1
|
Murach KA, Bagley JR. A primer on global molecular responses to exercise in skeletal muscle: Omics in focus. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101029. [PMID: 39961420 DOI: 10.1016/j.jshs.2025.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Advances in skeletal muscle omics has expanded our understanding of exercise-induced adaptations at the molecular level. Over the past 2 decades, transcriptome studies in muscle have detailed acute and chronic responses to resistance, endurance, and concurrent exercise, focusing on variables such as training status, nutrition, age, sex, and metabolic health profile. Multi-omics approaches, such as the integration of transcriptomic and epigenetic data, along with emerging ribosomal RNA sequencing advancements, have further provided insights into how skeletal muscle adapts to exercise across the lifespan. Downstream of the transcriptome, proteomic and phosphoproteomic studies have identified novel regulators of exercise adaptations, while single-cell/nucleus and spatial sequencing technologies promise to evolve our understanding of cellular specialization and communication in and around skeletal muscle cells. This narrative review highlights (a) the historical foundations of exercise omics in skeletal muscle, (b) current research at 3 layers of the omics cascade (DNA, RNA, and protein), and (c) applications of single-cell omics and spatial sequencing technologies to study skeletal muscle adaptation to exercise. Further elaboration of muscle's global molecular footprint using multi-omics methods will help researchers and practitioners develop more effective and targeted approaches to improve skeletal muscle health as well as athletic performance.
Collapse
Affiliation(s)
- Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.
| | - James R Bagley
- Muscle Physiology Laboratory, Department of Kinesiology, College of Health and Social Sciences, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
2
|
Greed E, Pritchard J, Struszczak L, Bozbaş E, Ek G, Acheson J, Winney B, Qadir A, Wong KKL, Bowtell J, O’Leary M. Shatavari supplementation during eight weeks of resistance training increases training load, enhances skeletal muscle contractility and alters the skeletal muscle proteome in older women. Front Nutr 2025; 11:1498674. [PMID: 39834460 PMCID: PMC11743497 DOI: 10.3389/fnut.2024.1498674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Shatavari is a herbal dietary supplement that may increase skeletal muscle strength in younger and older adults. Shatavari contains compounds with both estradiol-like and antioxidant properties, which could enhance muscle function. Postmenopausal women may derive the greatest benefit, as estrogen deficiency adversely impacts skeletal muscle function. However, mechanistic insights are limited and the effects of shatavari on muscle function require further characterization. Methods In this randomized, double-blind trial, 17 young (23 ± 5 yr) and 22 older (63 ± 5 yr) women completed an 8-week leg resistance training programme. They consumed either a placebo or shatavari (1000 mg/d, equivalent to 26,500 mg/d fresh weight) supplement throughout. Pre and post training, measures of leg strength, neuromuscular function and vastus lateralis (VL) biopsies were obtained. Tandem-mass-tagged VL proteomic analyses were performed. Data were analyzed using a differential expression (Reactome) approach. Results Shatavari supplementation increased 8-week training load in older women (leg press repetitions completed, p = 0.049, η p 2 = 0.198; maximum weight lifted each week, p = 0.03, η p 2 = 0.386; ANCOVA). There was no effect of shatavari on muscle strength post-training. VL half relaxation time was shortened post-training in older women supplemented with shatavari (post-training change: shatavari -11.74 ± 11.93%, placebo 0.42 ± 14.73%, p = 0.021; ANCOVA). Shatavari supplementation diminished the expression of extracellular matrix proteins in both cohorts. Expression of proteins related to striated muscle contraction, transcription and translation were decreased by shatavari supplementation in older women. Discussion These novel observations support the notion that shatavari supplementation confers resistance to neuromuscular fatigue in older women. This could ameliorate sarcopenic declines in skeletal muscle function.
Collapse
Affiliation(s)
- Elsa Greed
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jack Pritchard
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Lauren Struszczak
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Esra Bozbaş
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Georgia Ek
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Jordan Acheson
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
- Department of Sport and Exercise Sciences, Institute of Sport, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ben Winney
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Aaliyah Qadir
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Karl Ka-Lam Wong
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Joanna Bowtell
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| | - Mary O’Leary
- Faculty of Health and Life Sciences, Department of Public Health and Sport Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Hinks A, Patterson MA, Njai BS, Power GA. Age-related blunting of serial sarcomerogenesis and mechanical adaptations following 4 wk of maximal eccentric resistance training. J Appl Physiol (1985) 2024; 136:1209-1225. [PMID: 38511212 DOI: 10.1152/japplphysiol.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
During aging, muscles undergo atrophy, which is partly accounted for by a loss of sarcomeres in series. Serial sarcomere number (SSN) is associated with aspects of muscle mechanical function including the force-length and force-velocity-power relationships; hence, the age-related loss of SSN contributes to declining performance. Training emphasizing eccentric contractions increases SSN in young healthy rodents; however, the ability for eccentric training to increase SSN in old age is unknown. Ten young (8 mo) and 11 old (32 mo) male Fisher344/BN rats completed 4 wk of unilateral eccentric plantar flexion training. Pre- and posttraining, the plantar flexors were assessed for the torque-frequency, passive torque-angle, and torque-velocity-power relationships. The soleus, lateral gastrocnemius (LG), and medial gastrocnemius (MG) were harvested for SSN assessment via laser diffraction, with the untrained leg used as a control. In the untrained leg/pretraining, old rats had lower SSN in the soleus, LG, and MG, lower maximum torque, power, and shortening velocity, and greater passive torque than young. Young showed increased soleus and MG SSN following training. In contrast, old had no change in soleus SSN and experienced SSN loss in the LG. Pre- to posttraining, young experienced an increase in maximum isometric torque, whereas old had reductions in maximum torque, shortening velocity, and power, and increased passive torque. Our results show that although young muscle has the ability to add sarcomeres in response to maximal eccentric training, this stimulus could be not only ineffective, but also detrimental to aged muscle leading to dysfunctional remodeling.NEW & NOTEWORTHY The loss of sarcomeres in series with age contributes to declining muscle performance. The present study investigated whether eccentric training could improve performance via serial sarcomere addition in old muscle, like in young muscle. Four weeks of maximal eccentric training induced serial sarcomere addition in the young rat plantar flexors and improved in vivo performance, however, led to dysfunctional remodeling accompanied by further impaired performance in old rats.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Makenna A Patterson
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Binta S Njai
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
4
|
Nolt GL, Keeble AR, Wen Y, Strong AC, Thomas NT, Valentino TR, Brightwell CR, Murach KA, Patrizia S, Weinstabl H, Gollner A, McCarthy JJ, Fry CS, Franti M, Filareto A, Peterson CA, Dungan CM. Inhibition of p53-MDM2 binding reduces senescent cell abundance and improves the adaptive responses of skeletal muscle from aged mice. GeroScience 2024; 46:2153-2176. [PMID: 37872294 PMCID: PMC10828311 DOI: 10.1007/s11357-023-00976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Collapse
Affiliation(s)
- Georgia L Nolt
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Aubrey C Strong
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Sini Patrizia
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Harald Weinstabl
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Michael Franti
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Antonio Filareto
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, Waco, TX, 76706, USA.
| |
Collapse
|
5
|
Sterczala AJ, Rodriguez‐Ortiz N, Feigel ED, Krajewski K, Martin BJ, Sekel NM, Lovalekar M, Kargl CK, Koltun KJ, Van Eck C, Flanagan S, Connaboy C, Wardle SL, O'Leary TJ, Greeves JP, Nindl BC. Skeletal muscle adaptations to high-intensity, low-volume concurrent resistance and interval training in recreationally active men and women. Physiol Rep 2024; 12:e15953. [PMID: 38490811 PMCID: PMC10942853 DOI: 10.14814/phy2.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 03/17/2024] Open
Abstract
This study compared the structural and cellular skeletal muscle factors underpinning adaptations in maximal strength, power, aerobic capacity, and lean body mass to a 12-week concurrent resistance and interval training program in men and women. Recreationally active women and men completed three training sessions per week consisting of high-intensity, low-volume resistance training followed by interval training performed using a variety upper and lower body exercises representative of military occupational tasks. Pre- and post-training vastus lateralis muscle biopsies were analyzed for changes in muscle fiber type, cross-sectional area, capillarization, and mitochondrial biogenesis marker content. Changes in maximal strength, aerobic capacity, and lean body mass (LBM) were also assessed. Training elicited hypertrophy of type I (12.9%; p = 0.016) and type IIa (12.7%; p = 0.007) muscle fibers in men only. In both sexes, training decreased type IIx fiber expression (1.9%; p = 0.046) and increased total PGC-1α (29.7%, p < 0.001) and citrate synthase (11.0%; p < 0.014) content, but had no effect on COX IV content or muscle capillarization. In both sexes, training increased maximal strength and LBM but not aerobic capacity. The concurrent training program was effective at increasing strength and LBM but not at improving aerobic capacity or skeletal muscle adaptations underpinning aerobic performance.
Collapse
Affiliation(s)
- Adam J. Sterczala
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Human Engineering Research LaboratoriesVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Nathaniel Rodriguez‐Ortiz
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Evan D. Feigel
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kellen T. Krajewski
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brian J. Martin
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nicole M. Sekel
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mita Lovalekar
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Christopher K. Kargl
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kristen J. Koltun
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Carola Van Eck
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shawn D. Flanagan
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Center for Lower Extremity Ambulatory ResearchRosalind Franklin University of Medicine & ScienceNorth ChicagoILUSA
| | - Christopher Connaboy
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
- Present address:
Center for Lower Extremity Ambulatory ResearchRosalind Franklin University of Medicine & ScienceNorth ChicagoILUSA
| | - Sophie L. Wardle
- Army Health and Performance ResearchArmy HeadquartersAndoverUK
- Present address:
Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Thomas J. O'Leary
- Army Health and Performance ResearchArmy HeadquartersAndoverUK
- Present address:
Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Julie P. Greeves
- Army Health and Performance ResearchArmy HeadquartersAndoverUK
- Present address:
Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
- Present address:
Division of Surgery and Interventional ScienceUniversity College LondonLondonUK
| | - Bradley C. Nindl
- Neuromuscular Research Laboratory and Warrior Human Performance Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
McIntosh MC, Anglin DA, Robinson AT, Beck DT, Roberts MD. Making the case for resistance training in improving vascular function and skeletal muscle capillarization. Front Physiol 2024; 15:1338507. [PMID: 38405119 PMCID: PMC10884331 DOI: 10.3389/fphys.2024.1338507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Through decades of empirical data, it has become evident that resistance training (RT) can improve strength/power and skeletal muscle hypertrophy. Yet, until recently, vascular outcomes have historically been underemphasized in RT studies, which is underscored by several exercise-related reviews supporting the benefits of endurance training on vascular measures. Several lines of evidence suggest large artery diameter and blood flow velocity increase after a single bout of resistance exercise, and these events are mediated by vasoactive substances released from endothelial cells and myofibers (e.g., nitric oxide). Weeks to months of RT can also improve basal limb blood flow and arterial diameter while lowering blood pressure. Although several older investigations suggested RT reduces skeletal muscle capillary density, this is likely due to most of these studies being cross-sectional in nature. Critically, newer evidence from longitudinal studies contradicts these findings, and a growing body of mechanistic rodent and human data suggest skeletal muscle capillarity is related to mechanical overload-induced skeletal muscle hypertrophy. In this review, we will discuss methods used by our laboratories and others to assess large artery size/function and skeletal muscle capillary characteristics. Next, we will discuss data by our groups and others examining large artery and capillary responses to a single bout of resistance exercise and chronic RT paradigms. Finally, we will discuss RT-induced mechanisms associated with acute and chronic vascular outcomes.
Collapse
Affiliation(s)
| | - Derick A. Anglin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Darren T. Beck
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine–Auburn Campus, Auburn, AL, United States
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Edward Via College of Osteopathic Medicine–Auburn Campus, Auburn, AL, United States
| |
Collapse
|
7
|
Murach KA, Peterson CA. A muscle exercise research revolution powered by -omics at single cell and nucleus resolution. BMC Biol 2023; 21:298. [PMID: 38155343 PMCID: PMC10755940 DOI: 10.1186/s12915-023-01781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA.
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Long DE, Mantuano AJ, Confides AL, Miller BF, Kern PA, Butterfield TA, Dupont-Versteegden EE. Short-term repeated human biopsy sampling contributes to changes in muscle morphology and higher outcome variability. J Appl Physiol (1985) 2023; 135:1403-1414. [PMID: 37705447 PMCID: PMC10979834 DOI: 10.1152/japplphysiol.00441.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
Changes in skeletal muscle are an important aspect of overall health. The collection of human muscle to study cellular and molecular processes for research requires a needle biopsy procedure which, in itself, can induce changes in the tissue. To investigate the effect of repeat tissue sampling, we collected skeletal muscle biopsy samples from vastus lateralis separated by 7 days. Cellular infiltrate, central nucleation, enlarged extracellular matrix, and rounding of muscle fibers were used as indices to define muscle damage, and we found that 16/26 samples (61.5%) revealed at least two of these symptoms in the secondary biopsy. The presence of damage influenced outcome measures usually obtained in human biopsies. Damaged muscle showed an increase in the number of small fibers even though average fiber and fiber type-specific cross-sectional area (CSA) were not different. This included higher numbers of embryonic myosin heavy chain-positive fibers (P = 0.001) as well as elevated satellite cell number (P = 0.02) in the damaged areas and higher variability in satellite cell count in the total area (P = 0.04). Collagen content was higher in damaged (P = 0.0003) as well as nondamaged areas (P = 0.05) of the muscle sections of the damaged compared with the nondamaged group. Myofibrillar protein and ribonucleic acid (RNA) fractional synthesis rates were not significantly different between the damaged compared with the nondamaged group. Results indicate that common outcomes as well as outcome variability in human muscle tissue are affected by previous biopsies. Therefore, the extent of potential damage should be assessed when performing repeated biopsies.NEW & NOTEWORTHY Indices of damage can be found in repeated biopsy samples of nonintervened control legs. Variables, directly and not directly related to muscle damage or regeneration, were compromised in second biopsy. There is a need to determine potential damage within muscle tissue when repeated muscle sampling is part of the study design. Muscle biopsy sampling may be a source of increased heterogeneity in human muscle data.
Collapse
Affiliation(s)
- Douglas E Long
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Alessandra J Mantuano
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Amy L Confides
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma, United States
| | - Philip A Kern
- Division of Endocrinology, Department of Internal Medicine, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, Kentucky, United States
| | - Timothy A Butterfield
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Esther E Dupont-Versteegden
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
9
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
10
|
Ferrara PJ, Reidy PT, Petrocelli JJ, Yee EM, Fix DK, Mahmassani ZS, Montgomery JA, McKenzie AI, de Hart NMMP, Drummond MJ. Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle specific. J Appl Physiol (1985) 2023; 134:923-932. [PMID: 36861669 PMCID: PMC10069960 DOI: 10.1152/japplphysiol.00444.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Timely and complete recovery of muscle mass and function following a bout of physical disuse are critical components of returning to normal activities of daily living and lifestyle. Proper cross talk between the muscle tissue and myeloid cells (e.g., macrophages) throughout the recovery period from disuse atrophy plays a significant role in the complete resolution of muscle size and function. Chemokine C-C motif ligand 2 (CCL2) has a critical function of recruiting macrophages during the early phase of muscle damage. However, the importance of CCL2 has not been defined in the context of disuse and recovery. Here, we utilized a mouse model of whole body CCL2 deletion (CCL2KO) and subjected them to a period of hindlimb unloading followed by reloading to investigate the importance of CCL2 on the regrowth of muscle following disuse atrophy using ex vivo muscle tests, immunohistochemistry, and fluorescence-activated cell sorting approaches. We show mice that lack CCL2 display an incomplete recovery of gastrocnemius muscle mass, myofiber cross-sectional area, and EDL muscle contractile characteristics during the recovery from disuse atrophy. The soleus and plantaris had limited impact as a result of CCL2 deficiency suggesting a muscle-specific effect. Mice that lack CCL2 have decreased skeletal muscle collagen turnover, which may be related to defects in muscle function and stiffness. In addition, we show that the recruitment of macrophages to gastrocnemius muscle was dramatically reduced in CCL2KO mice during the recovery from disuse atrophy, which likely precipitated poor recovery of muscle size and function and aberrant collagen remodeling.NEW & NOTEWORTHY We provide evidence that the whole body loss of CCL2 in mice has adverse impacts on whole body function and skeletal muscle-specific contractile characteristics and collagen content. These defects in muscle function worsened during the recovery from disuse atrophy and corresponded with decreased recovery of muscle mass. We conclude that the absence of CCL2 decreased recruitment of proinflammatory macrophages to the muscle during the regrowth phase following disuse atrophy resulting in impaired collagen remodeling events and full resolution of muscle morphology and function.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Jessie A Montgomery
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
12
|
Godwin JS, Sexton CL, Kontos NJ, Ruple BA, Willoughby DS, Young KC, Mobley CB, Roberts MD. Extracellular matrix content and remodeling markers do not differ in college-aged men classified as higher and lower responders to resistance training. J Appl Physiol (1985) 2023; 134:731-741. [PMID: 36759158 DOI: 10.1152/japplphysiol.00596.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We determined if skeletal muscle extracellular matrix (ECM) content and remodeling markers adapted with resistance training or were associated with hypertrophic outcomes. Thirty-eight untrained males (21 ± 3 yr) participated in whole body resistance training (10 wk, 2 × weekly). Participants completed testing [ultrasound, peripheral quantitative computed tomography (pQCT)] and donated a vastus lateralis (VL) biopsy 1 wk before training and 72 h following the last training bout. Higher responders (HR, n = 10) and lower responders (LR, n = 10) were stratified based on a composite score considering changes in pQCT-derived mid-thigh cross-sectional area (mCSA), ultrasound-derived VL thickness, and mean fiber cross-sectional area (fCSA). In all participants, training reduced matrix metalloprotease (MMP)-14 protein (P < 0.001) and increased satellite cell abundance (P < 0.001); however, VL fascial thickness, ECM protein content per myofiber, MMP-2/-9 protein content, tissue inhibitor of metalloproteinase (TIMP)-1/-2 protein content, collagen-1/-4 protein content, macrophage abundance, or fibroadipogenic progenitor cell abundance were not altered. Regarding responder analysis, MMP-14 exhibited an interaction (P = 0.007), and post hoc analysis revealed higher protein content in HR versus LR before training (P = 0.026) and a significant decrease from pre to posttraining in HR only (P = 0.002). In summary, basal skeletal muscle ECM markers are minimally affected with 10 wk of resistance training, and these findings could be related to not capturing more dynamic alterations in the assayed markers earlier in training. However, the downregulation in MMP-14 in college-aged men classified as HR is a novel finding and warrants continued investigation, and further research is needed to delineate muscle connective tissue strength attributes between HR and LR.NEW & NOTEWORTHY Although past studies have examined aspects of extracellular matrix remodeling in relation to mechanical overload or resistance training, this study serves to expand our knowledge on a multitude of extracellular matrix markers and whether these markers adapt to resistance training or are associated with differential hypertrophic responses.
Collapse
Affiliation(s)
- Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Nicholas J Kontos
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, United States
| | - Kaelin C Young
- Biomedical Sciences, Pacific Northwest University of Health Sciences, Yakima, Washington, United States
| | - C Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States.,Edward Via College of Osteopathic Medicine, Auburn, Alabama, United States
| |
Collapse
|
13
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
14
|
VanderVeen BN, Cardaci TD, Madero SS, McDonald SJ, Bullard BM, Price RL, Carson JA, Fan D, Murphy EA. 5-Fluorouracil disrupts skeletal muscle immune cells and impairs skeletal muscle repair and remodeling. J Appl Physiol (1985) 2022; 133:834-849. [PMID: 36007896 PMCID: PMC9529268 DOI: 10.1152/japplphysiol.00325.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/12/2023] Open
Abstract
5-Fluorouracil (5FU) remains a first-line chemotherapeutic for several cancers despite its established adverse side effects. Reduced blood counts with cytotoxic chemotherapies not only expose patients to infection and fatigue, but can disrupt tissue repair and remodeling, leading to lasting functional deficits. We sought to characterize the impact of 5FU-induced leukopenia on skeletal muscle in the context of remodeling. First, C57BL/6 mice were subjected to multiple dosing cycles of 5FU and skeletal muscle immune cells were assessed. Second, mice given 1 cycle of 5FU were subjected to 1.2% BaCl2 intramuscularly to induce muscle damage. One cycle of 5FU induced significant body weight loss, but only three dosing cycles of 5FU induced skeletal muscle mass loss. One cycle of 5FU reduced skeletal muscle CD45+ immune cells with a particular loss of infiltrating CD11b+Ly6cHi monocytes. Although CD45+ cells returned following three cycles, CD11b+CD68+ macrophages were reduced with three cycles and remained suppressed at 1 mo following 5FU administration. One cycle of 5FU blocked the increase in CD45+ immune cells 4 days following BaCl2; however, there was a dramatic increase in CD11b+Ly6g+ neutrophils and a loss of CD11b+Ly6cHi monocytes in damaged muscle with 5FU compared with PBS. These perturbations resulted in increased collagen production 14 and 28 days following BaCl2 and a reduction in centralized nuclei and myofibrillar cross-sectional area compared with PBS. Together, these results demonstrate that cytotoxic 5FU impairs muscle damage repair and remodeling concomitant with a loss of immune cells that persists beyond the cessation of treatment.NEW & NOTEWORTHY We examined the common chemotherapeutic 5-fluorouracil's (5FU) impact on skeletal muscle immune cells and skeletal muscle repair. 5FU monotherapy decreased body weight and muscle mass, and perturbed skeletal muscle immune cells. In addition, 5FU decreased skeletal muscle immune cells and impaired infiltration following damage contributing to disrupted muscle repair. Our results demonstrate 5FU's impact on skeletal muscle and provide a potential explanation for why some patients may be unable to properly repair damaged tissue.
Collapse
Affiliation(s)
- Brandon N VanderVeen
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Thomas D Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Sarah S Madero
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Sierra J McDonald
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Robert L Price
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - James A Carson
- Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Daping Fan
- Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
15
|
Brightwell CR, Latham CM, Thomas NT, Keeble AR, Murach KA, Fry CS. A glitch in the matrix: the pivotal role for extracellular matrix remodeling during muscle hypertrophy. Am J Physiol Cell Physiol 2022; 323:C763-C771. [PMID: 35876284 PMCID: PMC9448331 DOI: 10.1152/ajpcell.00200.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Multinuclear muscle fibers are the most voluminous cells in skeletal muscle and the primary drivers of growth in response to loading. Outside the muscle fiber, however, is a diversity of mononuclear cell types that reside in the extracellular matrix (ECM). These muscle-resident cells are exercise-responsive and produce the scaffolding for successful myofibrillar growth. Without proper remodeling and maintenance of this ECM scaffolding, the ability to mount an appropriate response to resistance training in adult muscles is severely hindered. Complex cellular choreography takes place in muscles following a loading stimulus. These interactions have been recently revealed by single-cell explorations into muscle adaptation with loading. The intricate ballet of ECM remodeling involves collagen production from fibrogenic cells and ECM modifying signals initiated by satellite cells, immune cells, and the muscle fibers themselves. The acellular collagen-rich ECM is also a mechanical signal-transducer and rich repository of growth factors that may directly influence muscle fiber hypertrophy once liberated. Collectively, high levels of collagen expression, deposition, and turnover characterize a well-trained muscle phenotype. The purpose of this review is to highlight the most recent evidence for how the ECM and its cellular components affect loading-induced muscle hypertrophy. We also address how the muscle fiber may directly take part in ECM remodeling, and whether ECM dynamics are rate limiting for muscle fiber growth.
Collapse
Affiliation(s)
- Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Christine M Latham
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Alexander R Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas
- Cell and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, Arkansas
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|