1
|
Reisman EG, Botella J, Huang C, Schittenhelm RB, Stroud DA, Granata C, Chandrasiri OS, Ramm G, Oorschot V, Caruana NJ, Bishop DJ. Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men. Nat Commun 2024; 15:7677. [PMID: 39227581 PMCID: PMC11371815 DOI: 10.1038/s41467-024-50632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Analyses of mitochondrial adaptations in human skeletal muscle have mostly used whole-muscle samples, where results may be confounded by the presence of a mixture of type I and II muscle fibres. Using our adapted mass spectrometry-based proteomics workflow, we provide insights into fibre-specific mitochondrial differences in the human skeletal muscle of men before and after training. Our findings challenge previous conclusions regarding the extent of fibre-type-specific remodelling of the mitochondrial proteome and suggest that most baseline differences in mitochondrial protein abundances between fibre types reported by us, and others, might be due to differences in total mitochondrial content or a consequence of adaptations to habitual physical activity (or inactivity). Most training-induced changes in different mitochondrial functional groups, in both fibre types, were no longer significant in our study when normalised to changes in markers of mitochondrial content.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Javier Botella
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Metabolic Research Unit, School of Medicine and Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, VIC, Australia
| | - Cesare Granata
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Institute for Clinical Diabetology, German, Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Owala S Chandrasiri
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo EM, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nikeisha J Caruana
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Atakan MM, Türkel İ, Özerkliğ B, Koşar ŞN, Taylor DF, Yan X, Bishop DJ. Small peptides: could they have a big role in metabolism and the response to exercise? J Physiol 2024; 602:545-568. [PMID: 38196325 DOI: 10.1113/jp283214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Exercise is a powerful non-pharmacological intervention for the treatment and prevention of numerous chronic diseases. Contracting skeletal muscles provoke widespread perturbations in numerous cells, tissues and organs, which stimulate multiple integrated adaptations that ultimately contribute to the many health benefits associated with regular exercise. Despite much research, the molecular mechanisms driving such changes are not completely resolved. Technological advancements beginning in the early 1960s have opened new avenues to explore the mechanisms responsible for the many beneficial adaptations to exercise. This has led to increased research into the role of small peptides (<100 amino acids) and mitochondrially derived peptides in metabolism and disease, including those coded within small open reading frames (sORFs; coding sequences that encode small peptides). Recently, it has been hypothesized that sORF-encoded mitochondrially derived peptides and other small peptides play significant roles as exercise-sensitive peptides in exercise-induced physiological adaptation. In this review, we highlight the discovery of mitochondrially derived peptides and newly discovered small peptides involved in metabolism, with a specific emphasis on their functions in exercise-induced adaptations and the prevention of metabolic diseases. In light of the few studies available, we also present data on how both single exercise sessions and exercise training affect expression of sORF-encoded mitochondrially derived peptides. Finally, we outline numerous research questions that await investigation regarding the roles of mitochondrially derived peptides in metabolism and prevention of various diseases, in addition to their roles in exercise-induced physiological adaptations, for future studies.
Collapse
Affiliation(s)
- Muhammed M Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - İbrahim Türkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Özerkliğ
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Şükran N Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Dale F Taylor
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Victoria, Australia
| | - David J Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Lundquist A, Lázár E, Han NS, Emanuelsson EB, Reitzner SM, Chapman MA, Shirokova V, Alkass K, Druid H, Petri S, Sundberg CJ, Bergmann O. FiNuTyper: Design and validation of an automated deep learning-based platform for simultaneous fiber and nucleus type analysis in human skeletal muscle. Acta Physiol (Oxf) 2023; 239:e13982. [PMID: 37097015 DOI: 10.1111/apha.13982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
AIM While manual quantification is still considered the gold standard for skeletal muscle histological analysis, it is time-consuming and prone to investigator bias. To address this challenge, we assembled an automated image analysis pipeline, FiNuTyper (Fiber and Nucleus Typer). METHODS We integrated recently developed deep learning-based image segmentation methods, optimized for unbiased evaluation of fresh and postmortem human skeletal muscle, and utilized SERCA1 and SERCA2 as type-specific myonucleus and myofiber markers after validating them against the traditional use of MyHC isoforms. RESULTS Parameters including cross-sectional area, myonuclei per fiber, myonuclear domain, central myonuclei per fiber, and grouped myofiber ratio were determined in a fiber-type-specific manner, revealing that a large degree of sex- and muscle-related heterogeneity could be detected using the pipeline. Our platform was also tested on pathological muscle tissue (ALS and IBM) and adapted for the detection of other resident cell types (leucocytes, satellite cells, capillary endothelium). CONCLUSION In summary, we present an automated image analysis tool for the simultaneous quantification of myofiber and myonuclear types, to characterize the composition and structure of healthy and diseased human skeletal muscle.
Collapse
Affiliation(s)
- August Lundquist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nan S Han
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mark A Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, USA
| | - Vera Shirokova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kanar Alkass
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Petri
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Carl J Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management, and Ethics, Karolinska Institutet, Stockholm, Sweden
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Pharmacology and Toxicology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
5
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
6
|
van der Horst J, Møller S, Kjeldsen SAS, Wojtaszewski JFP, Hellsten Y, Jepps TA. Functional sympatholysis in mouse skeletal muscle involves sarcoplasmic reticulum swelling in arterial smooth muscle cells. Physiol Rep 2021; 9:e15133. [PMID: 34851043 PMCID: PMC8634630 DOI: 10.14814/phy2.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
The vasoconstrictive effect of sympathetic activity is attenuated in contracting skeletal muscle (functional sympatholysis), allowing increased blood supply to the working muscle but the underlying mechanisms are incompletely understood. The purpose of this study was to examine α-adrenergic receptor responsiveness in isolated artery segments from non-exercised and exercised mice, using wire myography. Isometric tension recordings performed on femoral artery segments from exercised mice showed decreased α-adrenergic receptor responsiveness compared to non-exercised mice (logEC50 -5.2 ± 0.04 M vs. -5.7 ± 0.08 M, respectively). In contrast, mesenteric artery segments from exercised mice displayed similar α-adrenergic receptor responses compared to non-exercised mice. Responses to the vasoconstrictor serotonin (5-HT) and vasodilator isoprenaline, were similar in femoral artery segments from non-exercised and exercised mice. To study sarcoplasmic reticulum (SR) function, we examined arterial contractions induced by caffeine, which depletes SR Ca2+ and thapsigargin, which inhibits SR Ca2+ -ATPase (SERCA) and SR Ca2+ uptake. Arterial contractions to both caffeine and thapsigargin were increased in femoral artery segment from exercised compared to non-exercised mice. Furthermore, 3D electron microscopy imaging of the arterial wall showed SR volume/length ratio increased 157% in smooth muscle cells of the femoral artery from the exercised mice, whereas there was no difference in SR volume/length ratio in mesenteric artery segments. These results show that in arteries surrounding exercising muscle, the α-adrenergic receptor constrictions are blunted, which can be attributed to swollen smooth muscle cell SR's, likely due to increased Ca2+ content that is possibly reducing free intracellular Ca2+ available for contraction. Overall, this study uncovers a previously unknown mechanism underlying functional sympatholysis.
Collapse
Affiliation(s)
- Jennifer van der Horst
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Human PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Sophie Møller
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Human PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | | | - Jørgen F. P. Wojtaszewski
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Molecular PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and SportsThe August Krogh Section for Human PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - Thomas A. Jepps
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
7
|
Penner AL, Waytt V, Winter T, Leng S, Duhamel TA, Aukema HM. Oxylipin profiles and levels vary by skeletal muscle type, dietary fat and sex in young rats. Appl Physiol Nutr Metab 2021; 46:1378-1388. [PMID: 34115947 DOI: 10.1139/apnm-2021-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids (PUFA)-derived bioactive lipid mediators called oxylipins have been shown to influence muscle growth, inflammation and repair in select muscles. Since individual oxylipins have varying effects and potencies, broad profiling in differing muscle types is required to further understand their overall effects. In addition, diet and sex are key determinants of oxylipin levels. Therefore, to provide comprehensive data on oxylipin profiles in rat soleus (SO), red gastrocnemius (RG), and white gastrocnemius (WG) muscles, female and male weanling Sprague-Dawley rats were provided control or experimental diets enriched in n-3 (ω-3) or n-6 (ω-6) PUFA for 6 weeks. Free oxylipin analysis by HPLC/MS/MS revealed that SO muscle had 25% more oxylipins and 4-13 times greater oxylipin mass than WG muscle. Dietary n-3 PUFA (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) each increased n-3 oxylipins derived directly from their precursors and several that were not direct precursors, while reducing arachidonic acid derived oxylipins. Dietary linoleic acid had few effects on oxylipins. Oxylipins with a sex effect were higher in females in SO and RG. Oxylipins generally reflected the effects of diet and sex on PUFA, but there were exceptions. These fundamental oxylipin profile data provide groundwork knowledge and context for future research on muscle oxylipin functions. Novelty: Rat SO compared with RG and WG muscles have a higher number and greater mass of oxylipins. Oxylipins generally reflect diet effects on PUFA in all muscles, but there are notable exceptions. Oxylipins in SO and RG are higher in females.
Collapse
Affiliation(s)
- Avery L Penner
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Victoria Waytt
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Oldfield CJ, Moffatt TL, O'Hara KA, Xiang B, Dolinsky VW, Duhamel TA. Muscle-specific sirtuin 3 overexpression does not attenuate the pathological effects of high-fat/high-sucrose feeding but does enhance cardiac SERCA2a activity. Physiol Rep 2021; 9:e14961. [PMID: 34405591 PMCID: PMC8371348 DOI: 10.14814/phy2.14961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 01/14/2023] Open
Abstract
Obesity, type 2 diabetes, and heart disease are linked to an unhealthy diet. Sarco(endo)plasmic reticulum calcium (Ca2+ ) ATPase 2a (SERCA2a) controls cardiac function by transporting Ca2+ in cardiomyocytes. SERCA2a is altered by diet and acetylation, independently; however, it is unknown if diet alters cardiac SERCA2a acetylation. Sirtuin (SIRT) 3 is an enzyme that might preserve health under conditions of macronutrient excess by modulating metabolism via regulating deacetylation of target proteins. Our objectives were to determine if muscle-specific SIRT3 overexpression attenuates the pathological effects of high fat-high sucrose (HFHS) feeding and if HFHS feeding alters cardiac SERCA2a acetylation. We also determined if SIRT3 alters cardiac SERCA2a acetylation and regulates cardiac SERCA2a activity. C57BL/6J wild-type (WT) mice and MCK-mSIRT3-M1-Flag transgenic (SIRT3TG ) mice, overexpressing SIRT3 in cardiac and skeletal muscle, were fed a standard-diet or a HFHS-diet for 4 months. SIRT3TG and WT mice developed obesity, glucose intolerance, cardiac dysfunction, and pathological cardiac remodeling after 4 months of HFHS feeding, indicating muscle-specific SIRT3 overexpression does not attenuate the pathological effects of HFHS-feeding. Overall cardiac lysine acetylation was increased by 63% in HFHS-fed mice (p = 0.022), though HFHS feeding did not alter cardiac SERCA2a acetylation. Cardiac SERCA2a acetylation was not altered by SIRT3 overexpression, whereas SERCA2a Vmax was 21% higher in SIRT3TG (p = 0.039) than WT mice. This suggests that SIRT3 overexpression enhanced cardiac SERCA2a activity without direct SERCA2a deacetylation. Muscle-specific SIRT3 overexpression may not prevent the complications associated with an unhealthy diet in mice, but it appears to enhance SERCA2a activity in the mouse heart.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegMBCanada
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| | - Teri L. Moffatt
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegMBCanada
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| | - Kimberley A. O'Hara
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| | - Bo Xiang
- Department of Pharmacology and TherapeuticsMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBCanada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of ManitobaWinnipegMBCanada
| | - Vernon W. Dolinsky
- Department of Pharmacology and TherapeuticsMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBCanada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of ManitobaWinnipegMBCanada
| | - Todd A. Duhamel
- Faculty of Kinesiology and Recreation ManagementUniversity of ManitobaWinnipegMBCanada
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreWinnipegMBCanada
| |
Collapse
|
9
|
Nemirovskaya TL. ATP-Dependent Pathways of Regulation of Skeletal Muscle Signaling and Their Interaction with Gene Expression under Unloading: The Role of “Slow” Calcium. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Fix DK, Counts BR, Smuder AJ, Sarzynski MA, Koh H, Carson JA. Wheel running improves fasting-induced AMPK signaling in skeletal muscle from tumor-bearing mice. Physiol Rep 2021; 9:e14924. [PMID: 34270178 PMCID: PMC8284248 DOI: 10.14814/phy2.14924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Disruptions to muscle protein turnover and metabolic regulation contribute to muscle wasting during the progression of cancer cachexia. The initiation of cachexia is also associated with decreased physical activity. While chronic muscle AMPK activation occurs during cachexia progression in ApcMin/+ (MIN) mice, a preclinical cachexia model, the understanding of muscle AMPK's role during cachexia initiation is incomplete. Therefore, we examined if voluntary wheel exercise could improve skeletal muscle AMPK signaling in pre-cachectic MIN mice. Next, we examined muscle AMPK's role in aberrant catabolic signaling in response to a 12-h fast in mice initiating cachexia. Male C57BL/6 (B6: N = 26) and MIN (N = 29) mice were subjected to ad libitum feeding, 12-h fast, or 4 wks. of wheel access and then a 12-h fast during the initiation of cachexia. Male tamoxifen-inducible skeletal muscle AMPKα1 α2 (KO) knockout mice crossed with ApcMin/+ and floxed controls were examined (WT: N = 8, KO: N = 8, MIN: N = 10, MIN KO: N = 6). Male mice underwent a 12-h fast and the gastrocnemius muscle was analyzed. MIN gastrocnemius mass was reduced compared to B6 mice. A 12-h fast induced MIN muscle AMPKT172 , FOXOS413 , and ULK-1S555 phosphorylation compared to B6. Wheel running attenuated these inductions. A 12-h fast induced MIN muscle MuRF-1 protein expression compared to B6 and was suppressed by wheel running. Additionally, fasting induced muscle autophagy signaling and disrupted mitochondrial quality protein expression in the MIN, which was prevented in the MIN KO. We provide evidence that increased skeletal muscle AMPK sensitivity to a 12-h fast is an adverse event in pre-cachectic MIN mice, and exercise can improve this regulation.
Collapse
Affiliation(s)
- Dennis K. Fix
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Brittany R. Counts
- Integrative Muscle Biology LaboratoryDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| | - Ashley J. Smuder
- Department of Applied Physiology & KinesiologyCollege of Health & Human PerformanceUniversity of FloridaGainesvilleFLUSA
| | - Mark A. Sarzynski
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - Ho‐Jin Koh
- Department of Exercise ScienceArnold School of Public HealthUniversity of South CarolinaColumbiaSCUSA
| | - James A. Carson
- Integrative Muscle Biology LaboratoryDivision of Rehabilitation SciencesCollege of Health ProfessionsUniversity of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
11
|
Morissette MP, Susser SE, Stammers AN, Moffatt TL, Wigle JT, Wigle TJ, Netticadan T, Premecz S, Jassal DS, O’Hara KA, Duhamel TA. Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2kinase-dead mice. Can J Physiol Pharmacol 2019; 97:786-795. [DOI: 10.1139/cjpp-2018-0737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise enhances cardiac sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) function through unknown mechanisms. The present study tested the hypothesis that the positive effects of exercise on SERCA2a expression and function in the left ventricle is dependent on adenosine-monophosphate-activated protein kinase (AMPK) α2 function. AMPKα2kinase-dead (KD) transgenic mice, which overexpress inactivated AMPKα2subunit, and wild-type C57Bl/6 (WT) mice were randomized into sedentary groups or groups with access to running wheels. After 5 months, exercised KD mice exhibited shortened deceleration time compared with sedentary KD mice. In left ventricular tissue, the ratio of phosphorylated AMPKαThr172:total AMPKα was 65% lower (P < 0.05) in KD mice compared with WT mice. The left ventricle of KD mice had 37% lower levels of SERCA2a compared with WT mice. Although exercise increased SERCA2a protein levels in WT mice by 53%, this response of exercise was abolished in exercised KD mice. Exercise training reduced total phospholamban protein content by 23% in both the WT and KD mice but remained 20% higher overall in KD mice. Collectively, these data suggest that AMPKα influences SERCA2a and phospholamban protein content in the sedentary and exercised heart, and that exercise-induced changes in SERCA2a protein are dependent on AMPKα function.
Collapse
Affiliation(s)
- Marc P. Morissette
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shanel E. Susser
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Andrew N. Stammers
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Teri L. Moffatt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2E 3N4, Canada
| | - Theodore J. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Thomas Netticadan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Agriculture and Agri-Food Canada, Winnipeg, MB R3C 3G7, Canada
| | - Sheena Premecz
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Kimberley A. O’Hara
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Todd A. Duhamel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
12
|
Liu G, Li SQ, Hu PP, Tong XY. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy. Diab Vasc Dis Res 2018; 15:322-335. [PMID: 29762054 DOI: 10.1177/1479164118774313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.
Collapse
Affiliation(s)
- Gang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Si Qi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Mosole S, Zampieri S, Furlan S, Carraro U, Löefler S, Kern H, Volpe P, Nori A. Effects of Electrical Stimulation on Skeletal Muscle of Old Sedentary People. Gerontol Geriatr Med 2018; 4:2333721418768998. [PMID: 29662923 PMCID: PMC5896842 DOI: 10.1177/2333721418768998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/10/2023] Open
Abstract
Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins.
Collapse
Affiliation(s)
- Simone Mosole
- University of Padova, Italy.,Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Zampieri
- University of Padova, Italy.,Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Sandra Furlan
- Institute of Neuroscience Consiglio Nazionale delle Ricerche, Padova, Italy
| | - Ugo Carraro
- IRRCS Fondazione Ospedale San Camillo, Venice, Italy
| | - Stefan Löefler
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation, Vienna, Austria.,Institute of Physical Medicine and Rehabilitation, St. Pölten, Austria
| | | | | |
Collapse
|
14
|
Aoi W, Maoka T, Abe R, Fujishita M, Tominaga K. Comparison of the effect of non-esterified and esterified astaxanthins on endurance performance in mice. J Clin Biochem Nutr 2018; 62:161-166. [PMID: 29610556 PMCID: PMC5874239 DOI: 10.3164/jcbn.17-89] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Astaxanthin, a natural antioxidant, exists in non-esterified and esterified forms. Although it is known that astaxanthin can improve exercise endurance and cause metabolic improvement in skeletal muscle, the effects of the two different forms are unclear. We investigated the effects of the different forms of astaxanthin on endurance in mice. Eight-week-old ICR mice were divided into four groups: control; astaxanthin extracted from Haematococcus pluvialis in an esterified form; astaxanthin extracted from Phaffia rhodozyma in a non-esterified form; and astaxanthin synthesized chemically in a non-esterified form. After 5 weeks of treatment, each group was divided into sedentary and exercise groups. In the group fed astaxanthin from Haematococcus, the running time to exhaustion was longest, and the plasma and tissue concentrations of astaxanthin were significantly higher than those in the other groups. Astaxanthin from Haematococcus increased 5'-adenosine monophosphate-activated protein kinase levels in the skeletal muscle. Although the mice in the Haematococcus group ran for longer, hexanoyl lysine adduct levels in the skeletal muscle mitochondria were similar in the control and Haematococcus groups. Our results suggested that esterified astaxanthin promoted energy production and protected tissues from oxidative damage during exercise owing to its favorable absorption properties, leading to a longer running time.
Collapse
Affiliation(s)
- Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takashi Maoka
- Research Institute for Production Development, 15 Morimoto-cho, Shimogamo, Sakyo-ku, Kyoto 606-0805, Japan
| | - Ryo Abe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Mayuko Fujishita
- AstaReal Co., Ltd., 55 Yokohoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| | - Kumi Tominaga
- AstaReal Co., Ltd., 55 Yokohoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| |
Collapse
|
15
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Mohan D, Lewis A, Patel MS, Curtis KJ, Lee JY, Hopkinson NS, Wilkinson IB, Kemp PR, Polkey MI. Using laser capture microdissection to study fiber specific signaling in locomotor muscle in COPD: A pilot study. Muscle Nerve 2017; 55:902-912. [PMID: 27680944 DOI: 10.1002/mus.25423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Quadriceps dysfunction is important in chronic obstructive pulmonary disease (COPD), with an associated increased proportion of type II fibers. Investigation of protein synthesis and degradation has yielded conflicting results, possibly due to study of whole biopsy samples, whereas signaling may be fiber-specific. Our objective was to develop a method for fiber-specific gene expression analysis. METHODS 12 COPD and 6 healthy subjects underwent quadriceps biopsy. Cryosections were immunostained for type II fibers, which were separated using laser capture microdissection (LCM). Whole muscle and different fiber populations were subject to quantitative polymerase chain reaction. RESULTS Levels of muscle-RING-finger-protein-1 and Atrogin-1 were lower in type II fibers of COPD versus healthy subjects (P = 0.02 and P = 0.03, respectively), but differences were not apparent in whole muscle or type I fibers. CONCLUSIONS We describe a novel method for studying fiber-specific gene expression in optimum cutting temperature compound-embedded muscle specimens. LCM offers a more sensitive way to identify molecular changes in COPD muscle. Muscle Nerve 55: 902-912, 2017.
Collapse
Affiliation(s)
- Divya Mohan
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| | - Amy Lewis
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom, SW7 2AZ
| | - Mehul S Patel
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| | - Katrina J Curtis
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| | - Jen Y Lee
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom, SW7 2AZ
| | - Nicholas S Hopkinson
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| | - Ian B Wilkinson
- Clinical Pharmacology Unit, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Paul R Kemp
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom, SW7 2AZ
| | - Michael I Polkey
- NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| |
Collapse
|
17
|
Melo SFS, Barauna VG, Júnior MAC, Bozi LHM, Drummond LR, Natali AJ, de Oliveira EM. Resistance training regulates cardiac function through modulation of miRNA-214. Int J Mol Sci 2015; 16:6855-67. [PMID: 25822872 PMCID: PMC4424992 DOI: 10.3390/ijms16046855] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022] Open
Abstract
Aims: To determine the effects of resistance training (RT) on the expression of microRNA (miRNA)-214 and its target in sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), and on the morphological and mechanical properties of isolated left ventricular myocytes. Main methods: Male Wistar rats were divided into two groups (n = 7/group): Control (CO) or trained (TR). The exercise-training protocol consisted of: 4 × 12 bouts, 5×/week during 8 weeks, with 80% of one repetition maximum. Key findings: RT increased the left ventricular myocyte width by 15% and volume by 12%, compared with control animals (p < 0.05). The time to half relaxation and time to peak were 8.4% and 4.4% lower, respectively, in cells from TR group as compared to CO group (p < 0.05). RT decreased miRNA-214 level by 18.5% while its target SERCA2a expression were 18.5% higher (p < 0.05). Significance: Our findings showed that RT increases single left ventricular myocyte dimensions and also leads to faster cell contraction and relaxation. These mechanical adaptations may be related to the augmented expression of SERCA2a which, in turn, may be associated with the epigenetic modification of decreased miRNA-214 expression.
Collapse
Affiliation(s)
- Stéphano Freitas Soares Melo
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil.
| | - Valério Garrone Barauna
- Laboratory of Molecular Physiology, Health Sciences Center, Federal University of Espírito Santo, Vitória 29043-900, Brazil.
| | | | - Luiz Henrique Marchesi Bozi
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil.
| | - Lucas Rios Drummond
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Edilamar Menezes de Oliveira
- Laboratory of Biochemistry and Molecular Biology of the Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil.
| |
Collapse
|
18
|
Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol 2015; 93:843-54. [PMID: 25730320 DOI: 10.1139/cjpp-2014-0463] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca(2+)) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca(2+) sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca(2+) sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca(2+) transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.
Collapse
Affiliation(s)
- Andrew N Stammers
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Shanel E Susser
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| | - Naomi C Hamm
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Michael W Hlynsky
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Dustin E Kimber
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - D Scott Kehler
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre
| | - Todd A Duhamel
- a Health, Leisure & Human Performance Research Institute, Faculty of Kinesiology & Recreation Management, University of Manitoba.,b Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre.,c Department of Physiology, Faculty of Health Sciences, University of Manitoba
| |
Collapse
|