1
|
Shen Q, Holloway N, Thimmesch A, Wood JG, Clancy RL, Pierce JD. Ubiquinol decreases hemorrhagic shock/resuscitation-induced microvascular inflammation in rat mesenteric microcirculation. Physiol Rep 2014; 2:e12199. [PMID: 25413319 PMCID: PMC4255806 DOI: 10.14814/phy2.12199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a leading cause of death in traumatic injury. Ischemia and hypoxia in HS and fluid resuscitation (FR) creates a condition that facilitates excessive generation of reactive oxygen species (ROS). This is a major factor causing increased leukocyte-endothelial cell adhesive interactions and inflammation in the microcirculation resulting in reperfusion tissue injury. The aim of this study was to determine if ubiquinol (coenzyme Q10) decreases microvascular inflammation following HS and FR. Intravital microscopy was used to measure leukocyte-endothelial cell adhesive interactions in the rat mesentery following 1-h of HS and 2-h post FR with or without ubiquinol. Hemorrhagic shock was induced by removing ~ 40% of anesthetized Sprague Dawley rats' blood volume to maintain a mean arterial blood pressure <50 mmHg for 1 h. Ubiquinol (1 mg/100 g body weight) was infused intravascularly in the ubiquinol group immediately after 1-h HS. The FR protocol included replacement of the shed blood and Lactate Ringer's in both the control and ubiquinol groups. We found that leukocyte adherence (2.3 ± 2.0), mast cell degranulation (1.02 ± 0.01), and ROS levels (159 ± 35%) in the ubiquinol group were significantly reduced compared to the control group (10.8 ± 2.3, 1.36 ± 0.03, and 343 ± 47%, respectively). In addition, vascular permeability in the control group (0.54 ± 0.11) was significantly greater than the ubiquinol group (0.34 ± 0.04). In conclusion, ubiquinol attenuates HS and FR-induced microvascular inflammation. These results suggest that ubiquinol provides protection to mesenteric microcirculation through its antioxidant properties.
Collapse
Affiliation(s)
- Qiuhua Shen
- School of Nursing, University of Kansas, Kansas City, Kansas, USA (Q.S., A.T., J.D.P.)
| | - Naomi Holloway
- Department of Surgery, University of Kansas, Kansas City, Kansas, USA (N.H., J.G.W.)
| | - Amanda Thimmesch
- School of Nursing, University of Kansas, Kansas City, Kansas, USA (Q.S., A.T., J.D.P.)
| | - John G. Wood
- Department of Surgery, University of Kansas, Kansas City, Kansas, USA (N.H., J.G.W.)
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, Kansas, USA (J.G.W., R.L.C., J.D.P.)
| | - Richard L. Clancy
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, Kansas, USA (J.G.W., R.L.C., J.D.P.)
| | - Janet D. Pierce
- School of Nursing, University of Kansas, Kansas City, Kansas, USA (Q.S., A.T., J.D.P.)
- Department of Molecular and Integrative Physiology, University of Kansas, Kansas City, Kansas, USA (J.G.W., R.L.C., J.D.P.)
| |
Collapse
|
2
|
Slone EA, Fleming SD. Membrane lipid interactions in intestinal ischemia/reperfusion-induced Injury. Clin Immunol 2014; 153:228-40. [PMID: 24814240 DOI: 10.1016/j.clim.2014.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/02/2023]
Abstract
Ischemia, lack of blood flow, and reperfusion, return of blood flow, are a common phenomenon affecting millions of Americans each year. Roughly 30,000 Americans per year experience intestinal ischemia-reperfusion (IR), which is associated with a high mortality rate. Previous studies of the intestine established a role for neutrophils, eicosanoids, the complement system and naturally occurring antibodies in IR-induced pathology. Furthermore, data indicate involvement of a lipid or lipid-like moiety in mediating IR-induced damage. It has been proposed that antibodies recognize exposure of neo-antigens, triggering action of the complement cascade. While it is evident that the pathophysiology of IR-induced injury is complex and multi-factorial, we focus this review on the involvement of eicosanoids, phospholipids and neo-antigens in the early pathogenesis. Lipid changes occurring in response to IR, neo-antigens exposed and the role of a phospholipid transporter, phospholipid scramblase 1 will be discussed.
Collapse
Affiliation(s)
- Emily Archer Slone
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Synergistic deleterious effect of hypoxemia and hypovolemia on microcirculation in intestinal villi*. Crit Care Med 2013; 41:e376-84. [PMID: 23963129 DOI: 10.1097/ccm.0b013e318292388d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effect of hypoxemia, hemorrhagic shock, and the association of both of these on intestinal microcirculation (microcirculatory perfusion and leukocytes-endothelium interactions in postcapillary venules), as it can be encountered in hemorrhagic shock following trauma. DESIGN Prospective controlled experimental study. SETTING University research laboratory. SUBJECTS Forty-eight anesthetized and mechanically ventilated Balb/c mice. INTERVENTION Mice were randomly assigned to hypoxemia group in which we decreased inspired oxygen fraction during 60 minutes to reach a PaO2 of 40 mm Hg, hemorrhagic shock group in which animals were exsanguinated to a mean arterial pressure level of 40 mm Hg during 30 minutes, hypoxemia-hemorrhagic shock group in which PaO2 was decreased to 40 mm Hg during 60 minutes with exsanguination from the 30th to the 60th minute to a mean arterial pressure level of 40 mm Hg; or control group. MEASUREMENTS AND MAIN RESULTS Hypoxemia decreased RBCs velocity in intestinal villi but did not alter the fraction of perfused villi. Hypoxemia also triggered leukocytes adhesion to the venular endothelium. Hemorrhagic shock not only decreased RBCs velocity in villi but also slightly altered the fraction of perfused villi (94% ± 2% in hemorrhagic shock group vs 100% ± 0% in control group, p < 0.005). Furthermore, hemorrhagic shock triggered leukocytes adhesion to the venular endothelium to the same extent as hypoxemia. When hypoxemia was associated to hemorrhagic shock, it decreased villous RBCs velocity in an additive manner and the fraction of perfused villi dropped in a synergistic manner (69% ± 3% in hypoxemia-hemorrhagic shock group vs 94 ± 2 in hemorrhagic shock group, p < 0.005). The association of hypoxemia and hemorrhagic shock did not further amplify leukocytes adhesion to intestinal venules compared with either hypoxemia or hemorrhagic shock alone. CONCLUSIONS During hemorrhagic shock, the occurrence of hypoxemia considerably alters villous intestinal perfusion as it decreases the fraction of perfused villi in a synergistic manner, thereby increasing the risk of villous ischemia. The association of hypoxemia and hemorrhagic shock did not amplify leukocytes adhesion to the endothelium further than either hemorrhagic shock or hypoxemia alone did. As hypoxemia frequently occurs simultaneously with hemorrhagic shock in traumatic conditions, it can worsen gut ischemia leading to the exacerbation of multiple organ failure syndrome.
Collapse
|
4
|
Kar S, Kavdia M. Endothelial NO and O₂·⁻ production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation. Free Radic Biol Med 2013; 63:161-74. [PMID: 23639567 PMCID: PMC4051226 DOI: 10.1016/j.freeradbiomed.2013.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/04/2013] [Accepted: 04/13/2013] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction causes an imbalance in endothelial NO and O₂·⁻ production rates and increased peroxynitrite formation. Peroxynitrite and its decomposition products cause multiple deleterious effects including tyrosine nitration of proteins, superoxide dismutase (SOD) inactivation, and tissue damage. Studies have shown that peroxynitrite formation during endothelial dysfunction is strongly dependent on the NO and O₂·⁻ production rates. Previous experimental and modeling studies examining the role of NO and O₂·⁻ production imbalance on peroxynitrite formation showed different results in biological and synthetic systems. However, there is a lack of quantitative information about the formation and biological relevance of peroxynitrite under oxidative, nitroxidative, and nitrosative stress conditions in the microcirculation. We developed a computational biotransport model to examine the role of endothelial NO and O₂·⁻ production on the complex biochemical NO and O₂·⁻ interactions in the microcirculation. We also modeled the effect of variability in SOD expression and activity during oxidative stress. The results showed that peroxynitrite concentration increased with increase in either O₂·⁻ to NO or NO to O₂·⁻ production rate ratio (QO₂·⁻/QNO or QNO/QO₂·⁻, respectively). The peroxynitrite concentrations were similar for both production rate ratios, indicating that peroxynitrite-related nitroxidative and nitrosative stresses may be similar in endothelial dysfunction or inducible NO synthase (iNOS)-induced NO production. The endothelial peroxynitrite concentration increased with increase in both QO₂·⁻/QNO and QNO/QO₂·⁻ ratios at SOD concentrations of 0.1-100 μM. The absence of SOD may not mitigate the extent of peroxynitrite-mediated toxicity, as we predicted an insignificant increase in peroxynitrite levels beyond QO₂·⁻/QNO and QNO/QO₂·⁻ ratios of 1. The results support the experimental observations of biological systems and show that peroxynitrite formation increases with increase in either NO or O₂·⁻ production, and excess NO production from iNOS or from NO donors during oxidative stress conditions does not reduce the extent of peroxynitrite mediated toxicity.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
5
|
Kar S, Kavdia M. Local oxidative and nitrosative stress increases in the microcirculation during leukocytes-endothelial cell interactions. PLoS One 2012; 7:e38912. [PMID: 22719984 PMCID: PMC3375306 DOI: 10.1371/journal.pone.0038912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/15/2012] [Indexed: 11/18/2022] Open
Abstract
Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O2•−) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O2•− and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O2•− and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O2•− and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ∼0.6 fold, O2•− increased ∼27 fold and peroxynitrite increased ∼30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O2•− and peroxynitrite concentration in the lumen. The increased O2•− and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O2•− in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events.
Collapse
Affiliation(s)
- Saptarshi Kar
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of America.
| | | |
Collapse
|
6
|
Juchem G, Weiss DR, Knott M, Senftl A, Förch S, Fischlein T, Kreuzer E, Reichart B, Laufer S, Nees S. Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol 2012; 302:H567-81. [DOI: 10.1152/ajpheart.00360.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that postcapillary venules play a central role in the control of the tightness of the coronary system as a whole, particularly under inflammatory conditions. Sandwich cultures of endothelial cells and pericytes of precapillary arteriolar or postcapillary venular origin from human myocardium as models of the respective vascular walls (sandwich cultures of precapillary arteriolar or postcapillary venular origin) were exposed to thrombin and components of the acutely activatable inflammatory system, and their hydraulic conductivity ( LP) was registered. LP of SC-PAO remained low under all conditions (3.24 ± 0.52·10−8cm·s−1·cmH2O−1). In contrast, in the venular wall model, PGE2, platelet-activating factor (PAF), leukotriene B4 (LTB4), IL-6, and IL-8 induced a prompt, concentration-dependent, up to 10-fold increase in LP with synergistic support when combined. PAF and LTB4 released by metabolically cooperating platelets, and polymorphonuclear leucocytes (PMNs) caused selectively venular endothelial cells to contract and to open their clefts widely. This breakdown of the barrier function was preventable and even reversible within 6–8 h by the presence of 50 μM quercetin glucuronide (QG). LTB4 synthesis was facilitated by biochemical involvement of erythrocytes. Platelets segregated in the arterioles and PMNs in the venules of blood-perfused human myocardium (histological studies on donor hearts refused for heart transplantation). Extrapolating these findings to the coronary microcirculation in vivo would imply that the latter's complex functionality after accumulation of blood borne inflammatory mediators can change rapidly due to selective breakdown of the postcapillary venular barrier. The resulting inflammatory edema and venulo-thrombosis will severely impair myocardial performance. The protection afforded by QG could be of particular relevance in the context of cardiosurgical intervention.
Collapse
Affiliation(s)
- Gerd Juchem
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Dominik R. Weiss
- Department of Transfusion Medicine and Hemostaseology, University of Erlangen-Nuremberg (Friedrich Alexander University), Erlangen
| | - Maria Knott
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Anton Senftl
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Stefan Förch
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| | - Theodor Fischlein
- Department of Cardiac Surgery, Hospital Nuremberg South, Nuremberg; and
| | - Eckart Kreuzer
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Bruno Reichart
- Department of Cardiac Surgery, University of Munich (Ludwig Maximilians University), Munich
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tuebingen (Eberhard Karls University), Munich, Germany
| | - Stephan Nees
- Department of Physiology, University of Munich (Ludwig Maximilians University), Munich
| |
Collapse
|
7
|
Li RC, Haribabu B, Mathis SP, Kim J, Gozal D. Leukotriene B4 receptor-1 mediates intermittent hypoxia-induced atherogenesis. Am J Respir Crit Care Med 2011; 184:124-31. [PMID: 21493735 DOI: 10.1164/rccm.201012-2039oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE Obstructive sleep apnea, which is characterized by intermittent hypoxia (IH) during sleep, has emerged as an independent risk factor for cardiovascular disease, including atherosclerosis. Leukotriene B4 (LTB4) production is increased in patients with obstructive sleep apnea and negatively correlates to hypoxic levels during sleep, with continuous positive airway pressure therapy decreasing LTB4 production. OBJECTIVES Determine the potential role of LTB4 in IH-induced atherosclerosis in a monocyte cellular model and a murine model. METHODS THP-1 cells were exposed to IH for 3, 6, 24, and 48 hours. Macrophage transformation and foam cell formation were assessed after IH exposures. Apolipopotein E (ApoE)(-/-) or BLT1(-/-)/ApoE(-/-) mice were fed an atherogenic diet and exposed to IH (alternating 21% and 5.7% O(2) from 7 am to 7 PM each day) for 10 weeks. Atherosclerotic lesion formation in en face aorta was examined by oil red O staining. MEASUREMENTS AND MAIN RESULTS IH increased production of LTB4 and the expression of 5-lipoxygenase and leukotriene A4 hydrolase, the key enzymes for producing LTB4. IH was associated with transformation of monocytes to activated macrophages, as evidenced by increased expression of CD14 and CD68. In addition, IH exposures promoted increased cellular cholesterol accumulation and foam cell formation. The LTB4 receptor 1 (BLT1) antagonist U-75302 markedly attenuated IH-induced changes. Furthermore, IH promoted atherosclerotic lesion formation in ApoE(-/-) mice. IH-induced lesion formation was markedly attenuated in BLT1(-/-)/ApoE(-/-) mice. CONCLUSIONS BLT1-dependent pathways underlie IH-induced atherogenesis, and may become a potential novel therapeutic target for obstructive sleep apnea-associated cardiovascular disease.
Collapse
Affiliation(s)
- Richard C Li
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
8
|
Gardiner BS, Smith DW, Coote M, Crowston JG. Computational modeling of fluid flow and intra-ocular pressure following glaucoma surgery. PLoS One 2010; 5. [PMID: 20957178 PMCID: PMC2949396 DOI: 10.1371/journal.pone.0013178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/12/2010] [Indexed: 01/23/2023] Open
Abstract
Background Glaucoma surgery is the most effective means for lowering intraocular pressure by providing a new route for fluid to exit the eye. This new pathway is through the sclera of the eye into sub-conjunctival tissue, where a fluid filled bleb typically forms under the conjunctiva. The long-term success of the procedure relies on the capacity of the sub-conjunctival tissue to absorb the excess fluid presented to it, without generating excessive scar tissue during tissue remodeling that will shut-down fluid flow. The role of inflammatory factors that promote scarring are well researched yet little is known regarding the impact of physical forces on the healing response. Methodology To help elucidate the interplay of physical factors controlling the distribution and absorption of aqueous humor in sub-conjunctival tissue, and tissue remodeling, we have developed a computational model of fluid production in the eye and removal via the trabecular/uveoscleral pathways and the surgical pathway. This surgical pathway is then linked to a porous media computational model of a fluid bleb positioned within the sub-conjunctival tissue. The computational analysis is centered on typical functioning bleb geometry found in a human eye following glaucoma surgery. A parametric study is conducted of changes in fluid absorption by the sub-conjunctival blood vessels, changes in hydraulic conductivity due to scarring, and changes in bleb size and shape, and eye outflow facility. Conclusions This study is motivated by the fact that some blebs are known to have ‘successful’ characteristics that are generally described by clinicians as being low, diffuse and large without the formation of a distinct sub-conjunctival encapsulation. The model predictions are shown to accord with clinical observations in a number of key ways, specifically the variation of intra-ocular pressure with bleb size and shape and the correspondence between sites of predicted maximum interstitial fluid pressure and key features observed in blebs, which gives validity to the model described here. This model should contribute to a more complete explanation of the physical processes behind successful bleb characteristics and provide a new basis for clinically grading blebs.
Collapse
Affiliation(s)
- Bruce S Gardiner
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Western Australia, Australia.
| | | | | | | |
Collapse
|
9
|
Safvati A, Cole N, Hume E, Willcox M. Mediators of neovascularization and the hypoxic cornea. Curr Eye Res 2009; 34:501-14. [PMID: 19899985 DOI: 10.1080/02713680902919557] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The maintenance of corneal avascularity is essential to vision. The mechanisms by which the cornea becomes vascularized in response to inflammation or hypoxic stress are beginning to be elucidated. A detailed understanding of the molecular responses of the cornea to hypoxia is critical for prevention and development of novel treatments for neovascularization in a range of disease states. Here, we have examined the current literature on the major mediators of angiogenesis, which have previously been reported during hypoxia in the cornea in order to better understand the mechanisms by which corneal angiogenesis occurs in circumstances where the available oxygen is reduced. The normal cornea produces angiogenic factors that are regulated by the production of anti-angiogenic molecules. The various cell types of the cornea respond differentially to inflammatory and hypoxic stimuli. An understanding of the factors that may predispose patients to development of corneal blood vessels may provide an opportunity to develop novel prophylactic strategies. The difficulties with extrapolating data from other cell types and animal models to the cornea are also examined.
Collapse
Affiliation(s)
- Aidin Safvati
- Vision Cooperative Research Centre and School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
10
|
Alcock J, Brainard AH. Hemostatic containment – An evolutionary hypothesis of injury by innate immune cells. Med Hypotheses 2008; 71:960-8. [DOI: 10.1016/j.mehy.2008.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 12/13/2022]
|
11
|
|
12
|
Moos MPW, Mewburn JD, Kan FWK, Ishii S, Abe M, Sakimura K, Noguchi K, Shimizu T, Funk CD. Cysteinyl leukotriene 2 receptor-mediated vascular permeability via transendothelial vesicle transport. FASEB J 2008; 22:4352-62. [PMID: 18779380 DOI: 10.1096/fj.08-113274] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cysteinyl leukotrienes (CysLTs) are potent mediators of inflammation synthesized by the concerted actions of 5-lipoxygenase (5-LO), 5-LO-activating protein (FLAP), leukotriene C(4) synthase, and additional downstream enzymes, starting with arachidonic acid substrate. CysLTs produced by macrophages, eosinophils, mast cells, and other inflammatory cells activate 3 different high-affinity CysLT receptors: CysLT(1)R, CysLT(2)R, and GPR 17. We sought to investigate vascular sites of CysLT(2)R expression and the role and mechanism of this receptor in mediating vascular permeability events. Vascular expression of CysLT(2)R was investigated by reporter gene expression in a novel CysLT(2)R deficient-LacZ mouse model. CysLT(2)R was expressed in small, but not large, vessels in mouse brain, bladder, skin, and cremaster muscle. Intravital, in addition to confocal and electron, microscopy investigations using FITC-labeled albumin in cremaster postcapillary venule preparations indicated rapid CysLT-mediated permeability, which was blocked by application of BAY-u9773, a dual CysLT(1)R/CysLT(2)R antagonist or by CysLT(2)R deficiency. Endothelial human CysLT(2)R overexpression in mice exacerbated vascular leakage even in the absence of exogenous ligand. The enhanced vascular permeability mediated by CysLT(2)R takes place via a transendothelial vesicle transport mechanism as opposed to a paracellular route and is controlled via Ca(2+) signaling. Our results reveal that CysLT(2)R can mediate inflammatory reactions in a vascular bed-specific manner by altering transendothelial vesicle transport-based vascular permeability.
Collapse
Affiliation(s)
- Michael P W Moos
- Department of Physiology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bartolome S, Wood JG, Casillan AJ, Simpson SQ, O'Brien-Ladner AR. Activated protein C attenuates microvascular injury during systemic hypoxia. Shock 2008; 29:384-7. [PMID: 17693940 DOI: 10.1097/shk.0b013e31814544c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In response to hypoxia, an inflammatory cascade is initiated and microvascular injury ensues. Specifically, within 10 min, leukocyte adherence to the endothelium begins, and leukocyte emigration and vascular leak soon follow. Activated protein C (APC) has been reported to have both anticoagulant and anti-inflammatory properties. Activated protein C is best described in its role as a treatment for sepsis. However, it has been used, with some success, in experimental models of hypoxic injury. We hypothesized that APC would be protective against microvascular injury during systemic hypoxia. Randomized prospective animal study. Adult male Sprague-Dawley rats. To characterize the microvascular response to APC exposure during hypoxia, four rat groups were used: saline control, APC infusion alone (100 mg/kg bolus), hypoxia alone (10% O2), and simultaneous hypoxia + APC infusion. Measurements of leukocyte adherence (no. per 100-microm venule), leukocyte emigration (no. per 4,000 microm(2)), and venular leak by fluorescein isothiacyanate-labeled albumin (Fo/Fi) were performed during intravital microscopy of the intact venular bed. Leukocyte adherence decreased from 14.5 (+/-1.2) cells/100-microm venule in hypoxic rats to 4.4 (+/-1.5) cells/100-microm venule in those treated with both hypoxic gas and APC infusion (P < 0.001). Similarly, leukocyte emigration in hypoxic rats reached 12.3 (+/- 2.2) cells/4,000-microm(2) venule, but was reduced to 3.5 (+/-0.3) cells/4,000-microm(2) venule (P <.001). Venular permeability to protein was also significantly decreased in the APC-treated group from 0.82 (+/-0.14) to 0.25 (+/-0.14) (P < 0.001). The infusion of APC attenuates the inflammatory response during systemic hypoxia at the microvascular level, as evidenced by measurements of leukocyte adherence, emigration, and venular permeability. Further investigation is needed to examine the potential role of APC in the treatment of hypoxic injury.
Collapse
Affiliation(s)
- Sonja Bartolome
- Department of Pulmonary Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Gonzalez NC, Allen J, Blanco VG, Schmidt EJ, van Rooijen N, Wood JG. Alveolar macrophages are necessary for the systemic inflammation of acute alveolar hypoxia. J Appl Physiol (1985) 2007; 103:1386-94. [PMID: 17656628 DOI: 10.1152/japplphysiol.00312.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alveolar hypoxia (Fi(O(2)) 0.10) rapidly produces inflammation in the microcirculation of skeletal muscle, brain, and mesentery of rats. Dissociation between tissue Po(2) values and inflammation, plus the observation that plasma from hypoxic rats activates mast cells and elicits inflammation in normoxic tissues, suggest that the response to hypoxia is initiated when mast cells are activated by an agent released from a distant site and carried by the circulation. These experiments tested the hypothesis that this agent originates in alveolar macrophages (AM). Male rats were depleted of AM by tracheal instillation of clodronate-containing liposomes. Four days after treatment, AM recovered by bronchoalveolar lavage were <10% of control. Control rats received buffer-containing liposomes. As expected, alveolar hypoxia (Fi(O(2)) 0.10) in control rats increased leukocyte-endothelial adherence, produced degranulation of perivascular mast cells, and increased fluorescent albumin extravasation in the cremaster microcirculation. None of these effects was seen when AM-depleted rats were exposed to hypoxia. Plasma obtained from control rats after 5 min of breathing 10% O(2) elicited inflammation when applied to normoxic cremasters. In contrast, normoxic cremasters did not develop inflammation after application of plasma from hypoxic AM-depleted rats. Supernatant from AM cultured in 10% O(2) produced increased leukocyte-endothelial adherence, vasoconstriction, and albumin extravasation when applied to normoxic cremasters. Normoxic AM supernatant did not produce any of these responses. The effects of hypoxic supernatant were attenuated by pretreatment of the cremaster with the mast cell stabilizer cromolyn. These data support the hypothesis that AM are the source of the agent that initiates hypoxia-induced systemic inflammation by activating mast cells.
Collapse
MESH Headings
- Acute Disease
- Animals
- Brain/blood supply
- Cell Adhesion/physiology
- Cells, Cultured
- Clodronic Acid/pharmacology
- Disease Models, Animal
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiology
- Hypoxia/complications
- Hypoxia/metabolism
- Hypoxia/pathology
- Leukocytes/pathology
- Leukocytes/physiology
- Lung Diseases, Interstitial/pathology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/pathology
- Macrophages, Alveolar/physiology
- Male
- Mast Cells/pathology
- Mesentery/blood supply
- Microcirculation/drug effects
- Microcirculation/pathology
- Muscle, Skeletal/blood supply
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/pathology
- Rats
- Rats, Sprague-Dawley
- Vasculitis/etiology
- Vasculitis/metabolism
- Vasculitis/pathology
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Gonzalez NC, Allen J, Schmidt EJ, Casillan AJ, Orth T, Wood JG. Role of the renin-angiotensin system in the systemic microvascular inflammation of alveolar hypoxia. Am J Physiol Heart Circ Physiol 2007; 292:H2285-94. [PMID: 17208999 DOI: 10.1152/ajpheart.00981.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alveolar hypoxia (AH) induces widespread systemic inflammation. Previous studies have shown dissociation between microvascular Po2 and inflammation. Furthermore, plasma from AH rats (PAHR) induces mast cell (MC) activation, inflammation, and vasoconstriction in normoxic cremasters, while plasma from normoxic rats does not produce these responses. These results suggest that inflammation of AH is triggered by a blood-carried agent. This study investigated the involvement of the renin-angiotensin system (RAS) in the inflammation of AH. Both an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin II (ANG II) receptor blocker (ANG II RB) inhibited the leukocyte-endothelial adherence produced by AH, as well as the inflammation produced by PAHR in normoxic rat cremasters. MC stabilization with cromolyn blocked the effects of PAHR but not those of topical ANG II on normoxic cremasters, suggesting ANG II generation via MC activation by PAHR. This was supported by the observation that ACE inhibition and ANG II RB blocked the leukocyte-endothelial adherence produced by the MC secretagogue compound 48/80. These results suggest that the intermediary agent contained in PAHR activates MC and stimulates the RAS, leading to inflammation, and imply an RAS role in AH-induced inflammation.
Collapse
Affiliation(s)
- Norberto C Gonzalez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Ozturk H, Ozturk H, Yagmur Y. PAF antagonist BN-52021 reduces intercellular adhesion molecule-1 expression and oxidative stress in rats with reperfusion damage due to unilateral testicular torsion. Pediatr Surg Int 2006; 22:191-6. [PMID: 16369775 DOI: 10.1007/s00383-005-1621-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2005] [Indexed: 11/24/2022]
Abstract
The aim of this study was to determine the effects of specific platelet-activating factor (PAF) antagonist BN-52021 on intercellular adhesion molecule-1 (ICAM) expression and oxidative stress in rats with reperfusion damage due to unilateral testicular torsion. Thirty male Sprague-Dawley rats were separated into three groups, each containing ten rats. A sham operation was performed in group 1 (control). In group 2 [ischemia-reperfusion (I-R)/untreated], 1-h detorsion of the testis was performed after 6 h of unilateral testicular torsion. In group 3 (I-R/BN-52021), after performing the same surgical procedures as in groups II, BN-52021 was given intravenously at the starting time of reperfusion. In all experimental rats, ipsilateral orchiectomies were performed for histological examination and measuring the tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). MDA values and the testicular injury score decreased and SOD, CAT and GSH-Px values increased in the I-R/BN-52021 treated group compared to in the I-R/untreated group. Most of the specimens in the I-R/BN-52021 treated group showed grade-I testicular injury. However, the injuries in the I-R/untreated rats varied between grades III and IV. An ICAM-1 expression was intensive in the interstitial spaces and basement membrane of the tubuli seminiferi, of testicular tissue in the I-R/untreated group. However, an ICAM-1 expression was mild in the I-R/BN-52021 group. BN-52021 may play an important role in the immunohistochemical expression of adhesion molecule ICAM-1 and may reduce oxidative stress in rats with reperfusion damage due to unilateral testicular torsion.
Collapse
Affiliation(s)
- Hulya Ozturk
- Diyarbakir Children Hospital, Diyarbakir, Turkey.
| | | | | |
Collapse
|
18
|
Araneda OF, García C, Lagos N, Quiroga G, Cajigal J, Salazar MP, Behn C. Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. Eur J Appl Physiol 2005; 95:383-90. [PMID: 16195882 DOI: 10.1007/s00421-005-0047-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 11/30/2022]
Abstract
Lung oxidative stress (OS) was explored in resting and in exercising subjects exposed to moderate and high altitude. Exhaled breath condensate (EBC) was collected under field conditions in male high-competition mountain bikers performing a maximal cycloergometric exercise at 670 m and at 2,160 m, as well as, in male soldiers climbing up to 6,125 m in Northern Chile. Malondialdehyde concentration [MDA] was measured by high-performance liquid chromatography in EBC and in serum samples. Hydrogen peroxide concentration [H(2)O(2)] was analysed in EBC according to the spectrophotometric FOX(2) assay. [MDA] in EBC of bikers did not change while exercising at 670 m, but increased from 30.0+/-8.0 to 50.0+/-11.0 nmol l(-1) (P<0.05) at 2,160 m. Concomitantly, [MDA] in serum and [H(2)O(2)] in EBC remained constant. On the other hand, in mountaineering soldiers, [H(2)O(2)] in EBC under resting conditions increased from 0.30+/-0.12 mumol l(-1) at 670 m to 1.14+/-0.29 mumol l(-1) immediately on return from the mountain. Three days later, [H(2)O(2)] in EBC (0.93 +/-0.23 mumol l(-1)) continued to be elevated (P<0.05). [MDA] in EBC increased from 71+/-16 nmol l(-1) at 670 m to 128+/-26 nmol l(-1) at 3,000 m (P<0.05). Changes of [H(2)O(2)] in EBC while ascending from 670 m up to 3,000 m inversely correlated with concomitant variations in HbO2 saturation (r=-0.48, P<0.05). AMS score evaluated at 5,000 m directly correlated with changes of [MDA] in EBC occurring while the subjects moved from 670 to 3,000 m (r=0.51, P<0.05). Lung OS may constitute a pathogenic factor in AMS.
Collapse
Affiliation(s)
- O F Araneda
- Laboratorio de Ambientes Extremos, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
19
|
Orth T, Allen JA, Wood JG, Gonzalez NC. Plasma from conscious hypoxic rats stimulates leukocyte-endothelial interactions in normoxic cremaster venules. J Appl Physiol (1985) 2005; 99:290-7. [PMID: 15746296 DOI: 10.1152/japplphysiol.00932.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic hypoxia results in rapid increases in leukocyte-endothelial adherence (LEA) and emigration, vascular permeability, and mast cell activation in several microcirculations. Observations in cremaster muscle suggest that this response is initiated by a mediator released from a distant site (Dix R, Orth T, Allen JA, Wood JG, and Gonzalez NC. J Appl Physiol 95: 2495–2502, 2003). The present experiments in rat cremaster muscle tested the hypothesis that, if a circulating mediator triggers hypoxia-induced inflammation, then plasma from hypoxic rats should elicit LEA in normoxic cremaster venules. Plasma from conscious donor rats breathing 10% O2-90% N2 for 5 min was applied topically to the cremaster of normoxic anesthetized rats. In this and all other groups described below, the donor plasma had attained normoxic Po2 when applied to the cremaster. LEA (leukocytes/100-μm venule) increased from 2.7 ± 0.8 to 12.3 ± 2.4, and venular shear rate and arteriolar diameter decreased to 79 ± 9% ( P < 0.05, n = 6) and 77 ± 5% of control ( P < 0.05, n = 5), respectively, 10 min after application of plasma from hypoxic donors. The decrease in venular shear rate was exclusively due to a reduction of venular blood flow, secondary to the upstream arteriolar vasoconstriction. Plasma from normoxic donors had no effects. Plasma from blood equilibrated in vitro for 5 min with 5% CO2-95% N2 did not alter LEA or shear rate of normoxic cremasters, suggesting that the putative mediator does not originate in blood cells. The effects of plasma from hypoxic rats persisted when the donors were pretreated with the mast cell stabilizer cromolyn, which prevents hypoxia-induced LEA. This suggests that the effects of hypoxic plasma are not due to inflammatory mediators released by adherent leukocytes in the donor rat. There was a positive correlation between LEA and mast cell degranulation observed histologically. These results support the idea that systemic hypoxia produces the release of a substance transported by the circulation that initiates the microvascular inflammation.
Collapse
Affiliation(s)
- Teresa Orth
- Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
20
|
Horváth B, Orsy P, Benyó Z. Endothelial NOS-mediated relaxations of isolated thoracic aorta of the C57BL/6J mouse: a methodological study. J Cardiovasc Pharmacol 2005; 45:225-31. [PMID: 15725947 DOI: 10.1097/01.fjc.0000154377.90069.b9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelium-dependent relaxations were studied in the thoracic aorta (TA) of the C57BL/6J mouse, a strain used commonly in the generation of genetically altered mice, to clarify some methodological questions. First, we have tested if transcardial perfusion with heparinized Krebs solution before the preparation of the TA may improve in vitro relaxant responses. Carbachol, thrombin, and ATP induced significantly stronger relaxations in TAs prepared from perfused animals than in controls. The effect of sodium nitroprusside (SNP), however, did not change, indicating that the improvement of the endothelium-dependent relaxations after perfusion was not caused by increased reactivity of the vascular smooth muscle to NO. Second, the potential regional differences within the TA were studied. Carbachol relaxed significantly stronger distal than proximal TA segments, whereas the effects of thrombin, ATP, and SNP showed no regional heterogeneity. Third, the relaxant effect of carbachol was partially preserved in TAs of endothelial NOS deficient (eNOS-/-) animals and remained unchanged in the presence of indomethacin, indicating the involvement of an eNOS- and cyclooxygenase-independent mechanism in the mediation of the response. Thrombin and ATP were ineffective in eNOS-/- TAs. Finally, TAs prepared from mice housed in cages equipped with running wheels did not show improved reactivity, indicating that the conventional housing conditions and the consequent sedentary lifestyle of the laboratory mouse do not diminish endothelial function in the TA.
Collapse
Affiliation(s)
- Béla Horváth
- Institute of Pharmacology, Ruprecht-Karls-University, Heidelberg, Germany
| | | | | |
Collapse
|
21
|
Belcher JD, Mahaseth H, Welch TE, Vilback AE, Sonbol KM, Kalambur VS, Bowlin PR, Bischof JC, Hebbel RP, Vercellotti GM. Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am J Physiol Heart Circ Physiol 2005; 288:H2715-25. [PMID: 15665055 DOI: 10.1152/ajpheart.00986.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of vascular endothelium plays an essential role in vasoocclusion in sickle cell disease. The anti-inflammatory agents dexamethasone and adhesion molecule-blocking antibodies were used to inhibit endothelial cell activation and hypoxia-induced vasoocclusion. Transgenic sickle mice, expressing human α-, βS-, and βS-Antilles-globins, had an activated vascular endothelium in their liver, lungs, and skin, as exhibited by increased activation of NF-κB compared with normal mice. NF-κB activation increased further in the liver and skin after sickle mice were exposed to hypoxia. Sickle mice had decreases in red blood cell (RBC) velocities and developed vasoocclusions in subcutaneous venules in response to hypoxia. Dexamethasone pretreatment prevented decreases in RBC velocities and inhibited vasoocclusions and leukocyte-endothelium interactions in venules after hypoxia. Dexamethasone treatment inhibited NF-κB, VCAM-1, and ICAM-1 expression in the liver, lungs, and skin of sickle mice after hypoxia-reoxygenation. VCAM-1 or ICAM-1 blockade with monoclonal antibodies mimicked dexamethasone by inhibiting vasoocclusion and leukocyte adhesion in sickle mice, demonstrating that endothelial cell activation and VCAM-1 and ICAM-1 expression are necessary for hypoxia-induced vasoocclusion in sickle mice. VCAM-1, ICAM-1, and vasoocclusion increased significantly 3 days after dexamethasone discontinuation, possibly explaining rebounds in vasoocclusive crises observed after withdrawal of glucocorticosteroids in sickle patients. We conclude that anti-inflammatory treatments that inhibit endothelial cell activation and adhesion molecule expression can inhibit vasoocclusion in sickle cell disease. Rebounds in vasoocclusive crises after dexamethasone withdrawal are caused by rebounds in endothelial cell activation.
Collapse
Affiliation(s)
- John D Belcher
- Division of Hematology, Oncology, and Transplantation, Dept. of Medicine, Univ. of Minnesota, MMC 480, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|