1
|
Fitts RH, Wang X, Kwok WM, Camara AKS. Cardiomyocyte Adaptation to Exercise: K+ Channels, Contractility and Ischemic Injury. Int J Sports Med 2024; 45:791-803. [PMID: 38648799 DOI: 10.1055/a-2296-7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), β-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3β, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.
Collapse
Affiliation(s)
- Robert H Fitts
- Biological Sciences, Marquette University, Milwaukee, United States
| | - Xinrui Wang
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
| | - Wai-Meng Kwok
- Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
| | - Amadou K S Camara
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, United States
- Anesthesiology, Medical College of Wisconsin, Milwaukee, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, United States
- Physiology, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
2
|
Veselik AK, Arteyeva NV, Varlamova NG, Loginova TP, Garnov IO, Bojko ER, Azarov JE. Cardiac repolarisation indices are associated with oxygen consumption during maximal exercise test in highly-trained cross-country skiers. J Sports Sci 2024; 42:1072-1080. [PMID: 39056492 DOI: 10.1080/02640414.2024.2383009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
The objective of this study was to test the vectorelectrocardiographic T-wave characteristics for their associations with oxygen consumption (VO2) and physical performance during a maximal cardiopulmonary exercise test (CPET) in highly trained cross-country skiers. Male highly trained cross-country skiers (n = 30) performed the maximal CPET on the bicycle ergospirometric "Oxycon Pro" system with simultaneous oxygen consumption (VO2) and electrocardiogram recording. The measurements were done at rest; the stage preceding anaerobic threshold (preAnT); peak load; and recovery. The anaerobic threshold was estimated by respiratory exchange ratio. Physical performance was estimated by maximal oxygen consumption (VO2max/kg). VECG characteristics were calculated using Kors transformation procedure. During the test, the magnitudes of T-vector, Tx and Ty components decreased until preAnT, then stayed relatively stable until peak load, and reversed during recovery. In univariate linear regression analysis, T-vector amplitude and Tx, Ty and Tz magnitudes were associated with VO2/kg during the test (p < 0.010). The baseline T-vector characteristics were not associated with physical performance. At the preAnT stage, Tx and T-vector amplitude were associated with VO2max/kg (RC 12.70, 95% CI 0.68-24.73, p = 0.039 and RC 10.64, 95% CI 1.62-19.67, p = 0.023, respectively).
Collapse
Affiliation(s)
- Alla K Veselik
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia V Arteyeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Nina G Varlamova
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana P Loginova
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Igor O Garnov
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Evgeny R Bojko
- Department of Ecological and Medical Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jan E Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
3
|
Howlett LA, Stevenson-Cocks H, Colman MA, Lancaster MK, Benson AP. Ionic current changes underlying action potential repolarization responses to physiological pacing and adrenergic stimulation in adult rat ventricular myocytes. Physiol Rep 2023; 11:e15766. [PMID: 37495507 PMCID: PMC10371833 DOI: 10.14814/phy2.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
This study aimed to simulate ventricular responses to elevations in myocyte pacing and adrenergic stimulation using a novel electrophysiological rat model and investigate ion channel responses underlying action potential (AP) modulations. Peak ion currents and AP repolarization to 50% and 90% of full repolarization (APD50-90 ) were recorded during simulations at 1-10 Hz pacing under control and adrenergic stimulation conditions. Further simulations were performed with incremental ion current block (L-type calcium current, ICa ; transient outward current, Ito ; slow delayed rectifier potassium current, IKs ; rapid delayed rectifier potassium current, IKr ; inward rectifier potassium current, IK1 ) to identify current influence on AP response to exercise. Simulated APD50-90 closely resembled experimental findings. Rate-dependent increases in IKs (6%-101%), IKr (141%-1339%), and ICa (0%-15%) and reductions in Ito (11%-57%) and IK1 (1%-9%) were observed. Meanwhile, adrenergic stimulation triggered moderate increases in all currents (23%-67%) except IK1 . Further analyses suggest AP plateau is most sensitive to modulations in Ito and ICa while late repolarization is most sensitive to IK1 , ICa , and IKs , with alterations in IKs predominantly stimulating the greatest magnitude of influence on late repolarization (35%-846% APD90 prolongation). The modified Leeds rat model (mLR) is capable of accurately modeling APs during physiological stress. This study highlights the importance of ICa , Ito , IK1, and IKs in controlling electrophysiological responses to exercise. This work will benefit the study of cardiac dysfunction, arrythmia, and disease, though future physiologically relevant experimental studies and model development are required.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Alan P Benson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Mulla W, Murninkas M, Levi O, Etzion Y. Incorrectly corrected? QT interval analysis in rats and mice. Front Physiol 2022; 13:1002203. [PMID: 36304573 PMCID: PMC9595597 DOI: 10.3389/fphys.2022.1002203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
QT interval, a surrogate measure for ventricular action potential duration (APD) in the surface ECG, is widely used to identify cardiac abnormalities and drug safety. In humans, cardiac APD and QT interval are prominently affected by heart rate (HR), leading to widely accepted formulas to correct the QT interval for HR changes (QT corrected - QTc). While QTc is widely used in the clinic, the proper way to correct the QT interval in small mammals such as rats and mice is not clear. Over the years, empiric correction formulas were developed for rats and mice, which are widely used in the literature. Recent experimental findings obtained from pharmacological and direct pacing experiments in unanesthetized rodents show that the rate-adaptation properties are markedly different from those in humans and the use of existing QTc formulae can lead to major errors in data interpretation. In the present review, these experimental findings are summarized and discussed.
Collapse
Affiliation(s)
- Wesam Mulla
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Wesam Mulla, ; Yoram Etzion,
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Or Levi
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Wesam Mulla, ; Yoram Etzion,
| |
Collapse
|
5
|
Howlett LA, Kirton HM, Al‐Owais MM, Steele D, Lancaster MK. Action potential responses to changes in stimulation frequency and isoproterenol in rat ventricular myocytes. Physiol Rep 2022; 10:e15166. [PMID: 35076184 PMCID: PMC8787729 DOI: 10.14814/phy2.15166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023] Open
Abstract
PURPOSE Current understanding of ventricular action potential adaptation to physiological stress is generally based on protocols using non-physiological rates and conditions isolating rate effects from escalating adrenergic stimulation. To permit refined understanding, ventricular action potentials were assessed across physiological pacing frequencies in the presence and absence of adrenergic stimuli. Isolated and combined effects were analyzed to assess their ability to replicate in-vivo responses. METHODS Steady-state action potentials from ventricular myocytes isolated from male Wistar rats (3 months; N = 8 animals) were recorded at 37°C with steady-state pacing at 1, 2, 4, 6, 8 and 10 Hz using whole-cell patch-clamp. Action potential repolarization to 25, 50, 75, 90 and 100% of full repolarization (APD25-100 ) was compared before and after 5 nM, 100 nM and 1 µM isoproterenol doses. RESULTS A Repeated measures ANOVA found APD50-90 shortened with 5 nM isoproterenol infusion by 6-25% (but comparable across doses) (p ≤ 0.03). Pacing frequencies emulating a normal rat heart rate (6 Hz) prolonged APD50 23% compared with 1 Hz pacing. Frequencies emulating exercise or stress (10 Hz) shortened APD90 (29%). CONCLUSION These results demonstrate modest action potential shortening in response to adrenergic stimulation and elevations in pacing beyond physiological resting rates. Our findings indicate changes in action potential plateau and late repolarization predominantly underlie simulated exercise responses in the rat heart. This work provides novel action potential reference data and will help model cardiac responses to physiological stimuli in the rat heart via computational techniques.
Collapse
Affiliation(s)
| | | | | | - Derek Steele
- Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | | |
Collapse
|
6
|
Ning S, Hua L, Ji Z, Fan D, Meng X, Li Z, Wang Q, Guo Z. Protein 4.1 family and ion channel proteins interact to regulate the process of heart failure in rats. Acta Histochem 2021; 123:151748. [PMID: 34271280 DOI: 10.1016/j.acthis.2021.151748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a major cause of death in cardiovascular diseases worldwide, and its molecular mechanisms and effective prevention strategies remain to be further studied. The myocardial cytoskeleton plays a pivotal role in many heart diseases. However, little is known about the function of the membrane cytoskeleton 4.1 protein family and related regulatory mechanisms in the pathogenesis of HF. In this study, we detected the localization and expression of the protein 4.1 family and ion channel proteins in a rat HF model induced by doxorubicin (DOX), and studied the interactions between them. Our results showed that compared with the control group, the HF group displayed an increased expression level of protein 4.1R and decreased levels of protein 4.1 G and 4.1 N. The Nav1.5 protein levels were significantly increased, while the SERCA2a and Cav1.2 protein levels were significantly decreased in the HF group. Furthermore, there is co-localization and interaction between protein 4.1R and Nav1.5, protein 4.1 G and SERCA2a, protein 4.1 N and Cav1.2, respectively. Taken together, the results indicated that the protein 4.1 family might be involved in the occurrence and development of HF through its interaction with ion channel proteins, suggesting that 4.1 proteins may serve as a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Shuwei Ning
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Lei Hua
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Dandan Fan
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiangguang Meng
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhiying Li
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Qian Wang
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China
| | - Zhikun Guo
- Zhengzhou Key Laboratory, Zhengzhou No. 7 People's Hospital, Zhengzhou, 450016, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Howlett LA, Lancaster MK. Reduced cardiac response to the adrenergic system is a key limiting factor for physical capacity in old age. Exp Gerontol 2021; 150:111339. [PMID: 33838216 DOI: 10.1016/j.exger.2021.111339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Ageing is associated with a progressive reduction in physical capacity reducing quality of life. One key physiological limitation of physical capacity that deteriorates in a progressive age-dependent manner is cardiac reserve. Peak cardiac output falls progressively with advancing age such that in extreme old age there is limited ability to enhance cardiac output beyond basal function as is required to support the increased metabolic needs of physical activity. This loss of dynamic range in cardiac output associates with a progressive reduction in the heart's response to adrenergic stimulation. A combination of decreases in the expression and functioning of beta1 adrenergic receptors partially underlies this change. Changes in end effector proteins also have a role to play in this decline. Alterations in the efficiency of excitation-contraction coupling contribute to the reduced chronotropic, inotropic and lusitropic responses of the aged heart. Moderate to vigorous endurance exercise training however has some potential to counter elements of these changes. Further studies are required to fully elucidate the key pivotal mechanisms involved in the age-related loss of response to adrenergic signalling to allow targeted therapeutic strategies to be developed with the aim of preserving physical capacity in advanced old age.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | | |
Collapse
|
8
|
Palmer BF, Carrero JJ, Clegg DJ, Colbert GB, Emmett M, Fishbane S, Hain DJ, Lerma E, Onuigbo M, Rastogi A, Roger SD, Spinowitz BS, Weir MR. Clinical Management of Hyperkalemia. Mayo Clin Proc 2021; 96:744-762. [PMID: 33160639 DOI: 10.1016/j.mayocp.2020.06.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022]
Abstract
Hyperkalemia is an electrolyte abnormality with potentially life-threatening consequences. Despite various guidelines, no universally accepted consensus exists on best practices for hyperkalemia monitoring, with variations in precise potassium (K+) concentration thresholds or for the management of acute or chronic hyperkalemia. Based on the available evidence, this review identifies several critical issues and unmet needs with regard to the management of hyperkalemia. Real-world studies are needed for a better understanding of the prevalence of hyperkalemia outside the clinical trial setting. There is a need to improve effective management of hyperkalemia, including classification and K+ monitoring, when to reinitiate previously discontinued renin-angiotensin-aldosterone system inhibitor (RAASi) therapy, and when to use oral K+-binding agents. Monitoring serum K+ should be individualized; however, increased frequency of monitoring should be considered for patients with chronic kidney disease, diabetes, heart failure, or a history of hyperkalemia and for those receiving RAASi therapy. Recent clinical studies suggest that the newer K+ binders (patiromer sorbitex calcium and sodium zirconium cyclosilicate) may facilitate optimization of RAASi therapy. Enhancing the knowledge of primary care physicians and internists with respect to the safety profiles of these newer K+ binders may increase confidence in managing patients with hyperkalemia. Lastly, the availability of newer K+-binding agents requires further study to establish whether stringent dietary K+ restrictions are needed in patients receiving K+-binder therapy. Individualized monitoring of serum K+ among patients with an increased risk of hyperkalemia and the use of newer K+-binding agents may allow for optimization of RAASi therapy and more effective management of hyperkalemia.
Collapse
Affiliation(s)
- Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas.
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Deborah J Clegg
- Drexel University College of Nursing and Health Professions, Philadelphia, PA
| | | | | | - Steven Fishbane
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| | - Debra J Hain
- Christine E. Lynn College of Nursing, Florida Atlantic University, and Cleveland Clinic Florida, Weston, FL
| | - Edgar Lerma
- Department of Medicine, University of Illinois at Chicago/Advocate Christ Medical Center, Oak Lawn
| | - Macaulay Onuigbo
- Robert Larner College of Medicine, University of Vermont Medical Center, Burlington
| | - Anjay Rastogi
- David Geffen School of Medicine, University of California, Los Angeles
| | - Simon D Roger
- Renal Research, Gosford Hospital, Gosford, Australia
| | | | - Matthew R Weir
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
9
|
Rudokas MW, Post JP, Sataray-Rodriguez A, Sherpa RT, Moshal KS, Agarwal SR, Harvey RD. Compartmentation of β 2 -adrenoceptor stimulated cAMP responses by phosphodiesterase types 2 and 3 in cardiac ventricular myocytes. Br J Pharmacol 2021; 178:1574-1587. [PMID: 33475150 DOI: 10.1111/bph.15382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In cardiac myocytes, cyclic AMP (cAMP) produced by both β1 - and β2 -adrenoceptors increases L-type Ca2+ channel activity and myocyte contraction. However, only cAMP produced by β1 -adrenoceptors enhances myocyte relaxation through phospholamban-dependent regulation of the sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2). Here we have tested the hypothesis that stimulation of β2 -adrenoceptors produces a cAMP signal that is unable to reach SERCA2 and determine what role, if any, phosphodiesterase (PDE) activity plays in this compartmentation. EXPERIMENTAL APPROACH The cAMP responses produced by β1 -and β2 -adrenoceptor stimulation were studied in adult rat ventricular myocytes using two different fluorescence resonance energy transfer (FRET)-based biosensors, the Epac2-camps, which is expressed uniformly throughout the cytoplasm of the entire cell and the Epac2-αKAP, which is targeted to the SERCA2 signalling complex. KEY RESULTS Selective activation of β1 - or β2 -adrenoceptors produced cAMP responses detected by Epac2-camps. However, only stimulation of β1 -adrenoceptors produced a cAMP response detected by Epac2-αKAP. Yet, stimulation of β2 -adrenoceptors was able to produce a cAMP signal detected by Epac2-αKAP in the presence of selective inhibitors of PDE2 or PDE3, but not PDE4. CONCLUSION AND IMPLICATIONS These results support the conclusion that cAMP produced by β2 -adrenoceptor stimulation was not able to reach subcellular locations where the SERCA2 pump is located. Furthermore, this compartmentalized response is due at least in part to PDE2 and PDE3 activity. This discovery could lead to novel PDE-based therapeutic treatments aimed at correcting cardiac relaxation defects associated with certain forms of heart failure.
Collapse
Affiliation(s)
| | - John P Post
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | | | - Rinzhin T Sherpa
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | - Karni S Moshal
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | | | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
10
|
Kim MS, Fleres B, Lovett J, Anfinson M, Samudrala SSK, Kelly LJ, Teigen LE, Cavanaugh M, Marquez M, Geurts AM, Lough JW, Mitchell ME, Fitts RH, Tomita-Mitchell A. Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Front Cell Dev Biol 2020; 8:440. [PMID: 32656206 PMCID: PMC7324479 DOI: 10.3389/fcell.2020.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease; however, its etiology remains largely unknown. We previously demonstrated that genetic variants in the MYH6 gene are significantly associated with HLHS. Additionally, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from an HLHS-affected family trio (affected parent, unaffected parent, affected proband) carrying an MYH6-R443P head domain variant demonstrated dysmorphic sarcomere structure and increased compensatory MYH7 expression. Analysis of iPSC-CMs derived from the HLHS trio revealed that only beta myosin heavy chain expression was observed in CMs carrying the MYH6-R443P variant after differentiation day 15 (D15). Functional assessments performed between D20-D23 revealed that MYH6-R443P variant CMs contracted more slowly (40 ± 2 vs. 47 ± 2 contractions/min, P < 0.05), shortened less (5.6 ± 0.5 vs. 8.1 ± 0.7% of cell length, P < 0.05), and exhibited slower shortening rates (19.9 ± 1.7 vs. 28.1 ± 2.5 μm/s, P < 0.05) and relaxation rates (11.0 ± 0.9 vs. 19.7 ± 2.0 μm/s, P < 0.05). Treatment with isoproterenol had no effect on iPSC-CM mechanics. Using CRISPR/Cas9 gene editing technology, introduction of the R443P variant into the unaffected parent's iPSCs recapitulated the phenotype of the proband's iPSC-CMs, and conversely, correction of the R443P variant in the proband's iPSCs rescued the cardiomyogenic differentiation, sarcomere organization, slower contraction (P < 0.05) and decreased velocity phenotypes (P < 0.0001). This is the first report to identify that cardiac tissues from HLHS patients with MYH6 variants can exhibit sarcomere disorganization in atrial but not ventricular tissues. This new discovery was not unexpected, since MYH6 is expressed predominantly in the postnatal atria in humans. These findings demonstrate the feasibility of employing patient-derived iPSC-CMs, in combination with patient cardiac tissues, to gain mechanistic insight into how genetic variants can lead to HLHS. Results from this study suggest that decreased contractility of CMs due to sarcomere disorganization in the atria may effect hemodynamic changes preventing development of a normal left ventricle.
Collapse
Affiliation(s)
- Min-Su Kim
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Brandon Fleres
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Jerrell Lovett
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Melissa Anfinson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sai Suma K Samudrala
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lauren J Kelly
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Laura E Teigen
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Matthew Cavanaugh
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Maribel Marquez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John W Lough
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Aoy Tomita-Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
11
|
Sudhir R, Du Q, Sukhodub A, Jovanović S, Jovanović A. Improved adaptation to physical stress in mice overexpressing SUR2A is associated with changes in the pattern of Q-T interval. Pflugers Arch 2020; 472:683-691. [PMID: 32458088 PMCID: PMC7293680 DOI: 10.1007/s00424-020-02401-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to determine whether increased expression of SUR2A, a regulatory subunit of sarcolemmal ATP-sensitive K+ (KATP) channels, improves adaptation to physical stress and regulates cardiac electrophysiology in physical stress. All experiments have been done on transgenic mice in which SUR2A expression was controlled by cytomegalovirus immediate-early (CMV) promoter (SUR2A) and their littermate wild-type controls (WT). The levels of mRNA in heart tissue were measured by real-time RT-PCR. Electrocardiogram (ECG) was monitored with telemetry. The physical adaptation to stress was elucidated using treadmill. We have found that SUR2A mice express 8.34 ± 0.20 times more myocardial SUR2A mRNA than WT (n = 8–18). The tolerated workload on exercise stress test was more than twofold higher in SUR2A than in WT (n = 5–7; P = 0.01). The pattern of Q-T interval from the beginning of the exercise test until drop point was as follows in the wild type: (1) increase in Q-T interval, (2) decrease in Q-T interval, (3) steady stage with a further decrease in Q-T interval, and (4) a sharp increase in Q-T interval. The pattern of Q-T interval was different in transgenic mice and the following stages have been observed: (1) increase in Q-T interval, (2) decrease in Q-T interval, and (3) prolonged steady-state stage with a slight decrease in Q-T interval. In SUR2A mice, no stage 4 (a sharp increase in Q-T interval) was observed. Based on the obtained results, we conclude that an increase in the expression of SUR2A improves adaptation to physical stress and physical endurance by increasing the number of sarcolemmal KATP channels and, by virtue of their channel activity, improving Ca2+ homeostasis in the heart.
Collapse
Affiliation(s)
- Rajni Sudhir
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Qingyou Du
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Andriy Sukhodub
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Sofija Jovanović
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus. .,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
12
|
Wang X, Fitts RH. Cardiomyocyte slowly activating delayed rectifier potassium channel: regulation by exercise and β-adrenergic signaling. J Appl Physiol (1985) 2020; 128:1177-1185. [DOI: 10.1152/japplphysiol.00802.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Results demonstrate that exercise training (TRN) downregulates ventricular IKs channel current and the channel’s responsiveness to β-agonist factors mediated by TRN-induced decline in channel subunits KCNQ1 and KCNE1 and the A-kinase anchoring protein yotiao. The reduced IKs current helps explain the TRN-induced prolongation of the action potential in basal conditions and, coupled with previously reported upregulation of the KATP channel, results in a more efficient heart that is better able to respond to beat-by-beat changes in metabolism.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
13
|
Gasparini A, Evans M, Barany P, Xu H, Jernberg T, Ärnlöv J, Lund LH, Carrero JJ. Plasma potassium ranges associated with mortality across stages of chronic kidney disease: the Stockholm CREAtinine Measurements (SCREAM) project. Nephrol Dial Transplant 2020; 34:1534-1541. [PMID: 30085251 PMCID: PMC6735645 DOI: 10.1093/ndt/gfy249] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background Small-scale studies suggest that hyperkalaemia is a less threatening condition in chronic kidney disease (CKD), arguing adaptation/tolerance to potassium (K+) retention. This study formally evaluates this hypothesis by estimating the distribution of plasma K+ and its association with mortality across CKD stages. Methods This observational study included all patients undergoing plasma K+ testing in Stockholm during 2006–11. We randomly selected one K+ measurement per patient and constructed a cross-sectional cohort with mortality follow-up. Covariates included demographics, comorbidities, medications and estimated glomerular filtration rate (eGFR). We estimated K+ distribution and defined K+ ranges associated with 90-, 180- and 365-day mortality. Results Included were 831 760 participants, of which 70 403 (8.5%) had CKD G3 (eGFR <60–30 mL/min) and 8594 (1.1%) had CKD G4–G5 (eGFR <30 mL/min). About 66 317 deaths occurred within a year. Adjusted plasma K+ increased across worse CKD stages: from median 3.98 (95% confidence interval 3.49–4.59) for eGFR >90 to 4.43 (3.22–5.65) mmol/L for eGFR ≤15 mL/min/1.73 m2. The association between K+ and mortality was U-shaped, but it flattened at lower eGFR strata and shifted upwards. For instance, the range where the 90-day mortality risk increased by no more than 100% was 3.45–4.94 mmol/L in eGFR >60 mL/min, but was 3.36–5.18 in G3 and 3.26–5.53 mmol/L in G4–G5. In conclusion, CKD stage modifies K+ distribution and the ranges that predict mortality in the community. Conclusion Although this study supports the view that hyperkalaemia is better tolerated with worse CKD, it challenges the current use of a single optimal K+ range for all patients.
Collapse
Affiliation(s)
| | - Marie Evans
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Barany
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Lars H Lund
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juan-Jesús Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Martinez-Mateu L, Saiz J, Aromolaran AS. Differential Modulation of IK and ICa,L Channels in High-Fat Diet-Induced Obese Guinea Pig Atria. Front Physiol 2019; 10:1212. [PMID: 31607952 PMCID: PMC6773813 DOI: 10.3389/fphys.2019.01212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Obesity mechanisms that make atrial tissue vulnerable to arrhythmia are poorly understood. Voltage-dependent potassium (IK, IKur, and IK1) and L-type calcium currents (ICa,L) are electrically relevant and represent key substrates for modulation in obesity. We investigated whether electrical remodeling produced by high-fat diet (HFD) alone or in concert with acute atrial stimulation were different. Electrophysiology was used to assess atrial electrical function after short-term HFD-feeding in guinea pigs. HFD atria displayed spontaneous beats, increased IK (IKr + IKs) and decreased ICa,L densities. Only with pacing did a reduction in IKur and increased IK1 phenotype emerge, leading to a further shortening of action potential duration. Computer modeling studies further indicate that the measured changes in potassium and calcium current densities contribute prominently to shortened atrial action potential duration in human heart. Our data are the first to show that multiple mechanisms (shortened action potential duration, early afterdepolarizations and increased incidence of spontaneous beats) may underlie initiation of supraventricular arrhythmias in obese guinea pig hearts. These results offer different mechanistic insights with implications for obese patients harboring supraventricular arrhythmias.
Collapse
Affiliation(s)
- Laura Martinez-Mateu
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Ademuyiwa S Aromolaran
- Cardiac Electrophysiology and Metabolism Research Group, VA New York Harbor Healthcare System, Brooklyn, NY, United States.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.,Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
15
|
Wang X, Fitts RH. Effects of regular exercise on ventricular myocyte biomechanics and KATP channel function. Am J Physiol Heart Circ Physiol 2018; 315:H885-H896. [DOI: 10.1152/ajpheart.00130.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exercise training is known to protect the heart from ischemia and improve function during exercise by reducing cardiomyocyte action potential duration (APD) and increasing contractility. The cellular mechanisms involve β-adrenergic regulation and the ATP-sensitive K+ (KATP) channel, but how each alters function of the left ventricle and sex specificity is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to wheel-running (TRN) or sedentary (SED) groups. After 6–8 wk of training, myocytes were isolated from the left ventricle and field stimulated at 1, 2, and 5 Hz. TRN significantly increased cardiomyocyte contractility, the kinetics of the Ca2+ transient, and responsiveness to the adrenergic receptor agonist isoproterenol (ISO), as reflected by an increased sarcomere shortening. Importantly, we demonstrated a TRN-induced upregulation of KATP channels, which was reflected by elevated content, current density, and the channel’s contribution to APD shortening at high activation rates and in the presence of the activator pinacidil. TRN induced increase in KATP current occurred throughout the left ventricle, but channel subunit content showed regional specificity with increases in Kir6.2 in the apex and SUR2A in base regions. In summary, TRN elevated cardiomyocyte cross-bridge kinetics, Ca2+ sensitivity, and the responsiveness of contractile function to β-adrenergic receptor stimulation in both sexes. Importantly, upregulation of the KATP channel accelerates repolarization and shortens APD during stress and exercise. These adaptations have clinical importance, as increased contractility and reduced APD would help protect cardiac output and reduce intracellular Ca2+ overload during stresses such as regional ischemia. NEW & NOTEWORTHY Our results demonstrate that regular exercise significantly increased ventricular myocyte shortening and relaxation velocity and the rate of rise in intracellular Ca2+ transient and enhanced the response of biomechanics and Ca2+ reuptake to β-adrenergic stimulation. Importantly, exercise training upregulated the cardiomyocyte sarcolemma ATP-sensitive K+ channel across the left ventricle in both sexes, as reflected by elevated channel subunit content, current density, and the channel’s contribution to reduced action potential duration at high activation rates.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|