±1.0 HDT to 1.1V ± 0.7 supine; ANOVA P < 0.05) in men but not in women. These data support the concept that there are gender specific microvascular responses to a fluid‐shift countermeasure such as LBNP. Thus, gender differences should be considered while developing future countermeasure strategies to headward fluid shifts in microgravity.
Collapse
Affiliation(s)
- Jamila H Siamwala
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Brandon R Macias
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Paul C Lee
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Alan R Hargens
- Department of Orthopedic Surgery, University of California, San Diego, California
| |
Collapse
|
5
|
Ade CJ, Broxterman RM, Barstow TJ. VO(2max) and Microgravity Exposure: Convective versus Diffusive O(2) Transport. Med Sci Sports Exerc 2016; 47:1351-61. [PMID: 25380479 DOI: 10.1249/mss.0000000000000557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exposure to a microgravity environment decreases the maximal rate of O2 uptake (VO(2max)) in healthy individuals returning to a gravitational environment. The magnitude of this decrease in VO(2max) is, in part, dependent on the duration of microgravity exposure, such that long exposure may result in up to a 38% decrease in VO(2max). This review identifies the components within the O(2) transport pathway that determine the decrease in postmicrogravity VO(2max) and highlights the potential contributing physiological mechanisms. A retrospective analysis revealed that the decline in VO(2max) is initially mediated by a decrease in convective and diffusive O(2) transport that occurs as the duration of microgravity exposure is extended. Mechanistically, the attenuation of O(2) transport is the combined result of a deconditioning across multiple organ systems including decreases in total blood volume, red blood cell mass, cardiac function and mass, vascular function, skeletal muscle mass, and, potentially, capillary hemodynamics, which become evident during exercise upon re-exposure to the head-to-foot gravitational forces of upright posture on Earth. In summary, VO(2max) is determined by the integration of central and peripheral O(2) transport mechanisms, which, if not maintained during microgravity, will have a substantial long-term detrimental impact on space mission performance and astronaut health.
Collapse
Affiliation(s)
- Carl J Ade
- 1Department of Health and Exercise Science, University of Oklahoma, Norman, OK; 2Department of Kinesiology, Kansas State University, Manhattan, KS; and 3Department of Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | |
Collapse
|
6
|
Hunt JEA, Galea D, Tufft G, Bunce D, Ferguson RA. Time course of regional vascular adaptations to low load resistance training with blood flow restriction. J Appl Physiol (1985) 2013; 115:403-11. [PMID: 23703116 DOI: 10.1152/japplphysiol.00040.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Distortion to hemodynamic and ischemic stimuli during blood flow restriction (BFR) exercise may influence regional vascular adaptation. We examined changes at the conduit, resistance, and capillary level in response to low load resistance exercise with BFR. Eleven males (22 ± 3 yr, 178 ± 4 cm, 78 ± 9 kg) completed 6 wk (3 days/wk) unilateral plantar flexion training with BFR at 30% 1 repetition maximum (1-RM). The contralateral leg acted as a nonexercised control (CON). Popliteal artery function [flow-mediated dilation, FMD%] and structure [maximal diameter] and resistance vessel structure [peak reactive hyperemia] were assessed using Doppler ultrasound before and at 2-wk intervals. Calf filtration capacity was assessed using venous occlusion plethysmography before and after training. BFR training elicited an early increase in peak reactive hyperemia (1,400 ± 278 vs. 1,716 ± 362 ml/min at 0 vs. 2 wk; t-test: P = 0.047), a transient improvement in popliteal FMD% (5.0 ± 2.1, 7.6 ± 2.9, 6.6 ± 2.1, 5.7 ± 1.6% at 0, 2, 4 and 6 wk, respectively; ANOVA: P = 0.002), and an increase in maximum diameter (6.06 ± 0.44 vs. 6.26 ± 0.39 mm at 0 vs. 6 wk; Bonferroni t-test: P = 0.048). Capillary filtration increased after 6 wk BFR training (P = 0.043). No changes in the CON leg were observed. Adaptation occurred at all levels of the vascular tree in response to low load resistance exercise with BFR. Enhanced peak reactive hyperemia and transient improvement in popliteal artery function occurred before changes in artery structural capacity.
Collapse
Affiliation(s)
- Julie E A Hunt
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Sano A, Tokutake S, Seo A. Proanthocyanidin-rich grape seed extract reduces leg swelling in healthy women during prolonged sitting. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:457-462. [PMID: 22752876 DOI: 10.1002/jsfa.5773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Leg swelling is a modern-day affliction of sedentary working women. The aim of this study was to evaluate the effectiveness of the intake of grape seed extract (GSE) on leg swelling in healthy Japanese women while sitting. RESULTS Single intake trials and 14 day intake trials were held in a double-blind, placebo-controlled, crossover clinical study. A prolonged sedentary position was maintained for 6 h after GSE or placebo administration. Leg volume distension, increase in body extracellular fluid, and leg water were significantly suppressed in the GSE groups. CONCLUSION The intake of GSE is a contributing factor in the inhibition of leg swelling in healthy women during prolonged sitting.
Collapse
Affiliation(s)
- Atsushi Sano
- Research and Development Division, Kikkoman Co., 399 Noda, Noda, Chiba, Japan.
| | | | | |
Collapse
|
8
|
Yao YJ, Zhu YS, Yang CB, Zhou XD, Sun XQ. Artificial gravity with ergometric exercise can prevent enhancement of popliteal vein compliance due to 4-day head-down bed rest. Eur J Appl Physiol 2011; 112:1295-305. [DOI: 10.1007/s00421-011-2083-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 07/09/2011] [Indexed: 10/18/2022]
|
9
|
Thijssen DHJ, Green DJ, Hopman MTE. Blood vessel remodeling and physical inactivity in humans. J Appl Physiol (1985) 2011; 111:1836-45. [PMID: 21737819 DOI: 10.1152/japplphysiol.00394.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Physical inactivity is associated with an increase in cardiovascular risk that cannot be fully explained by traditional or novel risk factors. Inactivity is also associated with changes in hemodynamic stimuli, which exert direct effects on the vasculature leading to remodeling and a proatherogenic phenotype. In this review, we synthesize and summarize in vivo evidence relating to the impact of local and systemic models of physical inactivity on conduit arteries, resistance vessels, and the microcirculation in humans. Taken together, the literature suggests that a rapid inward structural remodeling of vessels occurs in response to physical inactivity. The magnitude of this response is dependent on the "dose" of inactivity. Moreover, changes in vascular function are found at resistance and microvessel levels in humans. In conduit arteries, a strong interaction between vascular function and structure is present, which results in conflicting data regarding the impact of inactivity on conduit artery function. While much of the cardioprotective effect of exercise is related to the nitric oxide pathway, deconditioning may primarily be associated with activation of vasoconstrictor pathways. The effects of deconditioning on the vasculature are therefore not simply the opposite of those in response to exercise training. Given the importance of sedentary behavior, future studies should provide further insight into the impact of inactivity on the vasculature and other (novel) markers of vascular health. Moreover, studies should examine the role of (hemodynamic) stimuli that underlie the characteristic vascular adaptations during deconditioning. Our review concludes with some suggestions for future research directions.
Collapse
Affiliation(s)
- Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom.
| | | | | |
Collapse
|
10
|
Effects of acceleration in the Gz axis on human cardiopulmonary responses to exercise. Eur J Appl Physiol 2011; 111:2907-17. [PMID: 21437604 DOI: 10.1007/s00421-011-1917-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
Abstract
The aim of this paper was to develop a model from experimental data allowing a prediction of the cardiopulmonary responses to steady-state submaximal exercise in varying gravitational environments, with acceleration in the G(z) axis (a (g)) ranging from 0 to 3 g. To this aim, we combined data from three different experiments, carried out at Buffalo, at Stockholm and inside the Mir Station. Oxygen consumption, as expected, increased linearly with a (g). In contrast, heart rate increased non-linearly with a (g), whereas stroke volume decreased non-linearly: both were described by quadratic functions. Thus, the relationship between cardiac output and a (g) was described by a fourth power regression equation. Mean arterial pressure increased with a (g) non linearly, a relation that we interpolated again with a quadratic function. Thus, total peripheral resistance varied linearly with a (g). These data led to predict that maximal oxygen consumption would decrease drastically as a (g) is increased. Maximal oxygen consumption would become equal to resting oxygen consumption when a (g) is around 4.5 g, thus indicating the practical impossibility for humans to stay and work on the biggest Planets of the Solar System.
Collapse
|
11
|
Artificial gravity with ergometric exercise as a countermeasure against cardiovascular deconditioning during 4 days of head-down bed rest in humans. Eur J Appl Physiol 2011; 111:2315-25. [DOI: 10.1007/s00421-011-1866-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
12
|
Thijssen DHJ, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MTE, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol 2010; 108:845-75. [PMID: 19943061 PMCID: PMC2829129 DOI: 10.1007/s00421-009-1260-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2009] [Indexed: 12/12/2022]
Abstract
The effects of inactivity and exercise training on established and novel cardiovascular risk factors are relatively modest and do not account for the impact of inactivity and exercise on vascular risk. We examine evidence that inactivity and exercise have direct effects on both vasculature function and structure in humans. Physical deconditioning is associated with enhanced vasoconstrictor tone and has profound and rapid effects on arterial remodelling in both large and smaller arteries. Evidence for an effect of deconditioning on vasodilator function is less consistent. Studies of the impact of exercise training suggest that both functional and structural remodelling adaptations occur and that the magnitude and time-course of these changes depends upon training duration and intensity and the vessel beds involved. Inactivity and exercise have direct "vascular deconditioning and conditioning" effects which likely modify cardiovascular risk.
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15–21 Webster Street, Liverpool, L3 2ET UK
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andrew J. Maiorana
- Advanced Heart Failure and Cardiac Transplant Service, Royal Perth Hospital, Perth, Australia
- School of Physiotherapy, Curtin University of Technology, Perth, Australia
| | - Gerry O’Driscoll
- Advanced Heart Failure and Cardiac Transplant Service, Royal Perth Hospital, Perth, Australia
- School of Medicine, University of Notre Dame, Fremantle, Australia
| | - Nigel T. Cable
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15–21 Webster Street, Liverpool, L3 2ET UK
| | - Maria T. E. Hopman
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Daniel J. Green
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Henry Cotton Campus, 15–21 Webster Street, Liverpool, L3 2ET UK
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Hargens AR, Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir Physiol Neurobiol 2009; 169 Suppl 1:S30-3. [PMID: 19615471 DOI: 10.1016/j.resp.2009.07.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 06/24/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
Abstract
Significant progress has been made related to understanding cardiovascular adaptations to microgravity and development of countermeasures to improve crew re-adaptation to gravity. The primary ongoing issues are orthostatic intolerance after flight, reduced exercise capacity, the effect of vascular-smooth muscle loss on other physiologic systems, development of efficient and low-cost countermeasures to counteract these losses, and an understanding of fluid shift mechanisms. Previous animal studies of cardiovascular adaptations offer evidence that prolonged microgravity remodels walls of blood vessels, which in turn, is important for deconditioning of the cardiovascular system and other functions of the body. Over the past 10 years, our studies have documented that treadmill exercise within lower body negative pressure counteracts most physiologic decrements with bed rest in both women and men. Future studies should improve hardware and protocols to protect crew members during prolonged missions. Finally, it is proposed that transcapillary fluid shifts in microgravity may be related to the loss of tissue weight and external compression of blood vessels.
Collapse
Affiliation(s)
- Alan R Hargens
- Department of Orthopaedic Surgery, University of California, UCSD Medical Center, San Diego, 92103-8894, United States.
| | | |
Collapse
|
14
|
The effect of bed rest and an exercise countermeasure on leg venous function. Eur J Appl Physiol 2008; 104:991-8. [DOI: 10.1007/s00421-008-0854-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
|
15
|
Arbeille P, Kerbeci P, Mattar L, Shoemaker JK, Hughson RL. WISE-2005: tibial and gastrocnemius vein and calf tissue response to LBNP after a 60-day bed rest with and without countermeasures. J Appl Physiol (1985) 2008; 104:938-43. [DOI: 10.1152/japplphysiol.01021.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to quantify by echography the changes in the intramuscular [gastrocnemius (Gast)] and nonintramuscular [posterior tibial (Tib)] calf veins cross-sectional area (CSA) and the superficial tissue thickness (STth) in response to lower body negative pressure (LBNP) after 60-day head-down bed rest (HDBR). Twenty-four healthy women (25–40 yr) were divided into three groups: control (Con), treadmill-LBNP and flywheel (Ex-Lb), nutrition (Nut; protein supplement). All underwent a LBNP (0 and −45 mmHg) before and on day 55 of HDBR. Subjects were identified as finisher (F) or nonfinisher (NF) of a 10-min tilt test after 60 days of HDBR. There were no differences in resting CSA of the Tib and Gast veins on HDBR day 55 compared with pre-HDBR for the Ex-Lb, Con and Nut, or the F groups; however, for NF both the Tib and Gast vein CSA at rest were significantly smaller after HDBR. At −45 mmHg LBNP, Tib and Gast CSAs were not significantly different from before HDBR in all groups (Ex-Lb, Con, Nut, F, NF). However, percent change in CSA of both veins from rest to −45 mmHg LBNP was significantly greater in the Con and Nut groups compared with Ex-Lb, and also NF compared with F. Similarly, the percent increase in STth on going from rest to −45 mmHg was higher after HDBR in the Con and Nut groups compared with Ex-Lb, as well as NF compared with F. These results showed that the Ex-Lb countermeasure minimized the bed rest effect on leg vein capacitance (CSA percent change) and STth increase during LBNP, whereas Nut had no effect and that higher leg vein and superficial tissue capacitance were associated with reduced orthostatic tolerance.
Collapse
|
16
|
Belin de Chantemèle E, Pascaud L, Custaud MA, Capri A, Louisy F, Ferretti G, Gharib C, Arbeille P. Calf venous volume during stand-test after a 90-day bed-rest study with or without exercise countermeasure. J Physiol 2004; 561:611-22. [PMID: 15331681 PMCID: PMC1665364 DOI: 10.1113/jphysiol.2004.069468] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The objectives to determine both the contribution to orthostatic intolerance (OI) of calf venous volume during a stand-test, and the effects of a combined eccentric-concentric resistance exercise countermeasure on both vein response to orthostatic test and OI, after 90-day head-down tilt bed-rest (HDT). The subjects consisted of a control group (Co-gr, n = 9) and an exercise countermeasure group (CM-gr, n = 9). Calf volume and vein cross-sectional area (CSA) were assessed by plethysmography and echography during pre- and post-HDT stand-tests. From supine to standing (post-HDT), the tibial and gastrocnemius vein CSA increased significantly in intolerant subjects (tibial vein, +122% from pre-HDT; gastrocnemius veins, +145%; P < 0.05) whereas it did not in tolerant subjects. Intolerant subjects tended to have a higher increase in calf filling volume than tolerant subjects, in both sitting and standing positions. The countermeasure did not reduce OI. Absolute calf volume decreased similarly in both groups. Tibial and gastrocnemius vein CSA at rest did not change during HDT in either group. During the post-HDT stand-test, the calf filling volume increased more in the CM-gr than in the Co-gr both in the sitting (+1.3 +/- 5.1%, vs. -7.3 +/- 4.3%; P < 0.05) and the standing positions (+56.1 +/- 23.7% vs. +1.6 +/- 9.6%; P < 0.05). The volume ejected by the muscle venous pump increased only in the CM-gr (+38.3 +/- 21.8%). This study showed that intolerant subjects had a higher increase in vein CSA in the standing position and a tendency to present a higher calf filling volume in the sitting and standing positions. It also showed that a combined eccentric-concentric resistance exercise countermeasure had no effects on either post-HDT OI or on the venous parameters related to it.
Collapse
Affiliation(s)
- Eric Belin de Chantemèle
- Laboratoire de Physiologie de l'Environnement, Faculté de Médecine Lyon Grange-Blanche, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bleeker MWP, De Groot PCE, Pawelczyk JA, Hopman MTE, Levine BD. Effects of 18 days of bed rest on leg and arm venous properties. J Appl Physiol (1985) 2004; 96:840-7. [PMID: 14657040 DOI: 10.1152/japplphysiol.00835.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Venous function may be altered by bed rest deconditioning. Yet the contribution of altered venous compliance to the orthostatic intolerance observed after bed rest is uncertain. The purpose of this study was to assess the effect of 18 days of bed rest on leg and arm (respectively large and small change in gravitational gradients and use patterns) venous properties. We hypothesized that the magnitude of these venous changes would be related to orthostatic intolerance. Eleven healthy subjects (10 men, 1 woman) participated in the study. Before (pre) and after (post) 18 days of 6° head-down tilt bed rest, strain gauge venous occlusion plethysmography was used to assess limb venous vascular characteristics. Leg venous compliance was significantly decreased after bed rest (pre: 0.048 ± 0.007 ml·100 ml-1·mmHg-1, post: 0.033 ± 0.007 ml·100 ml-1·mmHg-1; P < 0.01), whereas arm compliance did not change. Leg venous flow resistance increased significantly after bed rest (pre: 1.73 ± 1.08 mmHg·ml-1·100 ml·min, post: 3.10 ± 1.00 mmHg·ml-1·100 ml·min; P < 0.05). Maximal lower body negative pressure tolerance, which was expressed as cumulative stress index (pressure·time), decreased in all subjects after bed rest (pre: 932 mmHg·min, post: 747 mmHg·min). The decrease in orthostatic tolerance was not related to changes in leg venous compliance. In conclusion, this study demonstrates that after bed rest, leg venous compliance is reduced and leg venous outflow resistance is enhanced. However, these changes are not related to measures of orthostatic tolerance; therefore, alterations in venous compliance do not to play a major role in orthostatic intolerance after 18 days of head-down tilt bed rest.
Collapse
Affiliation(s)
- M W P Bleeker
- Department of Physiology, University Medical Centre Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Raine NM, Sneddon JC. A simple water-filled plethysmograph for measurement of limb blood flow in humans. ADVANCES IN PHYSIOLOGY EDUCATION 2002; 26:120-128. [PMID: 12031944 DOI: 10.1152/advan.00030.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fundamental principles underpinning the study of cardiovascular physiology can be emphasized by measuring blood flow. Plethysmography is an appropriate, noninvasive technique to use but may not be available to some institutions. Therefore, for measurement of blood flow in human limbs, we developed a simple water-filled plethysmograph that may be built with minimal technical support. The device is formed from a plastic cylinder and houses a latex sleeve sealed at either end by means of circular flanges and rubber O-ring seals. Limb volume changes are transcribed using an air-filled piston recorder. This instrument proves to be sensitive and accurately determines limb volume changes over time. Utilizing an appropriate venous occlusion protocol, predicted vascular responses to postural challenge and physical exercise may be followed. In response to a questionnaire, a majority of students (n = 33) agreed that performing blood flow measurements succeeded in relating theory to practice, improved technical and observational skills, and made the learning experience real. This modified plethysmograph proves to be a valuable teaching tool in human physiology classes.
Collapse
Affiliation(s)
- Neil M Raine
- School of Biological and Earth Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | | |
Collapse
|