1
|
Abstract
This chapter broadly reviews cardiopulmonary sympathetic and vagal sensors and their reflex functions during physiologic and pathophysiologic processes. Mechanosensory operating mechanisms, including their central projections, are described under multiple sensor theory. In addition, ways to interpret evidence surrounding several controversial issues are provided, with detailed reasoning on how conclusions are derived. Cardiopulmonary sensory roles in breathing control and the development of symptoms and signs and pathophysiologic processes in cardiopulmonary diseases (such as cough and neuroimmune interaction) also are discussed.
Collapse
Affiliation(s)
- Jerry Yu
- Department of Medicine (Pulmonary), University of Louisville, and Robley Rex VA Medical Center, Louisville, KY, United States.
| |
Collapse
|
2
|
Huff A, Reed MD, Iceman KE, Howland DR, Pitts T. Sex-specific vagal and spinal modulation of swallow and its coordination with breathing. PLoS One 2020; 15:e0234194. [PMID: 32525920 PMCID: PMC7289368 DOI: 10.1371/journal.pone.0234194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Swallow-breathing coordination is influenced by changes in lung volume, which is modulated by feedback from both vagal and spinal sensory afferents. The purpose of this study was to manipulate feedback from these afferents, with and without a simultaneous mechanical challenge (chest compression), in order to assess the influence of each sensory pathway on swallow in rats. We hypothesized that manipulation of afferent feedback would shift the occurrence of swallow toward the inspiratory phase of breathing. Afferent feedback was perturbed by lidocaine nebulization, extra-thoracic vagotomy, or lidocaine administration to the pleural space in sodium pentobarbital anesthetized rats (N = 43). These different afferent perturbations were performed both in control conditions (no chest compression), and with chest compression. Manipulating pulmonary stretch receptor-mediated volume feedback in male animals decreased swallow occurrence. Female rats appear to rely more on spinal afferent feedback, as swallow occurrence shifted to late expiration with chest compression and vagotomy or lidocaine injections. Results suggest that sex-specific mechanisms modulate swallow-breathing coordination, and that vagal feedback is inhibitory to swallow-related muscles, while spinal feedback from pleural afferents has excitatory effects. This study supports the theory that a balance of vagal and spinal afferent feedback is necessary to maintain an optimal swallow pattern and swallow-breathing coordination.
Collapse
Affiliation(s)
- Alyssa Huff
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Mitchell D. Reed
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Kimberly E. Iceman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Dena R. Howland
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Research Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, United States of America
| | - Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
3
|
Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol 2019; 9:1025-1080. [PMID: 31187893 DOI: 10.1002/cphy.c180008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Biological and Dental Sciences, Idaho State University Pocatello, Idaho, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ralph F Fregosi
- Departments of Physiology and Neuroscience, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Thakre PP, Bellingham MC. Capsaicin Enhances Glutamatergic Synaptic Transmission to Neonatal Rat Hypoglossal Motor Neurons via a TRPV1-Independent Mechanism. Front Cell Neurosci 2017; 11:383. [PMID: 29259542 PMCID: PMC5723349 DOI: 10.3389/fncel.2017.00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated whether capsaicin modulated synaptic transmission to hypoglossal motor neurons (HMNs) by acting on transient receptor potential vanilloid type 1 (TRPV1) receptors. Using whole-cell patch clamp recording from neonatal rat HMNs, we found that capsaicin increased spontaneous excitatory post-synaptic current (sEPSC) frequency and amplitude. Interestingly, the only effect of capsaicin on spontaneous inhibitory post-synaptic currents (sIPSCs) was a significant decrease in sIPSC amplitude without altering frequency, indicating a post-synaptic mechanism of action. The frequency of miniature excitatory post-synaptic currents (mEPSCs), recorded in the presence of tetrodotoxin (TTX), was also increased by capsaicin, but capsaicin did not alter mEPSC amplitude, consistent with a pre-synaptic mechanism of action. A negative shift in membrane current (Iholding) was elicited by capsaicin under both recording conditions. The effect of capsaicin on excitatory synaptic transmission remained unchanged in the presence of the TRPV1 antagonists, capsazepine or SB366791, suggesting that capsaicin acts to modulate EPSCs via a mechanism which does not require TRPV1 activation. Capsaicin, however, did not alter evoked excitatory post-synaptic currents (eEPSCs) or the paired-pulse ratio (PPR) of eEPSCs. Repetitive action potential (AP) firing in HMNs was also unaltered by capsaicin, indicating that capsaicin does not change HMN intrinsic excitability. We have demonstrated that capsaicin modulates glutamatergic excitatory, as well as glycinergic inhibitory, synaptic transmission in HMNs by differing pre- and post-synaptic mechanisms. These results expand our understanding regarding the extent to which capsaicin can modulate synaptic transmission to central neurons.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Kubin L, Mann GL. Hypoglossal motoneurons are endogenously activated by serotonin during the active period of circadian cycle. Respir Physiol Neurobiol 2017; 248:17-24. [PMID: 29129751 DOI: 10.1016/j.resp.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022]
Abstract
In obstructive sleep apnea patients, contraction of lingual muscles protects the pharyngeal airway from collapse. Hypoglossal (XII) motoneurons innervate the muscles of the tongue and are themselves under wake-related excitatory drives, including that mediated by serotonin (5-HT). Estimates of endogenous 5-HT activation vary among different studies. We tested whether endogenous drive mediated by 5-HT is present in rat XII motoneurons when measured during the active period of the circadian cycle. We monitored sleep-wake states and lingual and nuchal electromyograms (EMGs) while perfusing the XII nucleus with a vehicle or a 5-HT2 receptor antagonist (mianserin, 0.2mM) at the active period onset. EMG levels were measured during each behavioral state and normalized by the mean EMG activity during wakefulness at 4-7am. Wake-related lingual EMG was significantly lower during mianserin perfusion than with the vehicle (53.0±9.7% vs. 84.5±8.7%; p=0.002). Mianserin had no effect on nuchal EMG or sleep-wake behavior. Thus, rat XII motoneurons receive endogenous serotonergic activation during wakefulness when measured during the dark period. This indicates that XII motoneuronal activity is enhanced by 5-HT output during the active period of the circadian cycle.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA.
| | - Graziella L Mann
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA
| |
Collapse
|
6
|
Vagal Control of Breathing Pattern after Midcervical Contusion in Rats. J Neurotrauma 2017; 34:734-745. [DOI: 10.1089/neu.2016.4645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Le Guen M, Naline E, Grassin-Delyle S, Devillier P, Faisy C. Effectiveness of a load-imposing device for cyclic stretching of isolated human bronchi: a validation study. PLoS One 2015; 10:e0127765. [PMID: 26011598 PMCID: PMC4444237 DOI: 10.1371/journal.pone.0127765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/18/2015] [Indexed: 11/19/2022] Open
Abstract
Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress during mechanical ventilation.
Collapse
Affiliation(s)
- Morgan Le Guen
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
- Departement of Anesthesiology, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Emmanuel Naline
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Stanislas Grassin-Delyle
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Philippe Devillier
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Christophe Faisy
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, 20 rue Leblanc, F-75908, Paris, Cedex 15, France
- * E-mail:
| |
Collapse
|
9
|
Hutchison AA, Leclerc F, Nève V, Pillow JJ, Robinson PD. The Respiratory System. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7193717 DOI: 10.1007/978-3-642-01219-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This chapter addresses upper airway physiology for the pediatric intensivist, focusing on functions that affect ventilation, with an emphasis on laryngeal physiology and control in breathing. Effective control of breathing ensures that the airway is protected, maintains volume homeostasis, and provides ventilation. Upper airway structures are effectors for all of these functions that affect the entire airway. Nasal functions include air conditioning and protective reflexes that can be exaggerated and involve circulatory changes. Oral cavity and pharyngeal patency enable airflow and feeding, but during sleep pharyngeal closure can result in apnea. Coordination of breathing with sucking and nutritive swallowing alters during development, while nonnutritive swallowing at all ages limits aspiration. Laryngeal functions in breathing include protection of the subglottic airway, active maintenance of its absolute volume, and control of tidal flow patterns. These are vital functions for normal lung growth in fetal life and during rapid adaptations to breathing challenges from birth through adulthood. Active central control of breathing focuses on the coordination of laryngeal and diaphragmatic activities, which adapts according to the integration of central and peripheral inputs. For the intensivist, knowledge of upper airway physiology can be applied to improve respiratory support. In a second part the mechanical properties of the respiratory system as a critical component of the chain of events that result in translation of the output of the respiratory rhythm generator to ventilation are described. A comprehensive understanding of respiratory mechanics is essential to the delivery of optimized and individualized mechanical ventilation. The basic elements of respiratory mechanics will be described and developmental changes in the airways, lungs, and chest wall that impact on measurement of respiratory mechanics with advancing postnatal age are reviewed. This will be follwowed by two sections, the first on respiratory mechanics in various neonatal pathologies and the second in pediatric pathologies. The latter can be classified in three categories. First, restrictive diseases may be of pulmonary origin, such as chronic interstitial lung diseases or acute lung injury/acute respiratory distress syndrome, which are usually associated with reduced lung compliance. Restrictive diseases may also be due to chest wall abnormalities such as obesity or scoliosis (idiopathic or secondary to neuromuscular diseases), which are associated with a reduction in chest wall compliance. Second, obstructive diseases are represented by asthma and wheezing disorders, cystic fibrosis, long term sequelae of neonatal lung disease and bronchiolitis obliterans following hematopoietic stem cell transplantation. Obstructive diseases are defined by a reduced FEV1/VC ratio. Third, neuromuscular diseases, mainly represented by DMD and SMA, are associated with a decrease in vital capacity linked to respiratory muscle weakness that is better detected by PImax, PEmax and SNIP measurements.
Collapse
|
10
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
11
|
The CC genotype of the delta-sarcoglycan gene polymorphism rs13170573 is associated with obstructive sleep apnea in the Chinese population. PLoS One 2014; 9:e114160. [PMID: 25474115 PMCID: PMC4256229 DOI: 10.1371/journal.pone.0114160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly heterogeneous sleep disorder, and increasing evidence suggests that genetic factors play a role in the etiology of OSA. Airway muscle dysfunction might promote pharyngeal collapsibility, mutations or single nucleotide polymorphisms (SNPs) in the delta-sarcoglycan (SCGD) gene associated with muscle dysfunction. To evaluate if SCGD gene SNPs are associated with OSA, 101 individuals without OSA and 97 OSA patients were recruited randomly. The genotype distributions of SNPs (rs157350, rs7715464, rs32076, rs13170573 and rs1835919) in case and control populations were evaluated. The GG, GC and CC genotypes of rs13170573 in control and OSA groups were 51.5% and 37.1%, 36.6% and 35.1%, and 11.9% and 27.8%, respectively. Significantly fewer OSA patients possessed the GG genotype and significantly more possessed the CC genotype compared with controls. Further multivariate logistic regression analysis showed that the CC genotype was an independent risk factor for OSA, with an odds ratio (OR) of 2.17 (95% confidence interval [CI]: 1.19-6.01). Other factors, such as age ≥ 50 years, male gender, body mass index (BMI) ≥ 25 kg/m(2), low-density lipoprotein cholesterol (LDL-C) level ≥ 3.33 mg/dL, smoking and hypertension, were also independent risk factors for OSA in our multivariate logistic regression model.
Collapse
|
12
|
Gourévitch B, Mellen N. The preBötzinger complex as a hub for network activity along the ventral respiratory column in the neonate rat. Neuroimage 2014; 98:460-74. [DOI: 10.1016/j.neuroimage.2014.04.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023] Open
|
13
|
Abstract
Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and are a critical component of normal fetal development. The classic sheep preparations instrumented for chronic fetal monitoring determined that fetal breathing movements (FBMs) occur in aggregates interspersed with long periods of quiescence that are strongly associated with neurophysiological state. The fetal sheep model also provided data regarding the neurochemical modulation of behavioral state and FBMs under a variety of in utero conditions. Subsequently, in vitro rodent models have been developed to advance our understanding of cellular, synaptic, network, and more detailed neuropharmacological aspects of perinatal respiratory neural control. This includes the ontogeny of the inspiratory rhythm generating center, the preBötzinger complex (preBötC), and the anatomical and functional development of phrenic motoneurons (PMNs) and diaphragm during the perinatal period. A variety of newborn animal models and studies of human infants have provided insights into age-dependent changes in state-dependent respiratory control, responses to hypoxia/hypercapnia and respiratory pathologies.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Centre for Neuroscience, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Oppersma E, Doorduin J, van der Heijden EHFM, van der Hoeven JG, Heunks LMA. Noninvasive ventilation and the upper airway: should we pay more attention? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:245. [PMID: 24314000 PMCID: PMC4059377 DOI: 10.1186/cc13141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In an effort to reduce the complications related to invasive ventilation, the use of noninvasive ventilation (NIV) has increased over the last years in patients with acute respiratory failure. However, failure rates for NIV remain high in specific patient categories. Several studies have identified factors that contribute to NIV failure, including low experience of the medical team and patient–ventilator asynchrony. An important difference between invasive ventilation and NIV is the role of the upper airway. During invasive ventilation the endotracheal tube bypasses the upper airway, but during NIV upper airway patency may play a role in the successful application of NIV. In response to positive pressure, upper airway patency may decrease and therefore impair minute ventilation. This paper aims to discuss the effect of positive pressure ventilation on upper airway patency and its possible clinical implications, and to stimulate research in this field.
Collapse
|
15
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
16
|
Fregosi RF, Ludlow CL. Activation of upper airway muscles during breathing and swallowing. J Appl Physiol (1985) 2013; 116:291-301. [PMID: 24092695 DOI: 10.1152/japplphysiol.00670.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The upper airway is a complex muscular tube that is used by the respiratory and digestive systems. The upper airway is invested with several small and anatomically peculiar muscles. The muscle fiber orientations and their nervous innervation are both extremely complex, and how the activity of the muscles is initiated and adjusted during complex behaviors is poorly understood. The bulk of the evidence suggests that the entire assembly of tongue and laryngeal muscles operate together but differently during breathing and swallowing, like a ballet rather than a solo performance. Here we review the functional anatomy of the tongue and laryngeal muscles, and their neural innervation. We also consider how muscular activity is altered as respiratory drive changes, and briefly address upper airway muscle control during swallowing.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
17
|
Lee KZ, Fuller DD, Hwang JC. Pulmonary C-fiber activation attenuates respiratory-related tongue movements. J Appl Physiol (1985) 2012; 113:1369-76. [PMID: 22936725 DOI: 10.1152/japplphysiol.00031.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functional impact of pulmonary C-fiber activation on upper airway biomechanics has not been evaluated. Here, we tested the hypothesis that pulmonary C-fiber activation alters the respiratory-related control of tongue movements. The force produced by tongue movements was quantified in spontaneously breathing, anesthetized adult rats before and after stimulation of pulmonary C fibers via intrajugular delivery of capsaicin (0.625 and 1.25 μg/kg). Brief occlusion of the trachea was used to increase the respiratory drive to the tongue muscles, and hypoglossal (XII) nerve branches were selectively sectioned to denervate the protrusive and retrusive tongue musculature. Tracheal occlusion triggered inspiratory-related tongue retrusion in rats with XII nerves intact or following section of the medial XII nerve branch, which innervates the genioglossus muscle. Inspiratory-related tongue protrusion was only observed after section of the lateral XII branch, which innervates the primary tongue retrusor muscles. The tension produced by inspiratory-related tongue movement was significantly attenuated by capsaicin, but tongue movements remained retrusive, unless the medial XII branch was sectioned. Capsaicin also significantly delayed the onset of tongue movements such that tongue forces could not be detected until after onset of the inspiratory diaphragm activity. We conclude that altered neural drive to the tongue muscles following pulmonary C-fiber activation has a functionally significant effect on tongue movements. The diminished tongue force and delay in the onset of tongue movements following pulmonary C-fiber activation are potentially unfavorable for upper airway patency.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
18
|
Hadj-Ahmed MA, Samson N, Bussières M, Beck J, Praud JP. Absence of inspiratory laryngeal constrictor muscle activity during nasal neurally adjusted ventilatory assist in newborn lambs. J Appl Physiol (1985) 2012; 113:63-70. [PMID: 22518828 DOI: 10.1152/japplphysiol.01496.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In nonsedated newborn lambs, nasal pressure support ventilation (nPSV) can lead to an active glottal closure in early inspiration, which can limit lung ventilation and divert air into the digestive system, with potentially deleterious consequences. During volume control ventilation (nVC), glottal closure is delayed to the end of inspiration, suggesting that it is reflexly linked to the maximum value of inspiratory pressure. Accordingly, the aim of the present study was to test whether inspiratory glottal closure develops at the end of inspiration during nasal neurally adjusted ventilatory assist (nNAVA), an increasingly used ventilatory mode where maximal pressure is also reached at the end of inspiration. Polysomnographic recordings were performed in eight nonsedated, chronically instrumented lambs, which were ventilated with progressively increasing levels of nPSV and nNAVA in random order. States of alertness, diaphragm, and glottal muscle electrical activity, tracheal pressure, Spo(2), tracheal Pet(CO(2)), and respiratory inductive plethysmography were continuously recorded. Although phasic inspiratory glottal constrictor electrical activity appeared during nPSV in 5 of 8 lambs, it was never observed at any nNAVA level in any lamb, even at maximal achievable nNAVA levels. In addition, a decrease in Pco(2) was neither necessary nor sufficient for the development of inspiratory glottal constrictor activity. In conclusion, nNAVA does not induce active inspiratory glottal closure, in contrast to nPSV and nVC. We hypothesize that this absence of inspiratory activity is related to the more physiological airway pressurization during nNAVA, which tightly follows diaphragm electrical activity throughout inspiration.
Collapse
Affiliation(s)
- Mohamed Amine Hadj-Ahmed
- Neonatal Respiratory Research Unit, Departments of Pediatrics and Physiology, Université de Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Fregosi RF. Respiratory related control of hypoglossal motoneurons--knowing what we do not know. Respir Physiol Neurobiol 2011; 179:43-7. [PMID: 21741499 DOI: 10.1016/j.resp.2011.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
Because tongue position and stiffness help insure that the pharyngeal airspace is sufficiently open during breathing, the respiration-related behavior of the tongue muscles has been studied in detail, particularly during the last two decades. Although eight different muscles act upon the mammal tongue, we know very little about the respiration-related control of the majority of these, and almost nothing about how they work together as a complex electro-mechanical system. Other significant gaps include how hypoglossal motoneuron axons find their appropriate muscle target during development, whether the biophysical properties of hypoglossal motoneurons driving different muscles are the same, and how afferent information from cardiorespiratory reflex systems is transmitted from major brainstem integrating centers to the hypoglossal motoneuron pool. This brief review outlines some of these issues, with the hope that this will spur research in the field, ultimately leading to an improved understanding of the respiration-related control of the mammalian tongue musculature.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, College of Medicine and Department of Neuroscience, College of Science, The University of Arizona, Tucson, AZ 85721-0093, United States.
| |
Collapse
|
20
|
Bailey EF. Activities of human genioglossus motor units. Respir Physiol Neurobiol 2011; 179:14-22. [PMID: 21558022 DOI: 10.1016/j.resp.2011.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 01/13/2023]
Abstract
Upper airway muscles play an important role in regulating airway lumen and in increasing the ability of the pharynx to remain patent in the face of subatmospheric intraluminal pressures produced during inspiration. Due to the considerable technical challenges associated with recording from muscles of the upper airway, much of the experimental work conducted in human subjects has centered on recording respiratory-related activities of the extrinsic tongue protudor muscle, the genioglossus (GG). The GG is one of eight muscles that invest the human tongue (Abd-El-Malek, 1939). All eight muscles are innervated by the hypoglossal nerve (cranial nerve XII) the cell bodies of which are located in the hypoglossal motor nucleus (HMN) of the caudal medulla. Much of the earlier work on the respiratory-related activity of XII motoneurons was based on recordings obtained from single motor axons dissected from the whole XII nerve or from whole muscle GG EMG recordings. Detailed information regarding respiratory-related GG motor unit activities was lacking until as recently as 2006. This paper examines key findings that have emerged from the last decade of work conducted in human subjects. Wherever appropriate, these results are compared with results obtained from in vitro and in vivo studies conducted in non-human mammals. The review is written with the objective of facilitating some discussion and some new thoughts regarding future research directions. The material is framed around four topics: (a) motor unit type, (b) rate coding and recruitment, (c) motor unit activity patterns, and (d) a compartment based view of pharyngeal airway control.
Collapse
Affiliation(s)
- E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA.
| |
Collapse
|
21
|
Rice A, Fuglevand AJ, Laine CM, Fregosi RF. Synchronization of presynaptic input to motor units of tongue, inspiratory intercostal, and diaphragm muscles. J Neurophysiol 2011; 105:2330-6. [PMID: 21307319 DOI: 10.1152/jn.01078.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The respiratory central pattern generator distributes rhythmic excitatory input to phrenic, intercostal, and hypoglossal premotor neurons. The degree to which this input shapes motor neuron activity can vary across respiratory muscles and motor neuron pools. We evaluated the extent to which respiratory drive synchronizes the activation of motor unit pairs in tongue (genioglossus, hyoglossus) and chest-wall (diaphragm, external intercostals) muscles using coherence analysis. This is a frequency domain technique, which characterizes the frequency and relative strength of neural inputs that are common to each of the recorded motor units. We also examined coherence across the two tongue muscles, as our previous work shows that, despite being antagonists, they are strongly coactivated during the inspiratory phase, suggesting that excitatory input from the premotor neurons is distributed broadly throughout the hypoglossal motoneuron pool. All motor unit pairs showed highly correlated activity in the low-frequency range (1-8 Hz), reflecting the fundamental respiratory frequency and its harmonics. Coherence of motor unit pairs recorded either within or across the tongue muscles was similar, consistent with broadly distributed premotor input to the hypoglossal motoneuron pool. Interestingly, motor units from diaphragm and external intercostal muscles showed significantly higher coherence across the 10-20-Hz bandwidth than tongue-muscle units. We propose that the lower coherence in tongue-muscle motor units over this range reflects a larger constellation of presynaptic inputs, which collectively lead to a reduction in the coherence between hypoglossal motoneurons in this frequency band. This, in turn, may reflect the relative simplicity of the respiratory drive to the diaphragm and intercostal muscles, compared with the greater diversity of functions fulfilled by muscles of the tongue.
Collapse
Affiliation(s)
- Amber Rice
- Department of Physiology, The University of Arizona, Tucson, AZ 85721-0093, USA
| | | | | | | |
Collapse
|
22
|
Tadjalli A, Duffin J, Peever J. Identification of a novel form of noradrenergic-dependent respiratory motor plasticity triggered by vagal feedback. J Neurosci 2010; 30:16886-95. [PMID: 21159960 PMCID: PMC6634916 DOI: 10.1523/jneurosci.3394-10.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/09/2010] [Accepted: 10/06/2010] [Indexed: 11/21/2022] Open
Abstract
The respiratory control system is not just reflexive, it is smart, it learns, and, in fact, it has a memory. The respiratory system listens to and carefully remembers how previous stimuli affect breathing. Respiratory memory is laid down by adjusting synaptic strength between respiratory neurons. For example, repeated hypoxic bouts trigger a form of respiratory memory that functions to strengthen the ability of respiratory motoneurons to trigger contraction of breathing muscles. This type of respiratory plasticity is known as long-term facilitation (LTF). Although chemical feedback, such as hypoxia, initiates LTF, it is unknown whether natural modulation of mechanical feedback (from vagal inputs) also causes motor plasticity. Here, we used reverse microdialysis, electrophysiology, neuropharmacology, and histology to determine whether episodic modulation of vagally mediated mechanical feedback is able to induce respiratory LTF in anesthetized adult rats. We show that repeated obstructive apneas disrupt vagal feedback and trigger LTF of hypoglossal motoneuron activity and genioglossus muscle tone. This same stimulus does not cause LTF of diaphragm activity. Hypoxic episodes do not cause apnea-induced LTF; instead, LTF is triggered by modulation of vagal feedback. Unlike hypoxia-induced respiratory plasticity, vagus-induced LTF does not require 5-HT(2) receptors but instead relies on activation of α1-adrenergic receptors on hypoglossal motoneurons. In summary, we identify a novel form of hypoxia- and 5-HT-independent respiratory motor plasticity that is triggered by physiological modulation of vagal feedback and is mediated by α1-adrenergic receptor activation on (or near) hypoglossal motoneurons.
Collapse
Affiliation(s)
- Arash Tadjalli
- Systems Neurobiology Laboratory, Departments of Cell and Systems Biology and
| | - James Duffin
- Physiology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - John Peever
- Systems Neurobiology Laboratory, Departments of Cell and Systems Biology and
- Physiology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
23
|
Nicholas CL, DPsych BB, Worsnop C, Malhotra A, Jordan AS, Saboisky JP, Chan JKM, Duckworth E, White DP, Trinder J. Motor Unit Recruitment in Human Genioglossus Muscle in Response to Hypercapnia. Sleep 2010. [DOI: 10.1093/sleep/33.5.1529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Lee KZ, Fuller DD. Hypoxia-induced short-term potentiation of respiratory-modulated facial motor output in the rat. Respir Physiol Neurobiol 2010; 173:107-11. [PMID: 20601212 DOI: 10.1016/j.resp.2010.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Respiratory-modulated facial (VII) nerve discharge includes pre-inspiratory (Pre-I) and inspiratory (I) components. Tonic VII bursting is also present across the respiratory cycle. We tested the hypothesis that hypoxia-induced plasticity of VII motor activity is differentially expressed in Pre-I, I and tonic bursting. Phrenic and VII neurograms were recorded in urethane-anesthetized, vagotomized and ventilated adult rats. A 3 min isocapnic hypoxic challenge (PaO(2)=33+/-2 mmHg) was used to evoke respiratory short-term potentiation (STP). Pre-I, I and tonic VII activity increased immediately at the initial stage of hypoxia (i.e. acute response) and then progressively increased as hypoxia was maintained. Following hypoxia, I VII activity remained elevated (i.e. post-hypoxia STP) but both Pre-I and tonic activity immediately returned to baseline values. We conclude that STP following hypoxia is preferentially expressed in I compared to Pre-I and tonic VII activity.
Collapse
Affiliation(s)
- Kun-Ze Lee
- University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 Newell Dr, Gainesville, FL 32610, United States.
| | | |
Collapse
|
25
|
Lee KZ, Sandhu MS, Dougherty BJ, Reier PJ, Fuller DD. Influence of vagal afferents on supraspinal and spinal respiratory activity following cervical spinal cord injury in rats. J Appl Physiol (1985) 2010; 109:377-87. [PMID: 20507963 DOI: 10.1152/japplphysiol.01429.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
C(2) spinal hemisection (C2HS) interrupts ipsilateral bulbospinal pathways and induces compensatory increases in contralateral spinal and possibly supraspinal respiratory output. Our first purpose was to test the hypothesis that after C2HS contralateral respiratory motor outputs become resistant to vagal inhibitory inputs associated with lung inflation. Bilateral phrenic and contralateral hypoglossal (XII) neurograms were recorded in anesthetized and ventilated rats. In uninjured (control) rats, lung inflation induced by positive end-expired pressure (PEEP; 3-9 cmH(2)O) robustly inhibited both phrenic and XII bursting. At 2 wk post-C2HS, PEEP evoked a complex response associated with phrenic bursts of both reduced and augmented amplitude, but with no overall change in the mean burst amplitude. PEEP-induced inhibition of XII bursting was still present but was attenuated relative to controls. However, by 8 wk post-C2HS PEEP-induced inhibition of both phrenic and XII output were similar to that in controls. Our second purpose was to test the hypothesis that vagal afferents inhibit ipsilateral phrenic bursting, thereby limiting the incidence of the spontaneous crossed phrenic phenomenon in vagal-intact rats. Bilateral vagotomy greatly enhanced ipsilateral phrenic bursting, which was either weak or absent in vagal-intact rats at both 2 and 8 wk post-C2HS. We conclude that 1) compensatory increases in contralateral phrenic and XII output after C2HS blunt the inhibitory influence of vagal afferents during lung inflation and 2) vagal afferents robustly inhibit ipsilateral phrenic bursting. These vagotomy data appear to explain the variability in the literature regarding the onset of the spontaneous crossed phrenic phenomenon in spontaneously breathing (vagal intact) vs. ventilated (vagotomized) preparations.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Univ. of Florida, Coll. of Public Health and Health Professions, McKnight Brain Inst., Dept. of Physical Therapy, PO Box 100154, 100 Newell Dr., Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
26
|
Matsuo K, Palmer JB. Coordination of Mastication, Swallowing and Breathing. JAPANESE DENTAL SCIENCE REVIEW 2009; 45:31-40. [PMID: 20161022 DOI: 10.1016/j.jdsr.2009.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The pathways for air and food cross in the pharynx. In breathing, air may flow through either the nose or the mouth, it always flows through the pharynx. During swallowing, the pharynx changes from an airway to a food channel. The pharynx is isolated from the nasal cavity and lower airway by velopharyngeal and laryngeal closure during the pharyngeal swallow. During mastication, the food bolus accumulates in the pharynx prior to swallow initiation. The structures in the oral cavity, pharynx and larynx serve multiple functions in breathing, speaking, mastication and swallowing. Thus, the fine temporal coordination of feeding among breathing, mastication and swallowing is essential to provide proper food nutrition and to prevent pulmonary aspiration. This review paper will review the temporo-spatial coordination of the movements of oral, pharyngeal, and laryngeal structures during mastication and swallowing, and temporal coordination between breathing, mastication, and swallowing.
Collapse
Affiliation(s)
- Koichiro Matsuo
- Department of Special Care Dentistry, Matsumoto Dental University, 1780 Hirooka Gobara, Shiojiri, Nagano, Japan 399-0781
| | | |
Collapse
|
27
|
Samson N, Roy B, Ouimet A, Moreau-Bussière F, Dorion D, Mayer S, Praud JP. Origins of the inhibiting effects of nasal CPAP on nonnutritive swallowing in newborn lambs. J Appl Physiol (1985) 2008; 105:1083-90. [DOI: 10.1152/japplphysiol.90494.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the mechanism by which continuous positive airway pressure (CPAP) suppresses nonnutritive swallowing (NNS) during quiet sleep (QS) in newborn lambs. Eighteen full-term lambs were chronically instrumented and evenly distributed into three separate groups to determine the extent to which modulation of NNS may be attributed to stimulation of upper airway and/or bronchopulmonary mechanoreceptors. Six lambs were tracheotomized, six other lambs underwent a two-step bilateral intrathoracic vagotomy, and the remaining six lambs underwent chronic laryngotracheal separation (isolated upper airway group). Forty-eight hours after surgery, each nonsedated lamb underwent polysomnographic recordings on three consecutive days. States of alertness, NNS and respiratory movements were recorded. Results demonstrate that a CPAP of 6 cmH2O inhibited NNS during QS while administered directly on the lower airways and that bivagotomy prevented this inhibition. However, application of CPAP on the upper airways only also inhibited NNS during QS. Finally, the application of a CPAP of 6 cmH2O had no systematic effect on NNS-breathing coordination (assessed by the respiratory phase preceding and following NNS). In conclusion, our results suggest that bronchopulmonary receptors are implicated in the inhibiting effects of nasal CPAP of 6 cmH2O on NNS in all our experimental conditions, whereas upper airway receptors are only implicated in certain conditions.
Collapse
|
28
|
Roy B, Samson N, Moreau-Bussière F, Ouimet A, Dorion D, Mayer S, Praud JP. Mechanisms of active laryngeal closure during noninvasive intermittent positive pressure ventilation in nonsedated lambs. J Appl Physiol (1985) 2008; 105:1406-12. [PMID: 18703758 DOI: 10.1152/japplphysiol.90727.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study stems from our recent demonstration (Moreau-Bussiere F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe E, Praud JP. J Appl Physiol 102: 2149-2157, 2007) that a progressive increase in nasal intermittent positive pressure ventilation (nIPPV) leads to active glottal closure in nonsedated, newborn lambs. The aim of the study was to determine whether the mechanisms involved in this glottal narrowing during nIPPV originate from upper airway receptors and/or from bronchopulmonary receptors. Two groups of newborn lambs were chronically instrumented for polysomnographic recording: the first group of five lambs underwent a two-step bilateral thoracic vagotomy using video-assisted thoracoscopic surgery (bilateral vagotomy group), while the second group, composed of six lambs, underwent chronic laryngotracheal separation (isolated upper airway group). A few days later, polysomnographic recordings were performed to assess glottal muscle electromyography during step increases in nIPPV (volume control mode). Results show that active glottal narrowing does not develop when nIPPV is applied on the upper airways only, and that this narrowing is prevented by bilateral vagotomy when nIPPV is applied on intact airways. In conclusion, active glottal narrowing in response to increasing nIPPV originates from bronchopulmonary receptors.
Collapse
Affiliation(s)
- Bianca Roy
- Neonatal Respiratory Research Unit, Department of Pediatrics and Physiology, Université de Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
29
|
Sinderby C, Beck J. Proportional Assist Ventilation and Neurally Adjusted Ventilatory Assist—Better Approaches to Patient Ventilator Synchrony? Clin Chest Med 2008; 29:329-42, vii. [DOI: 10.1016/j.ccm.2008.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Fregosi RF. Influence of tongue muscle contraction and dynamic airway pressure on velopharyngeal volume in the rat. J Appl Physiol (1985) 2008; 104:682-93. [DOI: 10.1152/japplphysiol.01043.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian pharynx is a collapsible tube that narrows during inspiration as transmural pressure becomes negative. The velopharynx (VP), which lies posterior to the soft palate, is considered to be one of the most collapsible pharyngeal regions. I tested the hypothesis that negative transmural pressure would narrow the VP, and that electrical stimulation of extrinsic tongue muscles would reverse this effect. Pressure (−6, −3, 3, and 6 cmH2O) was applied to the isolated pharyngeal airway of anesthetized rats that were positioned in a 4.7-T MRI scanner. The volume of eight axial slices encompassing the length of the VP was computed at each level of pressure, with and without bilateral hypoglossal nerve stimulation (0.1-ms pulse, one-third maximum force, 80 Hz). Negative pressure narrowed the VP, and either whole hypoglossal nerve stimulation (coactivation of protrudor and retractor muscles) or medial nerve branch stimulation (independent activation of tongue protrudor muscles) reversed this effect, with the greatest impact in the caudal one-third of the VP. The dilating effects of medial branch stimulation were slightly larger than whole nerve stimulation. Positive pressure dilated the VP, but tongue muscle contraction did not cause further dilation under these conditions. I conclude that the narrowest and most collapsible segment of the rat pharynx is in the caudal VP, posterior to the tip of the soft palate. Either coactivation of protrudor and retractor muscles or independent contraction of protrudor muscles caused dilation of this region, but the latter was slightly more effective.
Collapse
|
31
|
Lee KZ, Fuller DD, Lu IJ, Ku LC, Hwang JC. Pulmonary C-fiber receptor activation abolishes uncoupled facial nerve activity from phrenic bursting during positive end-expired pressure in the rat. J Appl Physiol (1985) 2008; 104:119-29. [DOI: 10.1152/japplphysiol.00505.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phasic respiratory bursting in the facial nerve (FN) can be uncoupled from phrenic bursting by application of 9 cmH2O positive end-expired pressure (PEEP). This response reflects excitation of expiratory-inspiratory (EI) and preinspiratory (Pre-I) facial neurons during the Pre-I period and inhibition of EI neurons during inspiration (I). Because activation of pulmonary C-fiber (PCF) receptors can inhibit the discharge of EI and Pre-I neurons, we hypothesized that PCF receptor activation via capsaicin would attenuate or abolish uncoupled FN bursting with an increase from 3 cmH2O (baseline) to 9 cmH2O PEEP. Neurograms were recorded in the FN and phrenic nerve in anesthetized, ventilated, vagally intact adult Wistar rats. Increasing PEEP to 9 cmH2O resulted in a persistent rhythmic discharge in the FN during phrenic quiescence (i.e., uncoupled bursting). Combination of PEEP with intrajugular capsaicin injection severely attenuated or eliminated uncoupled bursting in the FN ( P < 0.05). Additional experiments examined the pattern of facial motoneuron (vs. neurogram) bursting during PEEP application and capsaicin treatment. These single-fiber recordings confirmed that Pre-I and EI (but not I) neurons continued to burst during PEEP-induced phrenic apnea. Capsaicin treatment during PEEP substantially inhibited Pre-I and EI neuron discharge. Finally, analyses of FN and motoneuron bursting across the respiratory cycle indicated that the inhibitory effects of capsaicin were more pronounced during the Pre-I period. We conclude that activation of PCF receptors can inhibit FN bursting during PEEP-induced phrenic apnea by inhibiting EI and I facial motoneuron discharge.
Collapse
|
32
|
Cherniack NS. If I die before I wake: not a worry for sleep apnea patients. J Appl Physiol (1985) 2007; 103:1919-20. [PMID: 17916669 DOI: 10.1152/japplphysiol.01030.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Abstract
Laryngeal sensitivity in the newborn has been a subject of great interest for both researchers and clinicians for a number of years. From a clinical standpoint, laryngeal sensitivity is essential for both preventing foreign substances from entering into the lower airway and for finely tuning upper airway resistance. However, heightened reflexes originating from the laryngeal receptors in newborns and infants, due to neural immaturity, can lead to potentially dangerous cardiorespiratory events. The latter have been linked to apneas of prematurity, apparent life-threatening events, and sudden infant death syndrome (SIDS). From a physiological standpoint, many mechanisms pertaining to reflexes originating from laryngeal receptors are yet to be fully understood. This short review is an attempt to summarize current knowledge on laryngeal sensitivity and its potential consequences upon control of breathing abnormalities encountered within the first weeks of life.
Collapse
Affiliation(s)
- Philippe Reix
- Service de pneumologie, Allergologie, Mucoviscidose, Hôpital Debrousse, Lyon, France
| | | | | |
Collapse
|
34
|
Moreau-Bussière F, Samson N, St-Hilaire M, Reix P, Lafond JR, Nsegbe E, Praud JP. Laryngeal response to nasal ventilation in nonsedated newborn lambs. J Appl Physiol (1985) 2007; 102:2149-57. [PMID: 17332270 DOI: 10.1152/japplphysiol.00891.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although endoscopic studies in adult humans have suggested that laryngeal closure can limit alveolar ventilation during nasal intermittent positive pressure ventilation (nIPPV), there are no available data regarding glottal muscle activity during nIPPV. In addition, laryngeal behavior during nIPPV has not been investigated in neonates. The aim of the present study was to assess laryngeal muscle response to nIPPV in nonsedated newborn lambs. Nine newborn lambs were instrumented for recording states of alertness, electrical activity [electromyograph (EMG)] of glottal constrictor (thyroarytenoid, TA) and dilator (cricothyroid, CT) muscles, EMG of the diaphragm (Dia), and mask and tracheal pressures. nIPPV in pressure support (PS) and volume control (VC) modes was delivered to the lambs via a nasal mask. Results show that increasing nIPPV during wakefulness and quiet sleep led to a progressive disappearance of Dia and CT EMG and to the appearance and subsequent increase in TA EMG during inspiration, together with an increase in trans-upper airway pressure (TUAP). On rare occasions, transmission of nIPPV through the glottis was prevented by complete, active glottal closure, a phenomenon more frequent during active sleep epochs, when irregular bursts of TA EMG were observed. In conclusion, results of the present study suggest that active glottal closure develops with nIPPV in nonsedated lambs, especially in the VC mode. Our observations further suggest that such closure can limit lung ventilation when raising nIPPV in neonates.
Collapse
Affiliation(s)
- François Moreau-Bussière
- Neonatal Respiratory Research Unit, Department of Pediatrics, Université de Sherbrooke, J1H 5N4 Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|