1
|
Wan HY, Weavil JC, Thurston TS, Georgescu VP, Morrissey CK, Amann M. On the hemodynamic consequence of the chemoreflex and muscle mechanoreflex interaction in women and men: two tales, one story. J Physiol 2022; 600:3671-3688. [PMID: 35710103 PMCID: PMC9378608 DOI: 10.1113/jp283051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The cardiovascular response resulting from the activation of the muscle mechanoreflex (MMR), or the chemoreflex (CR), was previously shown to be different between women and men; this study focused on the hemodynamic consequence of the interaction of these two sympathoexcitatory reflexes. MMR and CR were activated by passive leg movement and exposure to hypoxia (O2 -CR), or hypercapnia (CO2 -CR), respectively. Individual and interactive reflex effects on central and peripheral hemodynamics were quantified in healthy young women and men. In men, the MMR:O2 -CR and MMR:CO2 -CR interactions restricted peripheral hemodynamics, likely by potentiating sympathetic vasoconstriction. In women, the MMR:O2 -CR interaction facilitated central and peripheral hemodynamics, likely by potentiating sympathetic vasodilation; however, the MMR:CO2 -CR interaction was simply additive for the central and peripheral hemodynamics. The interaction between the MMR and the CR exerts a profound influence on the autonomic control of cardiovascular function in humans, with the hemodynamic consequences differing between women and men. ABSTRACT The cardiovascular response resulting from the individual activation of the muscle mechanoreflex (MMR), or the chemoreflex (CR), is different between men and women. Whether the hemodynamic consequence resulting from the interaction of these sympathoexcitatory reflexes is also sex-dependent remains unknown. MMR and CR were activated by passive leg movement (LM) and exposure to hypoxia (O2 -CR), or hypercapnia (CO2 -CR), respectively. Twelve young men and 12 young women completed two experimental protocols: 1) resting in normoxia (PET O2 : ∼83mmHg, PET CO2 : ∼34mmHg), normocapnic hypoxia (PET O2 : ∼48mmHg, PET CO2 : ∼34mmHg), and hyperoxic hypercapnia (PET O2 : ∼524mmHg, PET CO2 : ∼44mmHg); 2) LM under the same gas conditions. During the MMR:O2 -CR coactivation, in men, the observed blood pressure (MAP) and cardiac output (CO) were not different (additive effect), while the observed leg blood flow (LBF) and vascular conductance (LVC) were significantly lower (hypo-additive), compared with the sum of the responses elicited by each reflex alone. In women, the observed MAP was not different (additive) while the observed CO, LBF, and LVC were significantly greater (hyper-additive), compared with the summated responses. During the MMR:CO2 -CR coactivation, in men, the observed MAP, CO, and LBF were not different (additive), while the observed LVC was significantly lower (hypo-additive), compared with the summated responses. In women, the observed MAP was significantly higher (hyper-additive), while the observed CO, LBF, and LVC were not different (additive), compared with the summated responses. The interaction of the MMR and CR has a pronounced influence on the autonomic cardiovascular control, with the hemodynamic consequences differing between men and women. Abstract figure legend The chemoreflex and the muscle mechanoreflex are sympathoexcitatory mechanisms which, via neural feedback to the cardiovascular centre in the medulla, mediate neurocirculatory responses during physical activity. The interaction of the peripheral chemoreflex and muscle mechanoreflex potentiates vasoconstriction in men, but potentiates vasodilatation in women (left panel). The interaction of the central chemoreflex and muscle mechanoreflex also potentiates vasoconstriction in men, whereas the reflex interaction is simply additive for the vasomotor tone in women (right panel). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Vincent P Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | | | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, VAMC, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
2
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
3
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
4
|
Mattos JD, Campos MO, Rocha MP, Mansur DE, Rocha HNM, Garcia VP, Rocha NG, Alvares TS, Secher NH, Nóbrega ACL, Fernandes IA. Differential vasomotor responses to isocapnic hyperoxia: cerebral versus peripheral circulation. Am J Physiol Regul Integr Comp Physiol 2020; 318:R182-R187. [DOI: 10.1152/ajpregu.00248.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isocapnic hyperoxia (IH) evokes cerebral and peripheral hypoperfusion via both disturbance of redox homeostasis and reduction in nitric oxide (NO) bioavailability. However, it is not clear whether the magnitude of the vasomotor responses depends on the vessel network exposed to IH. To test the hypothesis that the magnitude of IH-induced reduction in peripheral blood flow (BF) may differ from the hypoperfusion response observed in the cerebral vascular network under oxygen-enriched conditions, nine healthy men (25 ± 3 yr, mean ± SD) underwent 10 min of IH during either saline or vitamin C (3 g) infusion, separately. Femoral artery (FA), internal carotid artery (ICA), and vertebral artery (VA) BF (Doppler ultrasound), as well as arterial oxidant (8-isoprostane), antioxidant [ascorbic acid (AA)], and NO bioavailability (nitrite) markers were simultaneously measured. IH increased 8-isoprostane levels and reduced nitrite levels; these responses were followed by a reduction in both FA BF and ICA BF, whereas VA BF did not change. Absolute and relative reductions in FA BF were greater than IH-induced changes in ICA and VA perfusion. Vitamin C infusion increased arterial AA levels and abolished the IH-induced increase in 8-isoprostane levels and reduction in nitrite levels. Whereas ICA and VA BF did not change during the vitamin C-IH trial, FA perfusion increased and reached similar levels to those observed during normoxia with saline infusion. Therefore, the magnitude of IH-induced reduction in femoral blood flow is greater than that observed in the vessel network of the brain, which might involve the determinant contribution that NO has in the regulation of peripheral vascular perfusion.
Collapse
Affiliation(s)
- João D. Mattos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Monique O. Campos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marcos P. Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Daniel E. Mansur
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Helena N. M. Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Vinicius P. Garcia
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Natalia G. Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Thiago S. Alvares
- Nutrition Institute, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Niels H. Secher
- Department of Anesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Igor A. Fernandes
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Ranadive SM, Shepherd JRA, Curry TB, Dinenno FA, Joyner MJ. Sustained exercise hyperemia during prolonged adenosine infusion in humans. Physiol Rep 2019; 7:e14009. [PMID: 30806018 PMCID: PMC6389741 DOI: 10.14814/phy2.14009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
The contribution of Adenosine (ADO) to exercise hyperemia remains controversial and it is unknown whether ADO can evoke the prolonged vasodilation seen during exercise bouts. Therefore, we tested hypotheses in the human forearm during 3 h of intra-arterial high dose ADO infusion: (1) skeletal muscle blood flow would wane over time; (2) exercise hyperemic responses during ADO administration would be unaffected compared to baseline. Using sodium nitroprusside (SNP), we tested parallel hypotheses regarding nitric oxide (NO) in a separate group of participants. Seventeen young healthy participants (ADO: n = 9; SNP: n = 8) performed multiple rhythmic handgrip exercise bouts (20% of maximum), two during saline and five during 3 h of continuous drug infusion. Five minutes of ADO infusion resulted in a ~5-fold increase in forearm vascular conductance (FVC; 4.8 ± 0.6 vs. 24.2 ± 3.2 mL/min/100 mmHg, P < 0.05). SNP caused a ~4-fold increase (4.4 ± 0.6 vs. 16.6 ± 2 mL/min/100 mmHg, P < 0.05). FVC did not wane over time with ADO (24.2 ± 3.2 and 22 ± 1.2 mL/min/100 mmHg [P > 0.05]) or SNP (16.6 ± 2 and 14.1 ± 2.4 mL/min/ 100 mmHg [P > 0.05]) at 5 versus 150 min. Superimposed exercise during ADO or SNP infusions evoked marked and consistent additional dilation over the course of the infusions. Our findings demonstrate that in humans there is no reduction in endothelial or vascular smooth muscle responsiveness to the exogenous vasodilatory metabolites ADO and NO. Additionally, even in the presence of an exogenous vasodilator, superimposed exercise can cause significant hyperemia.
Collapse
Affiliation(s)
- Sushant M. Ranadive
- Department of AnesthesiologyMayo ClinicRochesterMinnesota
- Department of KinesiologySchool of Public HealthUniversity of MarylandCollege ParkMaryland
| | | | | | - Frank A. Dinenno
- Department of Health and Exercise Science and Center for Cardiovascular ResearchColorado State UniversityFort CollinsColorodo
| | | |
Collapse
|
6
|
Vidal K, Robinson N, Ives SJ. Exercise performance and physiological responses: the potential role of redox imbalance. Physiol Rep 2017; 5:5/7/e13225. [PMID: 28364030 PMCID: PMC5392515 DOI: 10.14814/phy2.13225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022] Open
Abstract
Increases in oxidative stress or decreases in antioxidant capacity, or redox imbalance, are known to alter physiological function and has been suggested to influence performance. To date, no study has sought to manipulate this balance in the same participants and observe the impact on physiological function and performance. Using a single‐blind, placebo‐controlled, and counterbalanced design, this study examined the effects of increasing free radicals, via hyperoxic exposure (FiO2 = 1.0), and/or increasing antioxidant capacity, through consuming an antioxidant cocktail (AOC; vitamin‐C, vitamin‐E, α‐lipoic acid), on 5‐kilometer (km) cycling time‐trial performance, and the physiological and fatigue responses in healthy college‐aged males. Hyperoxic exposure prior to the 5 km TT had no effect on performance, fatigue, or the physiological responses to exercise. The AOC significantly reduced average power output (222 ± 11 vs. 214 ± 12 W), increased 5 km time (516 ± 17 vs. 533 ± 18 sec), suppressed ventilation (VE; 116 ± 5 vs. 109 ± 13 L/min), despite similar oxygen consumption (VO2; 43.1 ± 0.8 vs. 44.9 ± 0.2 mL/kg per min), decreased VE/VO2 (35.9 ± 2.0 vs. 32.3 ± 1.5 L/min), reduced economy (VO2/W; 0.20 ± 0.01 vs. 0.22 ± 0.01), increased blood lactate (10 ± 0.7 vs. 11 ± 0.7 mmol), and perception of fatigue (RPE; 7.39 ± 0.4 vs. 7.60 ± 0.3) at the end of the TT, as compared to placebo (main effect, placebo vs. AOC, respectively). Our data demonstrate that prior to exercise, ingesting an AOC, but not exposure to hyperoxia, likely disrupts the delicate balance between pro‐ and antioxidant forces, which negatively impacts ventilation, blood lactate, economy, perception of fatigue, and performance (power output and 5 km time) in young healthy males. Thus, caution is warranted in athletes taking excess exogenous antioxidants.
Collapse
Affiliation(s)
- Kavey Vidal
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York
| | - Nathaniel Robinson
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York
| | - Stephen J Ives
- Department of Health and Exercise Sciences, Skidmore College, Saratoga Springs, New York
| |
Collapse
|
7
|
Trinity JD, Broxterman RM, Richardson RS. Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med 2016; 98:90-102. [PMID: 26876648 PMCID: PMC4975999 DOI: 10.1016/j.freeradbiomed.2016.01.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
Abstract
During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA.
| | - Ryan M Broxterman
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA; Department of Internal Medicine, Division of Geriatric, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Shepherd JRA, Joyner MJ, Dinenno FA, Curry TB, Ranadive SM. Prolonged adenosine triphosphate infusion and exercise hyperemia in humans. J Appl Physiol (1985) 2016; 121:629-35. [PMID: 27445304 DOI: 10.1152/japplphysiol.01034.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/15/2016] [Indexed: 11/22/2022] Open
Abstract
In humans, intra-arterial ATP infusion in limbs mimics many features of exercise hyperemia. However, it remains unknown whether ATP can evoke the prolonged vasodilation seen during exercise. Therefore, we addressed two questions during a continuous 3-h brachial artery infusion of ATP [20 μg·100 ml forearm volume (FAV)(-1)·min(-1)]: 1) would skeletal muscle blood flow remain robust or wane over time (tachyphylaxis); and 2) would the hyperemic response to moderate-intensity exercise performed during the ATP administration be blunted compared with that during control (saline) infusion. Nine participants (25 ± 1 yr) performed one trial consisting of seven bouts of rhythmic handgrip exercise (20 contractions/min at 20% of maximum), two bouts during saline (control), and five bouts during 180 min of continuous ATP infusion. Five minutes of ATP infusion resulted in a 710% increase in forearm vascular conductance (FVC) from control (4.8 ± 0.77 vs. 35.0 ± 5.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1), P < 0.05). Contrary to our expectations, FVC did not wane over time with values of 35.0 ± 5.7 and 36.0 ± 7.7 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) (P > 0.05), seen prior to the exercise bouts at 5 vs. 150 min, respectively. During superimposed exercise, FVC increased from 35.0 ± 5.7 to 49.6 ± 5.4 ml·min(-1)·100 mmHg(-1)·dl FAV(-1) at 5 min and 36.0 ± 7.7 to 54.5 ± 5.0 at 150 min (P < 0.05). Our findings demonstrate ATP vasodilation is prolonged over time without tachyphylaxis; however, exercise hyperemia responses remain intact. Our results challenge the metabolic theory of exercise hyperemia, suggesting a disconnect between matching of blood flow and metabolic demand.
Collapse
Affiliation(s)
- John R A Shepherd
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | - Frank A Dinenno
- Department of Health and Exercise Science, and Center for Cardiovascular Research, Colorado State University, Fort Collins, Colorado
| | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and
| | | |
Collapse
|
9
|
Limberg JK, Peltonen GL, Johansson RE, Harrell JW, Kellawan JM, Eldridge MW, Sebranek JJ, Walker BJ, Schrage WG. Greater Beta-Adrenergic Receptor Mediated Vasodilation in Women Using Oral Contraceptives. Front Physiol 2016; 7:215. [PMID: 27375493 PMCID: PMC4896959 DOI: 10.3389/fphys.2016.00215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background: β-adrenergic receptors play an important role in mitigating the pressor effects of sympathetic nervous system activity in young women. Based on recent data showing oral contraceptive use in women abolishes the relationship between muscle sympathetic nervous system activity and blood pressure, we hypothesized forearm blood flow responses to a β-adrenergic receptor agonist would be greater in young women currently using oral contraceptives (OC+, n = 13) when compared to those not using oral contraceptives (OC–, n = 10). Methods: Women (18–35 years) were studied during the early follicular phase of the menstrual cycle (days 1–5) or placebo phase of oral contraceptive use. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured at baseline and during graded brachial artery infusion of the β-adrenergic receptor agonist, Isoproterenol (ISO), as well as Acetylcholine (ACH, endothelium-dependent vasodilation) and Nitroprusside (NTP, endothelium-independent vasodilation). Forearm vascular conductance was calculated (FVC = FBF/MAP, ml/min/100 mmHg) and the rise in FVC from baseline during infusion quantified vasodilation (ΔFVC = FVCinfusion − FVCbaseline). Results: ISO increased FVC in both groups (p < 0.01) and ISO-mediated ΔFVC was greater in OC+ compared to OC– (Main effect of group, p = 0.02). Expressing data as FVC and FBF resulted in similar conclusions. FVC responses to both ACH and NTP were also greater in OC+ compared to OC–. Conclusions: These data are the first to demonstrate greater β-adrenergic receptor-mediated vasodilation in the forearm of women currently using oral contraceptives (placebo phase) when compared to those not using oral contraceptives (early follicular phase), and suggest oral contraceptive use influences neurovascular control.
Collapse
Affiliation(s)
| | | | | | - John W Harrell
- Department of Kinesiology, University of Wisconsin Madison, WI, USA
| | | | - Marlowe W Eldridge
- Department of Kinesiology, University of WisconsinMadison, WI, USA; Department of Pediatrics, University of WisconsinMadison, WI, USA
| | - Joshua J Sebranek
- Department of Anesthesiology, University of Wisconsin Madison, WI, USA
| | - Benjamin J Walker
- Department of Anesthesiology, University of Wisconsin Madison, WI, USA
| | | |
Collapse
|
10
|
HARTMANN SARAE, WALTZ XAVIER, LEIGH RICHARD, ANDERSON TODDJ, POULIN MARCJ. Blood Flow during Handgrip Exercise in COPD. Med Sci Sports Exerc 2016; 48:200-9. [DOI: 10.1249/mss.0000000000000766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Limberg JK, Johansson RE, Peltonen GL, Harrell JW, Kellawan JM, Eldridge MW, Sebranek JJ, Schrage WG. β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase. Am J Physiol Heart Circ Physiol 2016; 310:H756-64. [PMID: 26747505 DOI: 10.1152/ajpheart.00886.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Abstract
We tested the hypothesis that women exhibit greater vasodilator responses to β-adrenoceptor stimulation compared with men. We further hypothesized women exhibit a greater contribution of nitric oxide synthase and cyclooxygenase to β-adrenergic-mediated vasodilation compared with men. Forearm blood flow (Doppler ultrasound) was measured in young men (n = 29, 26 ± 1 yr) and women (n = 33, 25 ± 1 yr) during intra-arterial infusion of isoproterenol (β-adrenergic agonist). In subset of subjects, isoproterenol responses were examined before and after local inhibition of nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 6 male/10 female] and/or cyclooxygenase (ketorolac; 5 male/5 female). Vascular conductance (blood flow ÷ mean arterial pressure) was calculated to assess vasodilation. Vascular conductance increased with isoproterenol infusion (P < 0.01), and this effect was not different between men and women (P = 0.41). l-NMMA infusion had no effect on isoproterenol-mediated dilation in men (P > 0.99) or women (P = 0.21). In contrast, ketorolac infusion markedly increased isoproterenol-mediated responses in both men (P < 0.01) and women (P = 0.04) and this rise was lost with subsequent l-NMMA infusion (men, P < 0.01; women, P < 0.05). β-Adrenergic vasodilation is not different between men and women and sex differences in the independent contribution of nitric oxide synthase and cyclooxygenase to β-mediated vasodilation are not present. However, these data are the first to demonstrate β-adrenoceptor activation of cyclooxygenase suppresses nitric oxide synthase signaling in human forearm microcirculation and may have important implications for neurovascular control in both health and disease.
Collapse
Affiliation(s)
| | | | | | - John W Harrell
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | | | - Marlowe W Eldridge
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin; Department of Pediatrics, University of Wisconsin, Madison, Wisconsin; and
| | - Joshua J Sebranek
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin, Madison, Wisconsin;
| |
Collapse
|
12
|
Effects of modest hyperoxia and oral vitamin C on exercise hyperaemia and reactive hyperaemia in healthy young men. Eur J Appl Physiol 2015; 115:1995-2006. [PMID: 25963380 DOI: 10.1007/s00421-015-3182-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE We have argued that breathing 40 % O2 attenuates exercise hyperaemia by decreasing production of O2-dependent vasodilators. However, breathing 100 % O2 attenuated endothelium-dependent vasodilatation evoked by acetylcholine and this effect was prevented by vitamin C, implicating reactive oxygen species (ROS). We have therefore used vitamin C to test the hypothesis that 40 % O2 modulates exercise hyperaemia and reactive hyperaemia independently of ROS. METHOD In a cross-over study on 10 male subjects (21.1 ± 0.84 years), we measured forearm blood flow (venous occlusion plethysmography) and calculated forearm vascular conductance (FVC) at rest and following static handgrip at 60 % maximum voluntary contraction for 2 min and following arterial occlusion for 2 min, after placebo or oral vitamin C (2000 mg), and when breathing air or 40 % O2. RESULT During air breathing, vitamin C augmented the peak increase in FVC following static contraction, or release of arterial occlusion, by ~50 or 60 %, respectively (P < 0.05). Breathing 40 % O2 in the presence of placebo attenuated post-contraction hyperaemia by ~25 % (P < 0.05), but had no effect on reactive hyperaemia. By contrast, in the presence of vitamin C, 40 % O2 attenuated the peak increase in FVC following static contraction, or release of arterial occlusion by ~25 and 50 %, respectively (P < 0.05). CONCLUSION These results indicate that in young men, exercise hyperaemia following strenuous muscle contraction and reactive hyperaemia are blunted by ROS. However, they are also consistent with the view that modest hyperoxia induced by breathing 40 % O2 acts independently of ROS to attenuate not only post-contraction hyperaemia, but also reactive hyperaemia, by decreasing release of O2-dependent vasodilators.
Collapse
|