1
|
Hesse E, Ammar T, Renaud J. Glucose and glycogen affects Ca 2+ transient during fatigue to a greater extent in the least than in the most fatigue resistant mouse FDB fibers. Physiol Rep 2024; 12:e70065. [PMID: 39411805 PMCID: PMC11481000 DOI: 10.14814/phy2.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The overall objective was to determine how no extracellular glucose and/or low glycogen content affect fatigue kinetics in mouse flexor digitorum brevis (FDB) single muscle fibers. High glycogen content (Hi GLY), near normal in situ level, was obtained by incubating fibers in culture medium containing glucose and insulin while low glycogen content (Lo GLY), at about 19% of normal in situ level, was achieved by incubating fibers without glucose. Neither Lo GLY nor the absence of extracellular glucose (0GLU) affected tetanic [Ca2+]i prior to fatigue. The number of contracting unfatigued fibers versus stimulus strength relationship of Lo GLY-0GLU fibers was shifted to higher voltages compared to Hi GLY fibers exposed to 5.5 mM glucose (5GLU). The relationship for Lo GLY-0GLU fibers was shifted back toward that of Hi GLY-5GLU fibers when glucose was reintroduced, whereas the removal of glucose from Hi GLY-5GLU fibers had no effect. Fatigue was elicited with one 200 ms long tetanic contraction every s for 3 min. Both Lo GLY and 0GLU increased the rate at which intracellular tetanic concentration ([Ca2+]i) declined and unstimulated [Ca2+]i increased during fatigue in the order of the least fatigue resistant > mid fatigue resistant > the most fatigue resistant fibers.
Collapse
Affiliation(s)
- Erik Hesse
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Tarek Ammar
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Jean‐Marc Renaud
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
2
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Brownstein CG, Metra M, Sabater Pastor F, Faricier R, Millet GY. Disparate Mechanisms of Fatigability in Response to Prolonged Running versus Cycling of Matched Intensity and Duration. Med Sci Sports Exerc 2022; 54:872-882. [PMID: 35072662 DOI: 10.1249/mss.0000000000002863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Running and cycling represent two of the most common forms of endurance exercise. However, a direct comparison of the neuromuscular consequences of these two modalities after prolonged exercise has never been made. The aim of this study was to compare the alterations in neuromuscular function induced by matched-intensity and duration cycling and running exercise. METHODS During separate visits, 17 endurance-trained male participants performed 3 h of cycling and running at 105% of the gas exchange threshold. Neuromuscular assessments were taken are preexercise, midexercise, and postexercise, including knee extensor maximal voluntary contractions (MVC), voluntary activation (VA), high- and low-frequency doublets (Db100 and Db10, respectively), potentiated twitches (Qtw,pot), motor evoked potentials (MEP), and thoracic motor evoked potentials (TMEP). RESULTS After exercise, MVC was similarly reduced by ~25% after both running and cycling. However, reductions in VA were greater after running (-16% ± 10%) than cycling (-10% ± 5%; P < 0.05). Similarly, reductions in TMEP were greater after running (-78% ± 24%) than cycling (-15% ± 60%; P = 0.01). In contrast, reductions in Db100 (running vs cycling, -6% ± 21% vs -13% ± 6%) and Db10:100 (running vs cycling, -6% ± 16% vs -19% ± 13%) were greater for cycling than running (P ≤ 0.04). CONCLUSIONS Despite similar decrements in the knee extensor MVC after running and cycling, the mechanisms responsible for force loss differed. Running-based endurance exercise is associated with greater impairments in nervous system function, particularly at the spinal level, whereas cycling-based exercise elicits greater impairments in contractile function. Differences in the mechanical and metabolic demands imposed on the quadriceps could explain the disparate mechanisms of neuromuscular impairment after these two exercise modalities.
Collapse
Affiliation(s)
- Callum G Brownstein
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | - Mélanie Metra
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | - Frederic Sabater Pastor
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | - Robin Faricier
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, F-42023, Saint-Etienne, FRANCE
| | | |
Collapse
|
4
|
Jensen R, Ørtenblad N, Stausholm MLH, Skjaerbaek MC, Larsen DN, Hansen M, Holmberg HC, Plomgaard P, Nielsen J. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol 2020; 598:4271-4292. [PMID: 32686845 DOI: 10.1113/jp280247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS When muscle biopsies first began to be used routinely in research on exercise physiology five decades ago, it soon become clear that the muscle content of glycogen is an important determinant of exercise performance. Glycogen particles are stored in distinct pools within the muscles, but the role of each pool during exercise and how this is affected by diet is unknown. Here, the effects of diet and exercise on these pools, as well as their relation to endurance during prolonged cycling were examined. We demonstrate here that an improved endurance capacity with high carbohydrate loading is associated with a temporal shift in the utilisation of the distinct stores of glycogen pools and is closely linked to the content of the glycogen pool closest to actin and myosin (intramyofibrillar glycogen). These findings highlight the functional importance of distinguishing between different subcellular microcompartments of glycogen in individual muscle fibres. ABSTRACT In muscle cells, glycogen is stored in three distinct subcellular pools: between or within myofibrils (inter- and intramyofibrillar glycogen, respectively) or beneath the sarcolemma (subsarcolemmal glycogen) and these pools may well have different functions. Here, we investigated the effect of diet and exercise on the content of these distinct pools and their relation to endurance capacity in type 1 and 2 muscle fibres. Following consumption of three different diets (normal, mixed diet = MIX, high in carbohydrate = HIGH, or low in carbohydrate = LOW) for 72 h, 11 men cycled at 75% of V ̇ O 2 max until exhaustion. The volumetric content of the glycogen pools in muscle biopsies obtained before, during, and after exercise were quantified by transmission electron micrographs. The mean (SD) time to exhaustion was 150 (30), 112 (22), and 69 (18) minutes in the HIGH, MIX and LOW trials, respectively (P < 0.001). As shown by multiple regression analyses, the intramyofibrillar glycogen content in type 1 fibres, particularly after 60 min of exercise, correlated most strongly with time to exhaustion. In the HIGH trial, intramyofibrillar glycogen was spared during the initial 60 min of exercise, which was associated with levels and utilisation of subsarcolemmal glycogen above normal. In all trials, utilisation of subsarcolemmal and intramyofibrillar glycogen was more pronounced than that of intermyofibrillar glycogen in relative terms. In conclusion, the muscle pool of intramyofibrillar glycogen appears to be the most important for endurance capacity in humans. In addition, a local abundance of subsarcolemmal glycogen reduces the utilisation of intramyofibrillar glycogen during exercise.
Collapse
Affiliation(s)
- Rasmus Jensen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | | | - Mette Carina Skjaerbaek
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Daniel Nykvist Larsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| | - Mette Hansen
- Department of Public Health, Aarhus University, Denmark
| | - Hans-Christer Holmberg
- Department of Health Sciences, Mid Sweden University, Sweden.,Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
| | - Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Denmark
| |
Collapse
|
5
|
Effects of reduced muscle glycogen on excitation-contraction coupling in rat fast-twitch muscle: a glycogen removal study. J Muscle Res Cell Motil 2019; 40:353-364. [PMID: 31236763 DOI: 10.1007/s10974-019-09524-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
The aim of this study was to investigate the effects of an enzymatic removal of glycogen on excitation-contraction coupling in mechanically skinned fibres of rat fast-twitch muscles, with a focus on the changes in the function of Na+-K+-pump and ryanodine receptor (RyR). Glycogen present in the skinned fibres and binding to microsomes was removed using glucoamylase (GA). Exposure of whole muscle to 20 U mL-1 GA for 6 min resulted in a 72% decrease in the glycogen content. Six minutes of GA treatment led to an 18 and a 22% reduction in depolarization- and action potential-induced forces in the skinned fibres, respectively. There was a minor but statistically significant increase in the repriming period, most likely because of an impairment of the Na+-K+-pump function. GA treatment exerted no effect on the maximum Ca2+ release rate from the RyR in the microsomes and the myofibrillar Ca2+ sensitivity in the skinned fibres. These results indicate that reduced glycogen per se can decrease muscle performance due to the impairment of SR Ca2+ release and suggest that although Na+-K+-pump function is adversely affected by reduced glycogen, the extent of the impairment is not sufficient to reduce Ca2+ release from the sarcoplasmic reticulum. This study provides direct evidence that glycogen above a certain amount is required for the preservation of the functional events preceding Ca2+ release from the sarcoplasmic reticulum.
Collapse
|
6
|
Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg H, Nielsen J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol 2017; 595:2809-2821. [PMID: 27689320 PMCID: PMC5407966 DOI: 10.1113/jp273109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/26/2016] [Indexed: 01/29/2023] Open
Abstract
KEY POINTS Glycogen is stored in local spatially distinct compartments within skeletal muscle fibres and is the main energy source during supramaximal exercise. Using quantitative electron microscopy, we show that supramaximal exercise induces a differential depletion of glycogen from these compartments and also demonstrate how this varies with fibre types. Repeated exercise alters this compartmentalized glycogen depletion. The results obtained in the present study help us understand the muscle metabolic dynamics of whole body repeated supramaximal exercise, and suggest that the muscle has a compartmentalized local adaptation to repeated exercise, which affects glycogen depletion. ABSTRACT Skeletal muscle glycogen is heterogeneously distributed in three separated compartments (intramyofibrillar, intermyofibrillar and subsarcolemmal). Although only constituting 3-13% of the total glycogen volume, the availability of intramyofibrillar glycogen is of particular importance to muscle function. The present study aimed to investigate the depletion of these three subcellular glycogen compartments during repeated supramaximal exercise in elite athletes. Ten elite cross-country skiers (aged 25 ± 4 years, V̇O2 max : 65 ± 4 ml kg-1 min-1 ; mean ± SD) performed four ∼4 min supramaximal sprint time trials (STT 1-4) with 45 min of recovery. The subcellular glycogen volumes in musculus triceps brachii were quantified from electron microscopy images before and after both STT 1 and 4. During STT 1, the depletion of intramyofibrillar glycogen was higher in type 1 fibres [-52%; (-89:-15%)] than type 2 fibres [-15% (-52:22%)] (P = 0.02), whereas the depletion of intermyofibrillar glycogen [main effect: -19% (-33:0%), P = 0.006] and subsarcolemmal glycogen [main effect: -35% (-66:0%), P = 0.03] was similar between fibre types. By contrast, only intermyofibrillar glycogen volume was significantly reduced during STT 4, in both fibre types [main effect: -31% (-50:-11%), P = 0.002]. Furthermore, for each of the subcellular compartments, the depletion of glycogen during STT 1 was associated with the volumes of glycogen before STT 1. In conclusion, the depletion of spatially distinct glycogen compartments differs during supramaximal exercise. Furthermore, the depletion changes with repeated exercise and is fibre type-dependent.
Collapse
Affiliation(s)
- Kasper D. Gejl
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Erik Andersson
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
| | - Peter Plomgaard
- The Centre of Inflammation and MetabolismDepartment of Infectious Diseases and CMRCRigshospitaletCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
| | - Hans‐Christer Holmberg
- Swedish Winter Sports Research CentreDepartment of Health SciencesMid Sweden UniversityÖstersundSweden
- Swedish Olympic CommitteeStockholmSweden
| | - Joachim Nielsen
- Department of Sports Science and Clinical BiomechanicsSDU Muscle Research ClusterUniversity of Southern DenmarkOdenseDenmark
- Department of PathologySDU Muscle Research ClusterOdense University HospitalOdense
| |
Collapse
|
7
|
Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh STJ, Thompson C, Kelly J, Sumners P, Mileva KN, Bowtell JL, Vanhatalo A. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol (1985) 2016; 122:446-459. [PMID: 28008101 PMCID: PMC5429469 DOI: 10.1152/japplphysiol.00942.2016] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 01/15/2023] Open
Abstract
The gas exchange threshold and the critical power demarcate discrete exercise intensity domains. For the first time, we show that the limit of tolerance during whole body exercise within these domains is characterized by distinct metabolic and neuromuscular responses. Fatigue development during exercise greater than critical power is associated with the attainment of consistent “limiting” values of muscle metabolites, whereas substrate availability and limitations to muscle activation may constrain performance at lower intensities. Lactate or gas exchange threshold (GET) and critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven men performed a ramp incremental exercise test, 4–5 severe-intensity (SEV; >CP) constant-work-rate (CWR) tests until Tlim, a heavy-intensity (HVY; <CP but >GET) CWR test until Tlim, and a moderate-intensity (MOD; <GET) CWR test until Tlim. Muscle biopsies revealed that a similar (P > 0.05) muscle metabolic milieu (i.e., low pH and [PCr] and high [lactate]) was attained at Tlim (approximately 2–14 min) for all SEV exercise bouts. The muscle metabolic perturbation was greater at Tlim following SEV compared with HVY, and also following SEV and HVY compared with MOD (all P < 0.05). The normalized M-wave amplitude for the vastus lateralis (VL) muscle decreased to a similar extent following SEV (−38 ± 15%), HVY (−68 ± 24%), and MOD (−53 ± 29%), (P > 0.05). Neural drive to the VL increased during SEV (4 ± 4%; P < 0.05) but did not change during HVY or MOD (P > 0.05). During SEV and HVY, but not MOD, the rates of change in M-wave amplitude and neural drive were correlated with changes in muscle metabolic ([PCr], [lactate]) and blood ionic/acid-base status ([lactate], [K+]) (P < 0.05). The results of this study indicate that the metabolic and neuromuscular determinants of fatigue development differ according to the intensity domain in which the exercise is performed. NEW & NOTEWORTHY The gas exchange threshold and the critical power demarcate discrete exercise intensity domains. For the first time, we show that the limit of tolerance during whole-body exercise within these domains is characterized by distinct metabolic and neuromuscular responses. Fatigue development during exercise greater than critical power is associated with the attainment of consistent “limiting” values of muscle metabolites, whereas substrate availability and limitations to muscle activation may constrain performance at lower intensities.
Collapse
Affiliation(s)
- Matthew I Black
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom; and
| | - Andrew M Jones
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Jamie R Blackwell
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Stephen J Bailey
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough University, United Kingdom; and
| | - Lee J Wylie
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Sinead T J McDonagh
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Christopher Thompson
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - James Kelly
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Paul Sumners
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Katya N Mileva
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Joanna L Bowtell
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Anni Vanhatalo
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom;
| |
Collapse
|
8
|
Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ørtenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc 2014; 46:496-505. [PMID: 24091991 DOI: 10.1249/mss.0000000000000132] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of the present study was to investigate the influence of muscle glycogen content on sarcoplasmic reticulum (SR) function and peak power output (Wpeak) in elite endurance athletes. METHODS Fourteen highly trained male triathletes (VO2max = 66.5 ± 1.3 mL O2·kg·min), performed 4 h of glycogen-depleting cycling exercise (HRmean = 73% ± 1% of maximum). During the first 4 h of recovery, athletes received either water (H2O) or carbohydrate (CHO), separating alterations in muscle glycogen content from acute changes affecting SR function and performance. Thereafter, all subjects received CHO-enriched food for the remaining 20-h recovery period. RESULTS Immediately after exercise, muscle glycogen content and SR Ca release rate was reduced to 32% ± 4% (225 ± 28 mmol·kg dw) and 86% ± 2% of initial levels, respectively (P < 0.01). Glycogen markedly recovered after 4 h of recovery with CHO (61% ± 2% of preexercise) and SR Ca release rate returned to preexercise level. However, in the absence of CHO during the first 4 h of recovery, glycogen and SR Ca release rate remained depressed, with the normalization of both parameters at the end of the 24 h of recovery after receiving a CHO-enriched diet. Linear regression demonstrated a significant correlation between SR Ca release rate and muscle glycogen content (P < 0.01, r = 0.30). The 4 h of cycling exercise reduced Wpeak by 5.5%-8.9% at different cadences (P < 0.05), and Wpeak was normalized after 4 h of recovery with CHO, whereas Wpeak remained depressed (P < 0.05) after water provision. Wpeak was fully recovered after 24 h in both the H2O and the CHO group. CONCLUSION In conclusion, the present results suggest that low muscle glycogen depresses muscle SR Ca release rate, which may contribute to fatigue and delayed recovery of Wpeak 4 h postexercise.
Collapse
Affiliation(s)
- Kasper Degn Gejl
- 1Institute of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, DENMARK; 2Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, SWEDEN; and 3The Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, SWEDEN
| | | | | | | | | | | |
Collapse
|
9
|
Takahashi Y, Matsunaga Y, Tamura Y, Urushibata E, Terada S, Hatta H. Post-exercise taurine administration enhances glycogen repletion in tibialis anterior muscle. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2014. [DOI: 10.7600/jpfsm.3.531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Abstract
Studies performed at the beginning of the last century revealed the importance of carbohydrate as a fuel during exercise, and the importance of muscle glycogen on performance has subsequently been confirmed in numerous studies. However, the link between glycogen depletion and impaired muscle function during fatigue is not well understood and a direct cause-and-effect relationship between glycogen and muscle function remains to be established. The use of electron microscopy has revealed that glycogen is not homogeneously distributed in skeletal muscle fibres, but rather localized in distinct pools. Furthermore, each glycogen granule has its own metabolic machinery with glycolytic enzymes and regulating proteins. One pool of such glycogenolytic complexes is localized within the myofibrils in close contact with key proteins involved in the excitation-contraction coupling and Ca2+ release from the sarcoplasmic reticulum (SR). We and others have provided experimental evidence in favour of a direct role of decreased glycogen, localized within the myofibrils, for the reduction in SR Ca2+ release during fatigue. This is consistent with compartmentalized energy turnover and distinctly localized glycogen pools being of key importance for SR Ca2+ release and thereby affecting muscle contractility and fatigability.
Collapse
Affiliation(s)
- Niels Ørtenblad
- N. Ørtenblad: Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
11
|
Green HJ, Burnett M, Carter S, Jacobs I, Ranney D, Smith I, Tupling S. Role of exercise duration on metabolic adaptations in working muscle to short-term moderate-to-heavy aerobic-based cycle training. Eur J Appl Physiol 2013; 113:1965-78. [PMID: 23543067 DOI: 10.1007/s00421-013-2621-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/27/2013] [Indexed: 12/29/2022]
Abstract
This study aimed at investigating the relative roles of the duration versus intensity of exercise on the metabolic adaptations in vastus lateralis to short-term (10 day) aerobic-based cycle training. Healthy males with a peak aerobic power (VO2 peak) of 46.0 ± 2.0 ml kg(-1) min(-1) were assigned to either a 30-min (n = 7) or a 60-min (n = 8) duration performed at two different intensities (with order randomly assigned), namely moderate (M) and heavy (H), corresponding to 70 and 86 % VO2 peak, respectively. No change (P > 0.05) in VO2 peak was observed regardless of the training program. Based on the metabolic responses to prolonged exercise (60 % VO2 peak), both M and H and 30 and 60 min protocols displayed less of a decrease (P < 0.05) in phosphocreatine (PCr) and glycogen (Glyc) and less of an increase (P < 0.05) in free adenosine diphosphate (ADPf), free adenosine monophosphate (AMPf), inosine monophosphate (IMP) and lactate (La). Training for 60 min compared with 30 min resulted in a greater protection (P < 0.05) of ADPf, AMPf, PCr and Glyc during exercise, effects that were not displayed between M and H. The reduction in both VO2 and RER (P < 0.05) observed during submaximal exercise did not depend on training program specifics. These findings indicate that in conjunction with our earlier study (Green et al., Eur J Appl Physiol, 2012b), a threshold exists for duration rather than intensity of aerobic exercise to induce a greater training impact in reducing metabolic strain.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON , N2L3G1, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Green HJ, Burnett M, Jacobs I, Ranney D, Smith I, Tupling S. Adaptations in muscle metabolic regulation require only a small dose of aerobic-based exercise. Eur J Appl Physiol 2012; 113:313-24. [PMID: 22706580 DOI: 10.1007/s00421-012-2434-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/25/2012] [Indexed: 01/29/2023]
Abstract
This study investigated the hypothesis that the duration of aerobic-based cycle exercise would affect the adaptations in substrate and metabolic regulation that occur in vastus lateralis in response to a short-term (10 day) training program. Healthy active but untrained males (n = 7) with a peak aerobic power ([Formula: see text]) of 44.4 ± 1.4 ml kg(-1) min(-1) participated in two different training programs with order randomly assigned (separated by ≥2 weeks). The training programs included exercising at a single intensity designated as light (L) corresponding to 60 % [Formula: see text], for either 30 or 60 min. In response to a standardized task (60 % [Formula: see text]), administered prior to and following each training program, L attenuated the decrease (P < 0.05) in phosphocreatine and the increase (P < 0.05) in free adenosine diphosphate and free adenosine monophosphate but not lactate. These effects were not altered by daily training duration. In the case of muscle glycogen, training for 60 versus 30 min exaggerated the increase (P < 0.05) that occurred, an effect that extended to both rest and exercise concentrations. No changes were observed in [Formula: see text] measured during progressive exercise to fatigue or in [Formula: see text] and RER during submaximal exercise with either training duration. These findings indicate that reductions in metabolic strain, as indicated by a more protected phosphorylation potential, and higher glycogen reserves, can be induced with a training stimulus of light intensity applied for as little as 30 min over 10 days. Our results also indicate that doubling the duration of daily exercise at L although inducing increased muscle glycogen reserves did not result in a greater metabolic adaptation.
Collapse
Affiliation(s)
- Howard J Green
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Herbst EAF, Dunford ECE, Harris RA, Vandenboom R, Leblanc PJ, Roy BD, Jeoung NH, Peters SJ. Role of pyruvate dehydrogenase kinase 4 in regulating PDH activation during acute muscle contraction. Appl Physiol Nutr Metab 2011; 37:48-52. [PMID: 22196220 DOI: 10.1139/h11-136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The oxidation of carbohydrates in mammals is regulated by the pyruvate dehydrogenase (PDH) complex, which is covalently regulated by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) unique to the PDH complex. To investigate the role that PDK4 plays in regulating PDH activation (PDHa) during muscle contraction, mouse extensor digitorum muscle was removed from wild type (WT) and PDK4-knockout (PDK4-KO) mice after a 24 h fast and stimulated for 3 min either at 10 Hz (low-intensity contraction), 40 Hz (moderate-intensity contraction), or allowed to rest. Force was recorded and muscle PDHa activity and metabolite concentrations were measured. PDHa activity was ∼2.5-fold higher at rest in PDK4-KO mice than WT mice (P = 0.009) and ∼2-fold higher in PDK4-KO mice at both 10 Hz (P < 0.001) and 40 Hz (P < 0.001). Force relative to muscle weight was similar at 10 Hz, but was 5.8 ± 0.7 mN·g(-1) in PDK4-KO mice and 3.5 ± 0.7 mN·g(-1) in WT mice at 40 Hz (P < 0.001), with a similar rate of fatigue in both genotypes. From these results it was concluded that PDK4 plays a role in reducing PDHa activity during low to moderate-intensity muscle stimulation, and that absence of PDK4 and the subsequent changes in carbohydrate utilization may alter force production.
Collapse
Affiliation(s)
- Eric A F Herbst
- Department of Kinesiology, Brock University, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Green HJ, Duhamel TA, Smith IC, Rich SM, Thomas MM, Ouyang J, Yau JE. Muscle fatigue and excitation-contraction coupling responses following a session of prolonged cycling. Acta Physiol (Oxf) 2011; 203:441-55. [PMID: 21707930 DOI: 10.1111/j.1748-1716.2011.02335.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The mechanisms underlying the fatigue that occurs in human muscle following sustained activity are thought to reside in one or more of the excitation-contraction coupling (E-C coupling) processes. This study investigated the association between the changes in select E-C coupling properties and the impairment in force generation that occurs with prolonged cycling. METHODS Ten volunteers with a peak aerobic power (VO(2peak)) of 2.95 ± 0.27 L min(-1) (mean ± SE), exercised for 2 h at 62 ± 1.3%. Quadriceps function was assessed and tissue properties (vastus lateralis) were measured prior to (E1-pre) and following (E1-post) exercise and on three consecutive days of recovery (R1, R2 and R3). RESULTS While exercise failed to depress the maximal activity (V(max) ) of the Na(+) ,K(+) -ATPase (P = 0.10), reductions (P < 0.05) were found at E1-post in V(max) of sarcoplasmic reticulum Ca(2+) -ATPase (-22%), Ca(2+) -uptake (-26%) and phase 1(-33%) and 2 (-38%) Ca(2+) -release. Both V(max) and Ca(2+) -release (phase 2) recovered by R1, whereas Ca(2+) -uptake and Ca(2+) -release (phase 1) remained depressed (P < 0.05) at R1 and at R1 and R2 and possibly R3 (P < 0.06) respectively. Compared with E1-pre, fatigue was observed (P < 0.05) at 10 Hz electrical stimulation at E1-post (-56%), which persisted throughout recovery. The exercise increased (P < 0.05) overall content of the Na(+), K(+)-ATPase (R1, R2 and R3) and the isoforms β2 (R1, R2 and R3) and β3 (R3), but not β1 or the α-isoforms (α1, α2 and α3). CONCLUSION These results suggest a possible direct role for Ca(2+)-release in fatigue and demonstrate a single exercise session can induce overlapping perturbations and adaptations (particularly to the Na(+), K(+)-ATPase).
Collapse
Affiliation(s)
- H J Green
- Department of Kinesiology, University of Waterloo, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol 2010; 589:711-25. [PMID: 21135051 DOI: 10.1113/jphysiol.2010.195982] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glucose is stored as glycogen in skeletal muscle. The importance of glycogen as a fuel during exercise has been recognized since the 1960s; however, little is known about the precise mechanism that relates skeletal muscle glycogen to muscle fatigue. We show that low muscle glycogen is associated with an impairment of muscle ability to release Ca(2+), which is an important signal in the muscle activation. Thus, depletion of glycogen during prolonged, exhausting exercise may contribute to muscle fatigue by causing decreased Ca(2+) release inside the muscle. These data provide indications of a signal that links energy utilization, i.e. muscle contraction, with the energy content in the muscle, thereby inhibiting a detrimental depletion of the muscle energy store.
Collapse
Affiliation(s)
- Niels Ørtenblad
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark.
| | | | | | | |
Collapse
|
16
|
Muscle metabolic, enzymatic and transporter responses to a session of prolonged cycling. Eur J Appl Physiol 2010; 111:827-37. [DOI: 10.1007/s00421-010-1709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 12/19/2022]
|
17
|
Green HJ, Burnett M, Duhamel TA, D'Arsigny C, O'Donnell DE, Webb KA, Ouyang J. Abnormal sarcoplasmic reticulum Ca2+-sequestering properties in skeletal muscle in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2008; 295:C350-7. [DOI: 10.1152/ajpcell.00224.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the hypothesis that alterations in sarcoplasmic reticulum (SR) Ca2+-cycling properties would occur in skeletal muscle in patients with moderate to severe chronic obstructive pulmonary disease (COPD). To investigate this hypothesis, tissue samples were obtained from the vastus lateralis of 8 patients with COPD [age 65.6 ± 3.2 yr; forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) = 44 ± 2%; mean ± SE] and 10 healthy age-matched controls (CON, age 67.5 ± 2.5 yr; FEV1/FVC = 77 ± 2%), and homogenates were analyzed for a wide range of SR properties. Compared with CON, COPD displayed (in μmol·g protein−1·min−1) a 16% lower maximal Ca2+-ATPase activity [maximal velocity ( Vmax), 158 ± 10 vs. 133 ± 7, P < 0.05] and a 17% lower Ca2+uptake (4.65 ± 0.039 vs. 3.85 ± 0.26, P < 0.05) that occurred in the absence of differences in Ca2+release. The lower Vmaxin COPD was also accompanied by an 11% lower ( P < 0.05) Ca2+sensitivity, as measured by the Hill coefficient (defined as the relationship between Ca2+-ATPase activity and free cytosolic Ca2+concentration for 10–90% Vmax). For the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) isoforms, SERCA1a was 16% higher ( P < 0.05) and SERCA2a was 14% lower ( P < 0.05) in COPD. It is concluded that moderate to severe COPD results in abnormalities in SR Ca2+-ATPase properties that cannot be explained by changes in the SERCA isoform phenotypes. The reduced catalytic properties of SERCA in COPD suggest a disturbance in Ca2+cycling, possibly resulting in impairment in Ca2+-mediated mechanical function and/or second messenger regulated processes.
Collapse
|
18
|
Duhamel TA, Stewart RD, Tupling AR, Ouyang J, Green HJ. Muscle sarcoplasmic reticulum calcium regulation in humans during consecutive days of exercise and recovery. J Appl Physiol (1985) 2007; 103:1212-20. [PMID: 17656626 DOI: 10.1152/japplphysiol.00437.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study investigated the hypothesis that three consecutive days of prolonged cycle exercise would result in a sustained reduction in the Ca(2+)-cycling properties of the vastus lateralis in the absence of changes in the sarcoplasmic (endoplasmic) reticulum Ca(2+)-ATPase (SERCA) protein. Tissue samples were obtained at preexercise (Pre) and postexercise (Post) on day 1 (E1) and day 3 (E3) and during recovery day 1 (R1), day 2 (R2), and day 3 (R3) in 12 active but untrained volunteers (age 19.2 +/- 0.27 yr; mean +/- SE) and analyzed for changes (nmol.mg protein(-1).min(-1)) in maximal Ca(2+)-ATPase activity (V(max)), Ca(2+) uptake and Ca(2+) release (phase 1 and phase 2), and SERCA isoform expression (SERCA1a and SERCA2a). At E1, reductions (P < 0.05) from Pre to Post in V(max) (150 +/- 7 vs. 121 +/- 7), Ca(2+) uptake (7.79 +/- 0.28 vs. 5.71 +/- 0.33), and both phases of Ca(2+) release (phase 1, 20.3 +/- 1.3 vs. 15.2 +/- 1.1; phase 2, 7.70 +/- 0.60 vs. 4.99 +/- 0.48) were found. In contrast to V(max), which recovered at Pre E3 and then remained stable at Post E3 and throughout recovery, Ca(2+) uptake remained depressed (P < 0.05) at E3 Pre and Post and at R1 as did phase 2 of Ca(2+) release. Exercise resulted in an increase (P < 0.05) in SERCA1a (14% at R2) but not SERCA2a. It is concluded that rapidly adapting mechanisms protect V(max) following the onset of regular exercise but not Ca(2+) uptake and Ca(2+) release.
Collapse
Affiliation(s)
- T A Duhamel
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|