1
|
McKenna MJ, Gong X, Petersen AC, Sostaric S, Goodman CA, Garnham A, Aw T, Steward CH, Murphy KT, Carey KA, Krum H, Snow RJ, Cameron‐Smith D. Digoxin and exercise effects on skeletal muscle Na +,K +-ATPase isoform gene expression in healthy humans. Exp Physiol 2024; 109:1909-1921. [PMID: 39222217 PMCID: PMC11522823 DOI: 10.1113/ep091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
In muscle, digoxin inhibits Na+,K+-ATPase (NKA) whereas acute exercise can increase NKA gene expression, consistent with training-induced increased NKA content. We investigated whether oral digoxin increased NKA isoform mRNA expression (qPCR) in muscle at rest, during and post-exercise in 10 healthy adults, who received digoxin (DIG, 0.25 mg per day) or placebo (CON) for 14 days, in a randomised, double-blind and cross-over design. Muscle was biopsied at rest, after cycling 20 min (10 min each at 33%, then 67%V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_2}{\mathrm{peak}}}}$ ), then to fatigue at 90%V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_2}{\mathrm{peak}}}}$ and 3 h post-exercise. No differences were found between DIG and CON for NKA α1-3 or β1-3 isoform mRNA. Both α1 (354%, P = 0.001) and β3 mRNA (P = 0.008) were increased 3 h post-exercise, with α2 and β1-2 mRNA unchanged, whilst α3 mRNA declined at fatigue (-43%, P = 0.045). In resting muscle, total β mRNA (∑(β1+β2+β3)) increased in DIG (60%, P = 0.025) and also when transcripts for each isoform were normalised to CON then either summed (P = 0.030) or pooled (n = 30, P = 0.034). In contrast, total α mRNA (∑(α1+α2+α3), P = 0.348), normalised then summed (P = 0.332), or pooled transcripts (n = 30, P = 0.717) did not differ with DIG. At rest, NKA α1-2 and β1-2 protein abundances were unchanged by DIG. Post-exercise, α1 and β1-2 proteins were unchanged, but α2 declined at 3 h (19%, P = 0.020). In conclusion, digoxin did not modify gene expression of individual NKA isoforms at rest or with exercise, indicating NKA gene expression was maintained consistent with protein abundances. However, elevated resting muscle total β mRNA with digoxin suggests a possible underlying β gene-stimulatory effect. HIGHLIGHTS: What is the central question of this study? Na+,K+-ATPase (NKA) in muscle is important for Na+/K+ homeostasis. We investigated whether the NKA-inhibitor digoxin stimulates increased NKA gene expression in muscle and exacerbates NKA gene responses to exercise in healthy adults. What is the main finding and its importance? Digoxin did not modify exercise effects on muscle NKA α1-3 and β1-3 gene transcripts, which comprised increased post-exercise α1 and β3 mRNA and reduced α3 mRNA during exercise. However, in resting muscle, digoxin increased NKA total β isoform mRNA expression. Despite inhibitory-digoxin or acute exercise stressors, NKA gene regulation in muscle is consistent with the maintenance of NKA protein contents.
Collapse
Affiliation(s)
| | - Xiaofei Gong
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | | | - Simon Sostaric
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Craig A. Goodman
- Institute for Health and SportVictoria UniversityMelbourneAustralia
- Centre for Muscle Research, Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | - Andrew Garnham
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Tai‐Juan Aw
- Department of Epidemiology and Preventive MedicineMonash UniversityAlfred HospitalMelbourneAustralia
| | | | - Kate T. Murphy
- Institute for Health and SportVictoria UniversityMelbourneAustralia
- Centre for Muscle Research, Department of Anatomy and PhysiologyUniversity of MelbourneMelbourneAustralia
| | | | - Henry Krum
- Department of Epidemiology and Preventive MedicineMonash UniversityAlfred HospitalMelbourneAustralia
| | - Rodney J. Snow
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityMelbourneAustralia
| | - David Cameron‐Smith
- Department of NutritionSingapore Institute of Food and Biotechnology Innovation (SIFBI)SingaporeSingapore
| |
Collapse
|
2
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Jannas-Vela S, Bustamante A, Zbinden-Foncea H, Peñailillo L. Plasma α-Actin as an Early Marker of Muscle Damage After Repeated Bouts of Eccentric Cycling. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:853-860. [PMID: 35522171 DOI: 10.1080/02701367.2022.2060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Purpose: This study aimed to examine the changes in skeletal muscle (SM) α-actin, myoglobin (Mb) and hydroxyproline (HP) in plasma and other indirect markers of muscle damage after repeated bouts of eccentric cycling. Methods: Ten healthy men (23.3 ± 2.8 years) performed two 30-min eccentric cycling bouts at 100% of maximal concentric power output (230.7 ± 36.9 W) separated by 2 weeks (ECC1 and ECC2). Maximal voluntary isometric contraction (MVIC) peak force of the knee extensor muscles, muscle soreness (SOR), pain pressure threshold (PPT) and plasma levels of SM α-actin, Mb, and HP were measured before, 0.5, 3, 24-168 h after each cycling bout. Results: MVIC peak force decreased on average 10.7 ± 13.1% more after ECC1 than ECC2. SOR was 80% greater and PPT was 12-14% lower after ECC1 than ECC2. Plasma SM α-actin levels increased at 0.5, 3, and 24-72 h after ECC1 (26.1-47.9%), and SM α-actin levels at 24 h after ECC1 were associated with muscle strength loss (r = -0.56, P = .04) and SOR (r = 0.88, P = .001). Mb levels increased at 0.5, 3, and 24 h after ECC1 (200-502%). However, Mb levels at 24 h after ECC1were not associated with muscle strength loss and SOR. HP levels remained unchanged after ECC1. ECC2 did not increase SM α-actin, Mb and HP levels. Conclusion: Our results indicate that α-actin could be used as a potential marker for the early identification of SM damage due to its early appearance in plasma and its association with other indirect markers of muscle damage.
Collapse
|
4
|
Effect of sample fractionation and normalization when immunoblotting for human muscle Na +/K +-ATPase subunits and glycogen synthase. Anal Biochem 2023; 666:115071. [PMID: 36736987 DOI: 10.1016/j.ab.2023.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/03/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Immunoblotting is widely used in muscle physiology to determine protein regulation and abundance. However, research groups use different protocols, which may result in differential outcomes. Herein, we investigated the effect of various homogenization procedures on determination of protein abundance in human m. vastus lateralis biopsies. Furthermore, we investigated differences in abundance between young healthy males (n = 12) and type-2 diabetics (n = 4), and the effect of data normalization. Fractionated lysates had the lowest variation in total protein determination as compared to non-fractionated homogenates. Abundance of NKAα2, NKAβ1, FXYD1, and glycogen synthase was higher (P < 0.05) in young healthy than in type-2 diabetics determined in both fractionated and non-fractionated samples for which normalization to the stain-free signal and/or standard curve did not affect outcomes. Precision and reliability of protein abundance determination between sample types showed a moderate to good reliability for these proteins, whereas the commonly used house-keeping protein, actin, showed poor reliability. In conclusion, fractionated and non-fractionated immunoblotting samples yield similar data for several sarcolemmal and cytosolic proteins, except for actin, which, therefore appears inappropriate for data normalization in immunoblotting of human skeletal muscle. Thus, fractionation does not seem to be a major source of bias when immunoblotting for NKA subunits and GS.
Collapse
|
5
|
Hostrup M, Lemminger AK, Thomsen LB, Schaufuss A, Alsøe TL, Bergen GK, Bell AB, Bangsbo J, Thomassen M. High-Intensity Training Represses FXYD5 and Glycosylates Na,K-ATPase in Type II Muscle Fibres, Which Are Linked with Improved Muscle K+ Handling and Performance. Int J Mol Sci 2023; 24:ijms24065587. [PMID: 36982661 PMCID: PMC10051537 DOI: 10.3390/ijms24065587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Na+/K+ ATPase (NKA) comprises several subunits to provide isozyme heterogeneity in a tissue-specific manner. An abundance of NKA α, β, and FXYD1 subunits is well-described in human skeletal muscle, but not much is known about FXYD5 (dysadherin), a regulator of NKA and β1 subunit glycosylation, especially with regard to fibre-type specificity and influence of sex and exercise training. Here, we investigated muscle fibre-type specific adaptations in FXYD5 and glycosylated NKAβ1 to high-intensity interval training (HIIT), as well as sex differences in FXYD5 abundance. In nine young males (23.8 ± 2.5 years of age) (mean ± SD), 3 weekly sessions of HIIT for 6 weeks enhanced muscle endurance (220 ± 102 vs. 119 ± 99 s, p < 0.01) and lowered leg K+ release during intense knee-extensor exercise (0.5 ± 0.8 vs. 1.0 ± 0.8 mmol·min–1, p < 0.01) while also increasing cumulated leg K+ reuptake 0–3 min into recovery (2.1 ± 1.5 vs. 0.3 ± 0.9 mmol, p < 0.01). In type IIa muscle fibres, HIIT lowered FXYD5 abundance (p < 0.01) and increased the relative distribution of glycosylated NKAβ1 (p < 0.05). FXYD5 abundance in type IIa muscle fibres correlated inversely with the maximal oxygen consumption (r = –0.53, p < 0.05). NKAα2 and β1 subunit abundances did not change with HIIT. In muscle fibres from 30 trained males and females, we observed no sex (p = 0.87) or fibre type differences (p = 0.44) in FXYD5 abundance. Thus, HIIT downregulates FXYD5 and increases the distribution of glycosylated NKAβ1 in type IIa muscle fibres, which is likely independent of a change in the number of NKA complexes. These adaptations may contribute to counter exercise-related K+ shifts and enhance muscle performance during intense exercise.
Collapse
|
6
|
Christiansen D, Bishop DJ. Aerobic-interval exercise with blood flow restriction potentiates early markers of metabolic health in man. Acta Physiol (Oxf) 2022; 234:e13769. [PMID: 34984835 DOI: 10.1111/apha.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 01/01/2022] [Indexed: 12/06/2022]
Abstract
AIM This study examined whether aerobic-interval exercise with blood flow restriction (BFR) potentiates early markers of metabolic health compared to exercise with systemic hypoxia or normoxia in man. METHODS In a randomized-crossover fashion, eight healthy men completed nine 2-minute running bouts at 105% of their lactate threshold on three occasions separated by one week, either with BFR (BFR-trial), systemic hypoxia (HYP-trial) or normoxia (control; CON-trial). Near-infrared spectroscopy was used to assess the muscle level of hypoxia. A muscle biopsy was collected at rest and 3 hours after exercise to quantify genes involved in cholesterol synthesis (PGC-1α2), glucose disposal (GLUT4) and capillary growth (HIF-1α; VEGFA), as well as mitochondrial respiration (PGC-1α2/3), uncoupling (UCP3) and expansion (p53; COXIV-1/2; CS; AMPKα1/2). RESULTS The muscle level of hypoxia was matched between the BFR-trial and HYP-trial (~90%; P > .05), which was greater than the CON-trial (~70%; P < .05). PGC-1α2 increased most in the BFR-trial (16-fold vs CON-trial; 11-fold vs HYP-trial; P < .05). GLUT4 and VEGFA selectively increased by 2.0 and 3.4-fold, respectively in BFR-trial (P < .05), which was greater than CON-trial (1.2 and 1.3 fold) and HYP-trial (1.2 and 1.8 fold; P < .05). UCP3 increased more in BFR-trial than the HYP-trial (4.3 vs 1.6 fold), but was not different between BFR-trial and CON-trial (2.1 fold) or between CON-trial and HYP-trial (P > .05). No trial differences were evident for other genes (P > .05). CONCLUSION Independent of the muscle level of hypoxia, BFR-exercise potentiates early markers of metabolic health associated with the regulation of cholesterol production and glucose homeostasis in man.
Collapse
Affiliation(s)
- Danny Christiansen
- Institute for Health & Sport Victoria University Melbourne Victoria Australia
| | - David J. Bishop
- Institute for Health & Sport Victoria University Melbourne Victoria Australia
| |
Collapse
|
7
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lindsay A, Peake JM. Muscle Strength and Power: Primary Outcome Measures to Assess Cold Water Immersion Efficacy After Exercise With a Strong Strength or Power Component. Front Sports Act Living 2021; 3:655975. [PMID: 34195611 PMCID: PMC8236536 DOI: 10.3389/fspor.2021.655975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023] Open
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Jonathan M Peake
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Sport Performance Knowledge and Innovation Excellence, Queensland Academy of Sport, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Christiansen D, Eibye K, Hostrup M, Bangsbo J. The effect of blood-flow-restricted interval training on lactate and H + dynamics during dynamic exercise in man. Acta Physiol (Oxf) 2021; 231:e13580. [PMID: 33222371 DOI: 10.1111/apha.13580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/01/2023]
Abstract
AIM To assess how blood-flow-restricted (BFR) interval-training affects the capacity of the leg muscles for pH regulation during dynamic exercise in physically trained men. METHODS Ten men (age: 25 ± 4y; V ˙ O 2 max : 50 ± 5 mL∙kg-1 ∙min-1 ) completed a 6-wk interval-cycling intervention (INT) with one leg under BFR (BFR-leg; ~180 mmHg) and the other without BFR (CON-leg). Before and after INT, thigh net H+ -release (lactate-dependent, lactate-independent and sum) and blood acid/base variables were measured during knee-extensor exercise at 25% (Ex25) and 90% (Ex90) of incremental peak power output. A muscle biopsy was collected before and after Ex90 to determine pH, lactate and density of H+ -transport/buffering systems. RESULTS After INT, net H+ release (BFR-leg: 15 ± 2; CON-leg: 13 ± 3; mmol·min-1 ; Mean ± 95% CI), net lactate-independent H+ release (BFR-leg: 8 ± 1; CON-leg: 4 ± 1; mmol·min-1 ) and net lactate-dependent H+ release (BFR-leg: 9 ± 3; CON-leg: 10 ± 3; mmol·min-1 ) were similar between legs during Ex90 (P > .05), despite a ~142% lower muscle intracellular-to-interstitial lactate gradient in BFR-leg (-3 ± 4 vs 6 ± 6 mmol·L-1 ; P < .05). In recovery from Ex90, net lactate-dependent H+ efflux decreased in BFR-leg with INT (P < .05 vs CON-leg) owing to lowered muscle lactate production (~58% vs CON-leg, P < .05). Net H+ gradient was not different between legs (~19%, P > .05; BFR-leg: 48 ± 30; CON-leg: 44 ± 23; mmol·L-1 ). In BFR-leg, NHE1 density was higher than in CON-leg (~45%; P < .05) and correlated with total-net H+ -release (r = 0.71; P = .031) and lactate-independent H+ release (r = 0.74; P = .023) after INT, where arterial [ HCO 3 - ] and standard base excess in Ex25 were higher in BFR-leg than CON-leg. CONCLUSION Compared to a training control, BFR-interval training increases the capacity for pH regulation during dynamic exercise mainly via enhancement of muscle lactate-dependent H+ -transport function and blood H+ -buffering capacity.
Collapse
Affiliation(s)
- Danny Christiansen
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Ø Denmark
| | - Kasper Eibye
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Ø Denmark
| | - Morten Hostrup
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Ø Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Ø Denmark
| |
Collapse
|
10
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
11
|
Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985) 2020; 129:353-365. [PMID: 32644914 DOI: 10.1152/japplphysiol.00322.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Resistance training upregulates skeletal muscle Na +, K +-ATPase content, with elevations in both α 1 and α 2, but not β isoforms. Eur J Appl Physiol 2020; 120:1777-1785. [PMID: 32500280 DOI: 10.1007/s00421-020-04408-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The Na+, K+-ATPase (NKA) is important in regulating trans-membrane ion gradients, cellular excitability and muscle function. We investigated the effects of resistance training in healthy young adults on the adaptability of NKA content and of the specific α and β isoforms in human skeletal muscle. METHODS Twenty-one healthy young males (22.9 ± 4.6 year; 1.80 ± 0.70 m, 85.1 ± 17.8 kg, mean ± SD) underwent 7 weeks of resistance training, training three times per week (RT, n = 16) or control (CON, n = 5). The training program was effective with a 39% gain in leg press muscle strength (p = 0.001). A resting vastus lateralis muscle biopsy was taken before and following RT or CON and assayed for NKA content ([3H]ouabain binding site content) and NKA isoform (α1, α2, β1, β2) abundances. RESULTS After RT, each of NKA content (12%, 311 ± 76 vs 349 ± 76 pmol g wet weight-1, p = 0.01), NKA α1 (32%, p = 0.01) and α2 (10%, p < 0.01) isoforms were increased, whereas β1 (p = 0.18) and β2 (p = 0.22) isoforms were unchanged. NKA content and isoform abundances were unchanged during CON. CONCLUSIONS Resistance training increased muscle NKA content through upregulation of both α1 and α2 isoforms, which were independent of β isoform changes. In animal models, modulations in α1 and α2 isoform abundances in skeletal muscle may affect fatigue resistance during exercise, muscle hypertrophy and strength. Whether similar in-vivo functional benefits of these NKA isoform adaptations occurs in human muscle with resistance training remains to be determined.
Collapse
|
13
|
Christiansen D, Eibye K, Hostrup M, Bangsbo J. Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. J Physiol 2020; 598:2337-2353. [PMID: 32246768 DOI: 10.1113/jp279554] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/29/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Endurance-type training with blood flow restriction (BFR) increases maximum oxygen uptake ( V ̇ O 2 max ) and exercise endurance of humans. However, the physiological mechanisms behind this phenomenon remain uncertain. In the present study, we show that BFR-interval training reduces the peripheral resistance to oxygen transport during dynamic, submaximal exercise in recreationally-trained men, mainly by increasing convective oxygen delivery to contracting muscles. Accordingly, BFR-training increased oxygen uptake by, and concomitantly reduced net lactate release from, the contracting muscles during relative-intensity-matched exercise, at the same time as invoking a similar increase in diffusional oxygen conductance compared to the training control. Only BFR-training increased resting femoral artery diameter, whereas increases in oxygen transport and uptake were dissociated from changes in the skeletal muscle content of mitochondrial electron-transport proteins. Thus, physically trained men benefit from BFR-interval training by increasing leg convective oxygen transport and reducing lactate release, thereby improving the potential for increasing the percentage of V ̇ O 2 max that can be sustained throughout exercise. ABSTRACT In the present study, we investigated the effect of training with blood flow restriction (BFR) on thigh oxygen transport and uptake, and lactate release, during exercise. Ten recreationally-trained men (50 ± 5 mL kg-1 min-1 ) completed 6 weeks of interval cycling with one leg under BFR (BFR-leg; pressure: ∼180 mmHg) and the other leg without BFR (CON-leg). Before and after the training intervention (INT), thigh oxygen delivery, extraction, uptake, diffusion capacity and lactate release were determined during knee-extensor exercise at 25% incremental peak power output (iPPO) (Ex1), followed by exercise to exhaustion at 90% pre-training iPPO (Ex2), by measurement of femoral-artery blood flow and femoral-arterial and -venous blood sampling. A muscle biopsy was obtained from legs before and after INT to determine mitochondrial electron-transport protein content. Femoral-artery diameter was also measured. In the BFR-leg, after INT, oxygen delivery and uptake were higher, and net lactate release was lower, during Ex1 (vs. CON-leg; P < 0.05), with an 11% larger increase in workload (vs. CON-leg; P < 0.05). During Ex2, after INT, oxygen delivery was higher, and oxygen extraction was lower, in the BFR-leg compared to the CON-leg (P < 0.05), resulting in an unaltered oxygen uptake (vs. CON-leg; P > 0.05). In the CON-leg, at both intensities, oxygen delivery, extraction, uptake and lactate release remained unchanged (P > 0.05). Resting femoral artery diameter increased with INT only in the BFR-leg (∼4%; P < 0.05). Oxygen diffusion capacity was similarly raised in legs (P < 0.05). Mitochondrial protein content remained unchanged in legs (P > 0.05). Thus, BFR-interval training enhances oxygen utilization by, and lowers lactate release from, submaximally-exercising muscles of recreationally-trained men mainly by increasing leg convective oxygen transport.
Collapse
Affiliation(s)
- Danny Christiansen
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Kasper Eibye
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology. Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Altarawneh MM, Hanson ED, Betik AC, Petersen AC, Hayes A, McKenna MJ. Effects of testosterone suppression, hindlimb immobilization, and recovery on [ 3H]ouabain binding site content and Na +, K +-ATPase isoforms in rat soleus muscle. J Appl Physiol (1985) 2020; 128:501-513. [PMID: 31854248 DOI: 10.1152/japplphysiol.01077.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effects of testosterone suppression, hindlimb immobilization, and recovery on skeletal muscle Na+,K+-ATPase (NKA), measured via [3H]ouabain binding site content (OB) and NKA isoform abundances (α1-3, β1-2). Male rats underwent castration or sham surgery plus 7 days of rest, 10 days of unilateral immobilization (cast), and 14 days of recovery, with soleus muscles obtained at each time from cast and noncast legs. Testosterone reduction did not modify OB or NKA isoforms in nonimmobilized control muscles. With sham surgery, OB was lower after immobilization in the cast leg than in both the noncast leg (-26%, P = 0.023) and the nonimmobilized control (-34%, P = 0.001), but OB subsequently recovered. With castration, OB was lower after immobilization in the cast leg than in the nonimmobilized control (-34%, P = 0.001), and remained depressed at recovery (-34%, P = 0.001). NKA isoforms did not differ after immobilization or recovery in the sham group. After castration, α2 in the cast leg was ~60% lower than in the noncast leg (P = 0.004) and nonimmobilized control (P = 0.004) and after recovery remained lower than the nonimmobilized control (-42%, P = 0.039). After immobilization, β1 was lower in the cast than the noncast leg (-26%, P = 0.018), with β2 lower in the cast leg than in the noncast leg (-71%, P = 0.004) and nonimmobilized control (-65%, P = 0.012). No differences existed for α1 or α3. Thus, both OB and α2 decreased after immobilization and recovery in the castration group, with α2, β1, and β2 isoform abundances decreased with immobilization compared with the sham group. Therefore, testosterone suppression in rats impaired restoration of immobilization-induced lowered number of functional NKA and α2 isoforms in soleus muscle.NEW & NOTEWORTHY: The Na+,K+-ATPase (NKA) is vital in muscle excitability and function. In rats, immobilization depressed soleus muscle NKA, with declines in [3H]ouabain binding, which was restored after 14 days recovery. After testosterone suppression by castration, immobilization depressed [3H]ouabain binding, depressed α2, β1, and β2 isoforms, and abolished subsequent recovery in [3H]ouabain binding and α2 isoforms. This may have implications for functional recovery for inactive men with lowered testosterone levels, such as in prostate cancer or aging.
Collapse
Affiliation(s)
- Muath M Altarawneh
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Erik D Hanson
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, North Carolina
| | - Andrew C Betik
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science, Victoria University, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
15
|
Wyckelsma VL, Perry BD, Bangsbo J, McKenna MJ. Inactivity and exercise training differentially regulate abundance of Na +-K +-ATPase in human skeletal muscle. J Appl Physiol (1985) 2019; 127:905-920. [PMID: 31369327 DOI: 10.1152/japplphysiol.01076.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Physical inactivity is a global health risk that can be addressed through application of exercise training suitable for an individual's health and age. People's willingness to participate in physical activity is often limited by an initially poor physical capability and early onset of fatigue. One factor associated with muscle fatigue during intense contractions is an inexcitability of skeletal muscle cells, reflecting impaired transmembrane Na+/K+ exchange and membrane depolarization, which are regulated via the transmembranous protein Na+-K+-ATPase (NKA). This short review focuses on the plasticity of NKA in skeletal muscle in humans after periods of altered usage, exploring NKA upregulation with exercise training and downregulation with physical inactivity. In human skeletal muscle, the NKA content quantified by [3H]ouabain binding site content shows robust, yet tightly constrained, upregulation of 8-22% with physical training, across a broad range of exercise training types. Muscle NKA content in humans undergoes extensive downregulation with injury that involves substantial muscular inactivity. Surprisingly, however, no reduction in NKA content was found in the single study that investigated short-term disuse. Despite clear findings that exercise training and injury modulate NKA content, the adaptability of the individual NKA isoforms in muscle (α1-3 and β1-3) and of the accessory and regulatory protein FXYD1 are surprisingly inconsistent across studies, for exercise training as well as for injury/disuse. Potential reasons for this are explored. Finally, we provide suggestions for future studies to provide greater understanding of NKA regulation during exercise training and inactivity in humans.
Collapse
Affiliation(s)
- V L Wyckelsma
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - B D Perry
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - J Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - M J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Christiansen D, MacInnis MJ, Zacharewicz E, Xu H, Frankish BP, Murphy RM. A fast, reliable and sample-sparing method to identify fibre types of single muscle fibres. Sci Rep 2019; 9:6473. [PMID: 31019216 PMCID: PMC6482153 DOI: 10.1038/s41598-019-42168-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
Many skeletal muscle proteins are present in a cell-specific or fibre-type dependent manner. Stimuli such as exercise, aging, and disease have been reported to result in fibre-specific responses in protein abundances. Thus, fibre-type-specific determination of the content of specific proteins provides enhanced mechanistic understanding of muscle physiology and biochemistry compared with typically performed whole-muscle homogenate analyses. This analysis, however, is laborious and typically not performed. We present a novel dot blotting method for easy and rapid determination of skeletal muscle fibre type based on myosin heavy chain (MHC) isoform presence. Requiring only small amounts of starting muscle tissue (i.e., 2–10 mg wet weight), muscle fibre type is determined in one-tenth of a 1–3-mm fibre segment, with the remainder of each segment pooled with fibre segments of the same type (I or II) for subsequent protein quantification by western blotting. This method, which we validated using standard western blotting, is much simpler and cheaper than previous methods and is adaptable for laboratories routinely performing biochemical analyses. Use of dot blotting for fibre typing will facilitate investigations of fibre-specific responses to diverse stimuli, which will advance our understanding of skeletal muscle physiology and biochemistry.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
| | - Martin J MacInnis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Evelyn Zacharewicz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Hongyang Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.
| |
Collapse
|
17
|
Christiansen D, Eibye KH, Rasmussen V, Voldbye HM, Thomassen M, Nyberg M, Gunnarsson TGP, Skovgaard C, Lindskrog MS, Bishop DJ, Hostrup M, Bangsbo J. Cycling with blood flow restriction improves performance and muscle K + regulation and alters the effect of anti-oxidant infusion in humans. J Physiol 2019; 597:2421-2444. [PMID: 30843602 DOI: 10.1113/jp277657] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Training with blood flow restriction (BFR) is a well-recognized strategy for promoting muscle hypertrophy and strength. However, its potential to enhance muscle function during sustained, intense exercise remains largely unexplored. In the present study, we report that interval training with BFR augments improvements in performance and reduces net K+ release from contracting muscles during high-intensity exercise in active men. A better K+ regulation after BFR-training is associated with an elevated blood flow to exercising muscles and altered muscle anti-oxidant function, as indicated by a higher reduced to oxidized glutathione (GSH:GSSG) ratio, compared to control, as well as an increased thigh net K+ release during intense exercise with concomitant anti-oxidant infusion. Training with BFR also invoked fibre type-specific adaptations in the abundance of Na+ ,K+ -ATPase isoforms (α1 , β1 , phospholemman/FXYD1). Thus, BFR-training enhances performance and K+ regulation during intense exercise, which may be a result of adaptations in anti-oxidant function, blood flow and Na+ ,K+ -ATPase-isoform abundance at the fibre-type level. ABSTRACT We examined whether blood flow restriction (BFR) augments training-induced improvements in K+ regulation and performance during intense exercise in men, and also whether these adaptations are associated with an altered muscle anti-oxidant function, blood flow and/or with fibre type-dependent changes in Na+ ,K+ -ATPase-isoform abundance. Ten recreationally-active men (25 ± 4 years, 49.7 ± 5.3 mL kg-1 min-1 ) performed 6 weeks of interval cycling, where one leg trained without BFR (control; CON-leg) and the other trained with BFR (BFR-leg, pressure: ∼180 mmHg). Before and after training, femoral arterial and venous K+ concentrations and artery blood flow were measured during single-leg knee-extensor exercise at 25% (Ex1) and 90% of thigh incremental peak power (Ex2) with i.v. infusion of N-acetylcysteine (NAC) or placebo (saline) and a resting muscle biopsy was collected. After training, performance increased more in BFR-leg (23%) than in CON-leg (12%, P < 0.05), whereas K+ release during Ex2 was attenuated only from BFR-leg (P < 0.05). The muscle GSH:GSSG ratio at rest and blood flow during exercise was higher in BFR-leg than in CON-leg after training (P < 0.05). After training, NAC increased resting muscle GSH concentration and thigh net K+ release during Ex2 only in BFR-leg (P < 0.05), whereas the abundance of Na+ ,K+ -ATPase-isoform α1 in type II (51%), β1 in type I (33%), and FXYD1 in type I (108%) and type II (60%) fibres was higher in BFR-leg than in CON-leg (P < 0.05). Thus, training with BFR elicited greater improvements in performance and reduced thigh K+ release during intense exercise, which were associated with adaptations in muscle anti-oxidant function, blood flow and Na+ ,K+ -ATPase-isoform abundance at the fibre-type level.
Collapse
Affiliation(s)
- Danny Christiansen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.,Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Kasper H Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Villads Rasmussen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Hans M Voldbye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Thomas G P Gunnarsson
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Casper Skovgaard
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Mads S Lindskrog
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - David J Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Christiansen D. Molecular stressors underlying exercise training-induced improvements in K + regulation during exercise and Na + ,K + -ATPase adaptation in human skeletal muscle. Acta Physiol (Oxf) 2019; 225:e13196. [PMID: 30288889 DOI: 10.1111/apha.13196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022]
Abstract
Despite substantial progress made towards a better understanding of the importance of skeletal muscle K+ regulation for human physical function and its association with several disease states (eg type-II diabetes and hypertension), the molecular basis underpinning adaptations in K+ regulation to various stimuli, including exercise training, remains inadequately explored in humans. In this review, the molecular mechanisms essential for enhancing skeletal muscle K+ regulation and its key determinants, including Na+ ,K+ -ATPase function and expression, by exercise training are examined. Special attention is paid to the following molecular stressors and signaling proteins: oxygenation, redox balance, hypoxia, reactive oxygen species, antioxidant function, Na+ ,K+ , and Ca2+ concentrations, anaerobic ATP turnover, AMPK, lactate, and mRNA expression. On this basis, an update on the effects of different types of exercise training on K+ regulation in humans is provided, focusing on recent discoveries about the muscle fibre-type-dependent regulation of Na+ ,K+ -ATPase-isoform expression. Furthermore, with special emphasis on blood-flow-restricted exercise as an exemplary model to modulate the key molecular mechanisms identified, it is discussed how training interventions may be designed to maximize improvements in K+ regulation in humans. The novel insights gained from this review may help us to better understand how exercise training and other strategies, such as pharmacological interventions, may be best designed to enhance K+ regulation and thus the physical function in humans.
Collapse
Affiliation(s)
- Danny Christiansen
- Department of Nutrition, Exercise and Sports (NEXS) University of Copenhagen Copenhagen Denmark
- Institute for Health and Sport (IHES) Victoria University Melbourne Victoria Australia
| |
Collapse
|