1
|
Katz AR, Huntwork MP, Kolls JK, Hewes JL, Ellsworth CR, Clark RDE, Carlson JC. Impact of psychological stressors on natural killer cell function: A comprehensive analysis based on stressor type, duration, intensity, and species. Physiol Behav 2024; 288:114734. [PMID: 39547436 DOI: 10.1016/j.physbeh.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Patients with natural killer (NK) cell deficiency or dysfunction are more susceptible to infections by Herpesviridae viruses, herpesvirus-related cancers, and macrophage activation syndromes. This review summarizes research on NK cell dysfunction following psychological stress, focusing on stressor type, duration, age of exposure, and species studied. Psychological stressors negatively affect NK cell activity (NKCA) across species. Prolonged stress leads to more significant decreases in NK cell number and function, with rehabilitation efforts proving ineffective in reversing these effects. Early life and prolonged stress exposure particularly increases the risk of infections and cancer due to impaired NKCA. The review also highlights that stress impacts males and females differently, with females exhibiting a more immunosuppressed NK cell phenotype. Notably, mice respond differently compared to humans and other animals, making them unsuitable for NK cell stress-related studies. Most studies measured NKCA using cytolytic assays against K-562 or YAC-1 cells. Although the exact mechanisms of NK cell dysfunction under stress remain unclear, potential causes include reduced release of secretory lysosomes with perforin or granzyme, impaired NK cell synapse formation, decreased expression of synapse-related molecules like CD2 or LFA-1 (CD11a), altered activating receptor expression, and dysregulated signaling pathways, such as decreased Erk1/2 phosphorylation and NFkB signaling. These mechanisms are not mutually exclusive, and future research is needed to clarify these pathways and develop therapeutic interventions for stress-induced immune dysregulation.
Collapse
Affiliation(s)
- Alexis R Katz
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Margaret P Huntwork
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Allergy and Clinical Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenny L Hewes
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder R Ellsworth
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Robert D E Clark
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John C Carlson
- Department of Allergy and Immunology, Ochsner Health System, New Orleans, LA 70121, USA
| |
Collapse
|
2
|
Ponomarev SA, Sadova AA, Rykova MP, Orlova KD, Vlasova DD, Shulgina SM, Antropova EN, Kutko OV, Germanov NS, Galina VS, Shmarov VA. The impact of short-term confinement on human innate immunity. Sci Rep 2022; 12:8372. [PMID: 35589846 PMCID: PMC9120181 DOI: 10.1038/s41598-022-12380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
During space missions cosmonauts are exposed to a myriad of distinct stressors such as radiation, overloads, weightlessness, radiation, isolation in artificial environmental conditions, which causes changes in immune system. During space flights it is very difficult to determine the particular factor associated with the observed immunological responses. This makes ground-based experiments examining the effect of each space flight associated factor along of particular value. Determining mechanisms causing alterations in cosmonauts' immunity can lead to potential targets for different countermeasures. In the current article we present the study of the early period of adaptation of human innate immunity of 6 healthy test-subjects, 4 males and 2 females aged 25 through 40, to isolation factors (hypodynamia, psychological stress, artificial environment). We measured multiple parameters characterizing innate immunity status in blood samples at chosen time points before, during and after the mission. In the experiment, highly enhanced cytokine responses were observed upon ex vivo antigen stimulations in comparison to baseline values. For cellular parameters we found multidirectional dynamics with a persistent prevalence of increasing TLRs+ monocytes as well as TLRs expression. Our study provides evidence that even a short-term confinement leads to immune changes in healthy humans that may trigger aberrant immune response.
Collapse
Affiliation(s)
- S A Ponomarev
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.
| | - A A Sadova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.,Pirigov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russian Federation
| | - M P Rykova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - K D Orlova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - D D Vlasova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - S M Shulgina
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - E N Antropova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - O V Kutko
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| | - N S Germanov
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.,Pirigov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russian Federation
| | - V S Galina
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation.,Pirigov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russian Federation
| | - V A Shmarov
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, 123007, Russian Federation
| |
Collapse
|
3
|
Ponomarev S, Kalinin S, Sadova A, Rykova M, Orlova K, Crucian B. Immunological Aspects of Isolation and Confinement. Front Immunol 2021; 12:697435. [PMID: 34248999 PMCID: PMC8264770 DOI: 10.3389/fimmu.2021.697435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Beyond all doubts, the exploration of outer space is a strategically important and priority sector of the national economy, scientific and technological development of every and particular country, and of all human civilization in general. A number of stress factors, including a prolonged confinement in a limited hermetically sealed space, influence the human body in space on board the spaceship and during the orbital flight. All these factors predominantly negatively affect various functional systems of the organism, in particular, the astronaut's immunity. These ground-based experiments allow to elucidate the effect of confinement in a limited space on both the activation of the immunity and the changes of the immune status in dynamics. Also, due to simulation of one or another emergency situation, such an approach allows the estimation of the influence of an additional psychological stress on the immunity, particularly, in the context of the reserve capacity of the immune system. A sealed chamber seems a convenient site for working out the additional techniques for crew members selection, as well as the countermeasures for negative changes in the astronauts' immune status. In this review we attempted to collect information describing changes in human immunity during isolation experiments with different conditions including short- and long-term experiments in hermetically closed chambers with artificial environment and during Antarctic winter-over.
Collapse
Affiliation(s)
- Sergey Ponomarev
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Sergey Kalinin
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Anastasiya Sadova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Marina Rykova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Kseniya Orlova
- Laboratory of Immune System Physiology, SSC RF-IBMP RAS, Moscow, Russia
| | - Brian Crucian
- Immunology/Virology Laboratory, NASA Johnson Space Center, Environmental Sciences Branch, Houston, TX, United States
| |
Collapse
|
4
|
Ribeiro de Lima JG, Abud GF, Freitas ECD, Bueno Júnior CR. Effects of the COVID-19 pandemic on the global health of women aged 50 to 70 years. Exp Gerontol 2021; 150:111349. [PMID: 33892133 PMCID: PMC8058051 DOI: 10.1016/j.exger.2021.111349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 01/22/2023]
Abstract
Aim/background The most recent pandemic caused by the new coronavirus disease (COVID-19) urged dramatic changes in people's lives. Potentially, the COVID-19 pandemic affects physical and mental health as well as behavioral and social aspects. However, the direct impacts of the COVID-19 pandemic on health-related parameters are not yet known. The present study aimed to evaluate the effect of 16 weeks during the COVID-19 pandemic on health-related parameters of physically inactive women aged 50 to 70 years. Methods Thirty-four physically inactive women participated in the study. We performed tests to evaluate aerobic capacity and muscle strength, anthropometric measurements, blood pressure (BP), blood parameters, diet, and physical activity levels. All evaluations were carried out before and 16 weeks after the initial phase of the COVID-19 pandemic in Brazil (i.e., from March to July 2020). Results Systolic BP (p < .0001; effect size (ES) = 0.62), diastolic BP (p < .0001; ES = 0.71), grip strength of the right (p < .05; ES = 0.43) and left hand (p < .05; ES = 0.49), performance in six-minute walk test (p < .05; ES = 0.46), free time physical activity levels (p < .05; ES = 0.40), domestic physical activity levels (p < .05; ES = 0.39), platelet count (p < .0001; ES = 0.48), and mean corpuscular hemoglobin concentration (p < .0001; ES = 1.14) reduced in comparison to the period before the pandemic. In contrast, glycated hemoglobin levels (p < .0001; ES = 0.77), triglycerides (p < .05; ES = 0.40), and insulin levels (p < .05; ES = 0.60) increased in comparison to the period before the pandemic. Conclusion The COVID-19 pandemic negatively impacted the general health status of physically inactive women aged 50 to 70, potentially increasing their susceptibility to comorbidities, such as type 2 diabetes and hypertriglyceridemia.
Collapse
Affiliation(s)
- João G Ribeiro de Lima
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela F Abud
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences of Araraquara, Paulista State University, SP, Brazil
| | - Ellen C de Freitas
- Department of Food and Nutrition, Faculty of Pharmaceutical Sciences of Araraquara, Paulista State University, SP, Brazil; School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Carlos R Bueno Júnior
- Department of Internal Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
5
|
Jawhara S. How to boost the immune defence prior to respiratory virus infections with the special focus on coronavirus infections. Gut Pathog 2020; 12:47. [PMID: 33062058 PMCID: PMC7549427 DOI: 10.1186/s13099-020-00385-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/03/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2, which causes severe respiratory tract infections in humans (COVID-19), has become a global health concern. One of the most worrying features of COVID-19 is a phenomenon known as the "cytokine storm", which is a rapid overreaction of the immune system. Additionally, coagulation abnormalities, thrombocytopenia and digestive symptoms, including anorexia, vomiting, and diarrhea, are often observed in critically ill patients with COVID-19. Baker's yeast β-glucan, a natural immunomodulatory component derived from Saccharomyces cerevisiae, primes the immune system to respond better to any microbial infection. Our previous studies have shown that oral administration of yeast β-glucans decreased the diarrhoea, modulated cytokine expression, and reduced the intestinal inflammation. Additionally, we showed that β-glucan fractions decreased coagulation in plasma and reduced the activation of platelets. During the period of home confinement facing individuals during the COVID-19 pandemic, our immune defence could be weakened by different factors, including stress, anxiety and poor nutrition, while a healthy diet rich in vitamins C and D can reinforce the immune defence and reduce the risk of microbial infections. Additionally, β-glucan can be used to strengthen the immune defence in healthy individuals prior to any possible viral infections. This short review focuses on the role of baker's yeast β-glucan, with a healthy diet rich in natural vitamins C and D, in addition to a healthy gut microbiota can provide synergistic immune system support, helping the body to naturally defend prior to respiratory virus infections, until stronger options such as vaccines are available.
Collapse
Affiliation(s)
- Samir Jawhara
- grid.503422.20000 0001 2242 6780CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, INSERM U1285, Université Lille, 1 Place Verdun, 59000 Lille, France ,grid.503422.20000 0001 2242 6780University of Lille, 59000 Lille, France
| |
Collapse
|
6
|
Jurak G, Morrison SA, Leskošek B, Kovač M, Hadžić V, Vodičar J, Truden P, Starc G. Physical activity recommendations during the coronavirus disease-2019 virus outbreak. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:325-327. [PMID: 32426171 PMCID: PMC7229466 DOI: 10.1016/j.jshs.2020.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 05/24/2023]
Abstract
• Confinement and prolonged periods of inactivity carry various health risks and increase levels of stress, depression, and anxiety. • Being physically active is a simple and effective way of addressing these negative effects. • Even in confinement and limited free movement, people can remain physically active. • Prevention of coronavirus disease-2019 infection should not increase other health risks. • Exercise professionals should encourage organizations, local authorities, and governments to promote physical activity during this period of mass quarantine.
Collapse
Affiliation(s)
- Gregor Jurak
- Faculty of Sport, University of Ljubljana, Ljubljana, SI 1000, Slovenia
| | | | - Bojan Leskošek
- Faculty of Sport, University of Ljubljana, Ljubljana, SI 1000, Slovenia
| | - Marjeta Kovač
- Faculty of Sport, University of Ljubljana, Ljubljana, SI 1000, Slovenia
| | - Vedran Hadžić
- Faculty of Sport, University of Ljubljana, Ljubljana, SI 1000, Slovenia
| | - Janez Vodičar
- Faculty of Sport, University of Ljubljana, Ljubljana, SI 1000, Slovenia
| | - Polonca Truden
- National Institute of Public Health, Ljubljana, SI 1000, Slovenia
| | - Gregor Starc
- Faculty of Sport, University of Ljubljana, Ljubljana, SI 1000, Slovenia.
| |
Collapse
|
7
|
Munshi S, Loh MK, Ferrara N, DeJoseph MR, Ritger A, Padival M, Record MJ, Urban JH, Rosenkranz JA. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav Immun 2020; 84:180-199. [PMID: 31785394 PMCID: PMC7010555 DOI: 10.1016/j.bbi.2019.11.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
A link exists between immune function and psychiatric conditions, particularly depressive and anxiety disorders. Psychological stress is a powerful trigger for these disorders and stress influences immune state. However, the nature of peripheral immune changes after stress conflicts across studies, perhaps due to the focus on few measures of pro-inflammatory or anti-inflammatory processes. The basolateral amygdala (BLA) is critical for emotion, and plays an important role in the effects of stress on anxiety. As such, it may be a primary central nervous system (CNS) mediator for the effects of peripheral immune changes on anxiety after stress. Therefore, this study aimed to delineate the influence of stress on peripheral pro-inflammatory and anti-inflammatory aspects, BLA immune activation, and its impact on BLA neuronal activity. To produce a more encompassing view of peripheral immune changes, this study used a less restrictive approach to categorize and group peripheral immune changes. We found that repeated social defeat stress in adult male Sprague-Dawley rats increased the frequencies of mature T-cells positive for intracellular type 2-like cytokine and serum pro-inflammatory cytokines. Principal component analysis and hierarchical clustering was used to guide grouping of T-cells and cytokines, producing unique profiles. Stress shifted the balance towards a specific set that included mostly type 2-like T-cells and pro-inflammatory cytokines. Within the CNS component, repeated stress caused an increase of activated microglia in the BLA, increased anxiety-like behaviors across several assays, and increased BLA neuronal firing in vivo that was prevented by blockade of microglia activation. Because repeated stress can trigger anxiety states by actions in the BLA, and altered immune function can trigger anxiety, these results suggest that repeated stress may trigger anxiety-like behaviors by inducing a pro-inflammatory state in the periphery and the BLA. These results begin to uncover how stress may recruit the immune system to alter the function of brain regions critical to emotion.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Maxine K. Loh
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Nicole Ferrara
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - M. Regina DeJoseph
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Alexandra Ritger
- Department of Foundational Sciences and Humanities, Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Matthew J. Record
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Janice H. Urban
- Department of Foundational Sciences and Humanities, Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.,Corresponding Author: J. Amiel Rosenkranz, Ph.D., Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA., Telephone: 847-578-8680; Fax: 847-578-3268,
| |
Collapse
|
8
|
Strewe C, Muckenthaler F, Feuerecker M, Yi B, Rykova M, Kaufmann I, Nichiporuk I, Vassilieva G, Hörl M, Matzel S, Schelling G, Thiel M, Morukov B, Choukèr A. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement. J Appl Physiol (1985) 2015; 118:1122-7. [DOI: 10.1152/japplphysiol.00755.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/08/2015] [Indexed: 12/24/2022] Open
Abstract
The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ∼500 m3mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research.
Collapse
Affiliation(s)
- C. Strewe
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - F. Muckenthaler
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Feuerecker
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - B. Yi
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Rykova
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - I. Kaufmann
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care Medicine, Neuperlach Hospital, Municipal Hospital Group, Munich, Germany; and
| | - I. Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - G. Vassilieva
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - M. Hörl
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - S. Matzel
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - G. Schelling
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Thiel
- Clinic of Anesthesiology and Intensive Care, Klinikum Mannheim, University of Mannheim, Mannheim, Germany
| | - B. Morukov
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - A. Choukèr
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| |
Collapse
|
9
|
Debevec T, McDonnell AC, Macdonald IA, Eiken O, Mekjavic IB. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading–inactivity. Appl Physiol Nutr Metab 2014; 39:386-95. [DOI: 10.1139/apnm-2013-0278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m−2 completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (–8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (–2.1%, –2.8%, and –2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (–3.8%, –3.8%, –4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest.
Collapse
Affiliation(s)
- Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ian A. Macdonald
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham Medical School, School of Life Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Ola Eiken
- Department of Environmental Physiology, School of Technology and Health, KTH Royal Institute of Technology, Berzelius v. 13, Stockholm, Sweden
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Faraut B, Bayon V, Léger D. Neuroendocrine, immune and oxidative stress in shift workers. Sleep Med Rev 2013; 17:433-44. [DOI: 10.1016/j.smrv.2012.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/11/2012] [Accepted: 12/20/2012] [Indexed: 10/26/2022]
|
11
|
Paterson JL, Dorrian J, Ferguson SA, Jay SM, Dawson D. What happens to mood, performance and sleep in a laboratory study with no sleep deprivation? Sleep Biol Rhythms 2013; 11:200-209. [PMID: 24839396 DOI: 10.1111/sbr.12023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are few studies examining changes in waking function in a laboratory environment with no sleep deprivation and mood has been largely overlooked in this context. The present study examined changes in mood, performance, sleep and sleepiness in the laboratory study with no sleep deprivation. Nineteen participants (10M, 9F; 22y ± 4.2y) were given nine 9h sleep opportunities (2300-0800). Every two hours during wake, participants completed the Mood Scale II, a 10-minute Psychomotor Vigilance Task and measures of sleepiness and fatigue. Sleep was monitored using an electroencephalographic montage. Findings revealed significant negative mood change, performance impairment, reduced total sleep time and sleep efficiency (all p < .05). These findings suggest that the laboratory environment or procedural factors may impair mood, performance and sleep. These findings may have implications for interpreting impairments in mood, performance and sleep when observed in laboratory environments.
Collapse
Affiliation(s)
- Jessica L Paterson
- Central Queensland University, Appleton Institute, 44 Greenhill Road, Wayville SA 5034
| | - Jill Dorrian
- University of South Australia, School of Psychology, Social Work and Social Policy, GPO Box 2471, Adelaide SA 5001
| | - Sally A Ferguson
- Central Queensland University, Appleton Institute, 44 Greenhill Road, Wayville SA 5034
| | - Sarah M Jay
- Central Queensland University, Appleton Institute, 44 Greenhill Road, Wayville SA 5034
| | - Drew Dawson
- Central Queensland University, Appleton Institute, 44 Greenhill Road, Wayville SA 5034
| |
Collapse
|
12
|
Progressive adaptation in physical activity and neuromuscular performance during 520d confinement. PLoS One 2013; 8:e60090. [PMID: 23555896 PMCID: PMC3610758 DOI: 10.1371/journal.pone.0060090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/21/2013] [Indexed: 12/31/2022] Open
Abstract
To understand whether prolonged confinement results in reductions in physical activity and adaptation in the musculoskeletal system, six subjects were measured during 520 d isolation in the Mars500 study. We tested the hypothesis that physical activity reduces in prolonged confinement and that this would be associated with decrements of neuromuscular performance. Physical activity, as measured by average acceleration of the body's center of mass ("activity temperature") using the actibelt® device, decreased progressively over the course of isolation (p<0.00001). Concurrently, countermovement jump power and single-leg hop force decreased during isolation (p<0.001) whilst grip force did not change (p≥0.14). Similar to other models of inactivity, greater decrements of neuromuscular performance occurred in the lower-limb than in the upper-limb. Subject motivational state increased non-significantly (p = 0.20) during isolation, suggesting reductions in lower-limb neuromuscular performance were unrelated to motivation. Overall, we conclude that prolonged confinement is a form of physical inactivity and is associated with adaptation in the neuromuscular system.
Collapse
|
13
|
Rykova MP, Antropova EN, Berendeeva TA, Popova YA, Larina IM, Morukov BV. Immune system parameters of healthy humans in a chamber experiment with hyperbaric oxygen—nitrogen—argon air. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s0362119711070279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Pagani M, Pizzinelli P, Traon APL, Ferreri C, Beltrami S, Bareille MP, Costes-Salon MC, Béroud S, Blin O, Lucini D, Philip P. Hemodynamic, autonomic and baroreflex changes after one night sleep deprivation in healthy volunteers. Auton Neurosci 2008; 145:76-80. [PMID: 19006684 DOI: 10.1016/j.autneu.2008.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sleep disorders are associated to a number of cardiovascular disturbances that might increase cardiovascular risk. Sleep deprivation, in particular, might, by inducing autonomic dysregulation, raise arterial pressure and hypertensive risk. Available evidence however is contradictory. METHODS We tested the main hypothesis that one night sleep deprivation in 24 volunteers might alter hemodynamics (heart rate and Arterial Pressure - AP), autonomic regulation (mono and bivariate spectral analysis of RR and non invasive AP variability) and baroreflex control (spectral index alpha and spontaneous baroreflex slope), performance indices (reaction time) and subjective stress (questionnaires and salivary cortisol). Volunteers were studied in normal living conditions and while kept in isolation and confinement, to test the presence of possible bias related to environmental stress. RESULTS Results indicate that there were no differences between normal living conditions and isolation and confinement (Intraclass Correlation Coefficient >0.75 for most variables). Conversely, after one night sleep deprivation subjects felt tired (p<0.05), and performance deteriorated (p<0.05), while cortisol profile was substantially maintained, hemodynamic parameters did not change and HRV and index alpha increased slightly. CONCLUSIONS Findings support the contention that one night sleep deprivation, in absence of significant additional stress or disturbances, does not lead to increased arterial pressure values or to changes in autonomic or baroreflex profiles that could conceivably favor hypertension development, but induces the expected increase in tiredness and reduction in performance.
Collapse
Affiliation(s)
- Massimo Pagani
- Centro di Ricerca sulla Terapia Neurovegetativa, Dipartimento Scienze Cliniche L. Sacco, University of Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|