1
|
Volpi T, Silvestri E, Aiello M, Lee JJ, Vlassenko AG, Goyal MS, Corbetta M, Bertoldo A. The brain's "dark energy" puzzle: How strongly is glucose metabolism linked to resting-state brain activity? J Cereb Blood Flow Metab 2024; 44:1433-1449. [PMID: 38443762 PMCID: PMC11342718 DOI: 10.1177/0271678x241237974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/05/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
Brain glucose metabolism, which can be investigated at the macroscale level with [18F]FDG PET, displays significant regional variability for reasons that remain unclear. Some of the functional drivers behind this heterogeneity may be captured by resting-state functional magnetic resonance imaging (rs-fMRI). However, the full extent to which an fMRI-based description of the brain's spontaneous activity can describe local metabolism is unknown. Here, using two multimodal datasets of healthy participants, we built a multivariable multilevel model of functional-metabolic associations, assessing multiple functional features, describing the 1) rs-fMRI signal, 2) hemodynamic response, 3) static and 4) time-varying functional connectivity, as predictors of the human brain's metabolic architecture. The full model was trained on one dataset and tested on the other to assess its reproducibility. We found that functional-metabolic spatial coupling is nonlinear and heterogeneous across the brain, and that local measures of rs-fMRI activity and synchrony are more tightly coupled to local metabolism. In the testing dataset, the degree of functional-metabolic spatial coupling was also related to peripheral metabolism. Overall, although a significant proportion of regional metabolic variability can be described by measures of spontaneous activity, additional efforts are needed to explain the remaining variance in the brain's 'dark energy'.
Collapse
Affiliation(s)
- Tommaso Volpi
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Erica Silvestri
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - John J Lee
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrei G Vlassenko
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Manu S Goyal
- Neuroimaging Laboratories at the Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Deery HA, Liang E, Di Paolo R, Voigt K, Murray G, Siddiqui MN, Egan GF, Moran C, Jamadar SD. The association of regional cerebral blood flow and glucose metabolism in normative ageing and insulin resistance. Sci Rep 2024; 14:14574. [PMID: 38914735 PMCID: PMC11196590 DOI: 10.1038/s41598-024-65396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Rising rates of insulin resistance and an ageing population are set to exact an increasing toll on individuals and society. Here we examine the contribution of age and insulin resistance to the association of cerebral blood flow and glucose metabolism; both critical process in the supply of energy for the brain. Thirty-four younger (20-42 years) and 41 older (66-86 years) healthy adults underwent a simultaneous resting state MR/PET scan, including arterial spin labelling. Rates of cerebral blood flow and glucose metabolism were derived using a functional atlas of 100 brain regions. Older adults had lower cerebral blood flow than younger adults in 95 regions, reducing to 36 regions after controlling for cortical atrophy and blood pressure. Lower cerebral blood flow was also associated with worse working memory and slower reaction time in tasks requiring cognitive flexibility and response inhibition. Younger and older insulin sensitive adults showed small, negative correlations between relatively high rates of regional cerebral blood flow and glucose metabolism. This pattern was inverted in insulin resistant older adults, who showed hypoperfusion and hypometabolism across the cortex, and a positive correlation. In insulin resistant younger adults, the association showed inversion to positive correlations, although not to the extent seen in older adults. Our findings suggest that the normal course of ageing and insulin resistance alter the rates of and associations between cerebral blood flow and glucose metabolism. They underscore the criticality of insulin sensitivity to brain health across the adult lifespan.
Collapse
Affiliation(s)
- Hamish A Deery
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| | - Emma Liang
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Robert Di Paolo
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Katharina Voigt
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gerard Murray
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - M Navyaan Siddiqui
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia
| | - Chris Moran
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Rd, Melbourne, VIC, 3004, Australia
| | - Sharna D Jamadar
- School of Psychological Sciences, Monash University, Wellington Rd, Melbourne, 3800, Australia.
- Monash Biomedical Imaging, Monash University, 770 Blackburn Rd, Melbourne, 3800, Australia.
| |
Collapse
|
3
|
Høilund-Carlsen PF, Alavi A, Barrio JR. PET/CT/MRI in Clinical Trials of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S579-S601. [PMID: 39422954 DOI: 10.3233/jad-240206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
With the advent of PET imaging in 1976, 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET became the preferred method for in vivo investigation of cerebral processes, including regional hypometabolism in Alzheimer's disease. With the emergence of amyloid-PET tracers, [11C]Pittsburgh Compound-B in 2004 and later [18F]florbetapir, [18F]florbetaben, and [18F]flumetamol, amyloid-PET has replaced FDG-PET in Alzheimer's disease anti-amyloid clinical trial treatments to ensure "amyloid positivity" as an entry criterion, and to measure treatment-related decline in cerebral amyloid deposits. MRI has been used to rule out other brain diseases and screen for 'amyloid-related imaging abnormalities' (ARIAs) of two kinds, ARIA-E and ARIA-H, characterized by edema and micro-hemorrhage, respectively, and, to a lesser extent, to measure changes in cerebral volumes. While early immunotherapy trials of Alzheimer's disease showed no clinical effects, newer monoclonal antibody trials reported decreases of 27% to 85% in the cerebral amyloid-PET signal, interpreted by the Food and Drug Administration as amyloid removal expected to result in a reduction in clinical decline. However, due to the lack of diagnostic specificity of amyloid-PET tracers, amyloid positivity cannot prevent the inclusion of non-Alzheimer's patients and even healthy subjects in these clinical trials. Moreover, the "decreasing amyloid accumulation" assessed by amyloid-PET imaging has questionable quantitative value in the presence of treatment-related brain damage (ARIAs). Therefore, future Alzheimer's clinical trials should disregard amyloid-PET imaging and focus instead on assessment of regional brain function by FDG-PET and MRI monitoring of ARIAs and brain volume loss in all trial patients.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
4
|
Ito H, Ibaraki M, Yamakuni R, Hakozaki M, Ukon N, Ishii S, Fukushima K, Kubo H, Takahashi K. Oxygen extraction fraction is not uniform in human brain: a positron emission tomography study. J Physiol Sci 2023; 73:25. [PMID: 37828449 DOI: 10.1186/s12576-023-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The regional differences in cerebral oxygen extraction fraction (OEF) in brain were investigated using positron emission tomography (PET) in detail with consideration of systemic errors in PET measurement estimated by simulation studies. The cerebral blood flow (CBF), cerebral blood volume (CBV), OEF, and cerebral metabolic rate of oxygen (CMRO2) were measured on healthy men by PET with 15O-labeled gases. The OEF values in the pons and the parahippocampal gyrus were significantly smaller than in the other brain regions. The OEF value in the lateral side of the occipital cortex was largest among the cerebral cortical regions. Simulation studies have revealed that errors in OEF caused by regional differences in the distribution volume of 15O-labeled water, as well as errors in OEF caused by a mixture of gray and white matter, must be negligible. The regional differences in OEF in brain must exist which might be related to physiological meanings.Article title: Kindly check and confirm the edit made in the article title.I have checked the article title and it is OK as is. Trial registration: The UMIN clinical trial number: UMIN000033382, https://www.umin.ac.jp/ctr/index.htm.
Collapse
Affiliation(s)
- Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan.
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, 6-10 Senshu-Kubota-Machi, Akita, 010-0874, Japan.
| | - Ryo Yamakuni
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Motoharu Hakozaki
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Shiro Ishii
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Kenji Fukushima
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
| | - Hitoshi Kubo
- School of Medical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
5
|
Völter F, Beyer L, Eckenweber F, Scheifele M, Bui N, Patt M, Barthel H, Katzdobler S, Palleis C, Franzmeier N, Levin J, Perneczky R, Rauchmann BS, Sabri O, Hong J, Cumming P, Rominger A, Shi K, Bartenstein P, Brendel M. Assessment of perfusion deficit with early phases of [ 18F]PI-2620 tau-PET versus [ 18F]flutemetamol-amyloid-PET recordings. Eur J Nucl Med Mol Imaging 2023; 50:1384-1394. [PMID: 36572740 PMCID: PMC10027797 DOI: 10.1007/s00259-022-06087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to β-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.
Collapse
Affiliation(s)
- Friederike Völter
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ngoc Bui
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Johannes Levin
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Jimin Hong
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
6
|
Jiang D, Liu P, Lin Z, Hazel K, Pottanat G, Lucke E, Moghekar A, Pillai JJ, Lu H. MRI assessment of cerebral oxygen extraction fraction in the medial temporal lobe. Neuroimage 2023; 266:119829. [PMID: 36565971 PMCID: PMC9878351 DOI: 10.1016/j.neuroimage.2022.119829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The medial temporal lobe (MTL) is a key area implicated in many brain diseases, such as Alzheimer's disease. As a functional biomarker, the oxygen extraction fraction (OEF) of MTL may be more sensitive than structural atrophy of MTL, especially at the early stages of diseases. However, there is a lack of non-invasive techniques to measure MTL-OEF in humans. The goal of this work is to develop an MRI technique to assess MTL-OEF in a clinically practical time without using contrast agents. The proposed method measures venous oxygenation (Yv) in the basal veins of Rosenthal (BVs), which are the major draining veins of the MTL. MTL-OEF can then be estimated as the arterio-venous difference in oxygenation. We developed an MRI sequence, dubbed arterial-suppressed accelerated T2-relaxation-under-phase-contrast (AS-aTRUPC), to quantify the blood T2 of the BVs, which was then converted to Yv through a well-established calibration model. MTL-OEF was calculated as (Ya-Yv)/Ya × 100%, where Ya was the arterial oxygenation. The feasibility of AS-aTRUPC to quantify MTL-OEF was evaluated in 16 healthy adults. The sensitivity of AS-aTRUPC in detecting OEF changes was assessed by a caffeine ingestion (200 mg) challenge. For comparison, T2-relaxation-under-spin-tagging (TRUST) MRI, which is a widely used global OEF technique, was also acquired. The dependence of MTL-OEF on age was examined by including another seven healthy elderly subjects. The results showed that in healthy adults, MTL-OEF of the left and right hemispheres were correlated (P=0.005). MTL-OEF was measured to be 23.9±3.6% (mean±standard deviation) and was significantly lower (P<0.0001) than the OEF of 33.3±2.9% measured in superior sagittal sinus (SSS). After caffeine ingestion, there was an absolute percentage increase of 9.1±4.0% in MTL-OEF. Additionally, OEF in SSS measured with AS-aTRUPC showed a strong correlation with TRUST OEF (intra-class correlation coefficient=0.94 with 95% confidence interval [0.91, 0.96]), with no significant bias (P=0.12). MTL-OEF was found to increase with age (MTL-OEF=20.997+0.100 × age; P=0.02). In conclusion, AS-aTRUPC MRI provides non-invasive assessments of MTL-OEF and may facilitate future clinical applications of MTL-OEF as a disease biomarker.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kaisha Hazel
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - George Pottanat
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Emma Lucke
- Department of Biology, Johns Hopkins University School of Arts & Sciences, Baltimore, MD, United States
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| |
Collapse
|
7
|
Wu S, Tyler LK, Henson RNA, Rowe JB, Cam-Can, Tsvetanov KA. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol Aging 2023; 121:1-14. [PMID: 36306687 PMCID: PMC7613814 DOI: 10.1016/j.neurobiolaging.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The preservation of cognitive function in old age is a public health priority. Cerebral hypoperfusion is a hallmark of dementia but its impact on maintaining cognitive ability across the lifespan is less clear. We investigated the relationship between baseline cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) response during a fluid reasoning task in a population-based adult lifespan cohort. As age differences in CBF could lead to non-neuronal contributions to the BOLD signal, we introduced commonality analysis to neuroimaging to dissociate performance-related CBF effects from the physiological confounding effects of CBF on the BOLD response. Accounting for CBF, we confirmed that performance- and age-related differences in BOLD responses in the multiple-demand network were implicated in fluid reasoning. Age differences in CBF explained not only performance-related BOLD responses but also performance-independent BOLD responses. Our results suggest that CBF is important for maintaining cognitive function, while its non-neuronal contributions to BOLD signals reflect an age-related confound. Maintaining perfusion into old age may serve to support brain function and preserve cognitive performance.
Collapse
Affiliation(s)
- Shuyi Wu
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, China
| | - Lorraine K Tyler
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Richard N A Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - Kamen A Tsvetanov
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Correlation of Cerebral Microdialysis with Non-Invasive Diffuse Optical Cerebral Hemodynamic Monitoring during Deep Hypothermic Cardiopulmonary Bypass. Metabolites 2022; 12:metabo12080737. [PMID: 36005609 PMCID: PMC9416552 DOI: 10.3390/metabo12080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an increased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correlations between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently shown promise for the prediction of postoperative white matter injury in this patient population, and invasive cerebral microdialysis biomarkers. We compared cerebral tissue oxygen saturation (StO2), relative total hemoglobin concentration (rTHC), and relative cerebral blood flow (rCBF) measured by optics against the microdialysis biomarkers of metabolic stress and injury (lactate–pyruvate ratio (LPR) and glycerol) in neonatal swine models of deep hypothermic cardiopulmonary bypass (DHCPB), selective antegrade cerebral perfusion (SACP), and deep hypothermic circulatory arrest (DHCA). All three optical parameters were negatively correlated with LPR and glycerol in DHCA animals. Elevation of LPR was found to precede the elevation of glycerol by 30–60 min. From these data, thresholds for the detection of hypoxic-ischemia-associated cerebral metabolic distress and neurological injury are suggested. In total, this work provides insight into the timing and mechanisms of neurological injury following hypoxic-ischemia and reports a quantitative relationship between hypoxic-ischemia severity and neurological injury that may inform DHCA management.
Collapse
|
9
|
Hafdi M, Mutsaerts HJMM, Petr J, Richard E, van Dalen JW. Atherosclerotic risk is associated with cerebral perfusion - A cross-sectional study using arterial spin labeling MRI. Neuroimage Clin 2022; 36:103142. [PMID: 35970112 PMCID: PMC9400119 DOI: 10.1016/j.nicl.2022.103142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Arterial spin labeling (ASL) magnetic resonance imaging (MRI) may be a promising technique to evaluate the presence of cerebral atherosclerosis. We tested whether the new and easily calculated ASL MRI parameter for vascular and tissue signal distribution - 'spatial coefficient of variation' (ASL-sCoV) - is a better radiological marker for atherosclerotic risk than the more conventional markers of white matter hyperintensity (WMH) volume and cerebral blood flow (ASL-CBF). METHODS Participants of the preDIVA trial (n = 195), aged 72-80 years with systolic hypertension (>140 mmHg) underwent two MRI scans two to three years apart. WMH volume was derived from 3D FLAIR-MRI; gray matter ASL-CBF and ASL-sCoV from ASL-MRI. Atherosclerotic risk was operationalized as 10-year cardiovascular risk by the Systematic COronary Risk Evaluation Older Persons (SCORE O.P) and calculated at baseline and follow-up. Data were analyzed using linear regression. RESULTS ASL-CBF was associated with atherosclerotic risk scores at baseline (standardized-beta = -0.26, 95 %CI = -0.40 to -0.13, p < 0.001) but not at follow-up (standardized-beta = -0.14, 95 %CI = -0.33 to 0.04, p = 0.12). ASL-sCoV was associated with atherosclerotic risk scores at both time points (baseline standardized-beta = 0.23, 95 %CI = 0.10 to 0.36, p < 0.0001, follow-up standardized beta = 0.20, 95 %CI = 0.03 to 0.36, p = 0.02). WMH volume was not associated with atherosclerotic risk scores at either time-point. There were no longitudinal associations between changes in MRI parameters and baseline atherosclerotic risk scores. CONCLUSIONS Our findings suggest that ASL-sCoV correlates better with atherosclerotic risk than the more conventional markers ASL-CBF and WMH volume. Our data reaffirm that non-invasive imaging with MRI is highly informative and could provide additional information about cerebrovascular damage.
Collapse
Affiliation(s)
- Melanie Hafdi
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands,Corresponding author at: Amsterdam University Medical Centre, Department of Neurology Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Edo Richard
- Department of Public and Occupational Health, Amsterdam University Medical Center, Amsterdam, The Netherlands,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Willem van Dalen
- Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands,Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Whittaker JR, Steventon JJ, Venzi M, Murphy K. The Spatiotemporal Dynamics of Cerebral Autoregulation in Functional Magnetic Resonance Imaging. Front Neurosci 2022; 16:795683. [PMID: 35873811 PMCID: PMC9304653 DOI: 10.3389/fnins.2022.795683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
The thigh-cuff release (TCR) maneuver is a physiological challenge that is widely used to assess dynamic cerebral autoregulation (dCA). It is often applied in conjunction with Transcranial Doppler ultrasound (TCD), which provides temporal information of the global flow response in the brain. This established method can only yield very limited insights into the regional variability of dCA, whereas functional MRI (fMRI) has the ability to reveal the spatial distribution of flow responses in the brain with high spatial resolution. The aim of this study was to use whole-brain blood-oxygenation-level-dependent (BOLD) fMRI to characterize the spatiotemporal dynamics of the flow response to the TCR challenge, and thus pave the way toward mapping dCA in the brain. We used a data driven approach to derive a novel basis set that was then used to provide a voxel-wise estimate of the TCR associated haemodynamic response function (HRF TCR ). We found that the HRF TCR evolves with a specific spatiotemporal pattern, with gray and white matter showing an asynchronous response, which likely reflects the anatomical structure of cerebral blood supply. Thus, we propose that TCR challenge fMRI is a promising method for mapping spatial variability in dCA, which will likely prove to be clinically advantageous.
Collapse
Affiliation(s)
- Joseph R. Whittaker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jessica J. Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marcello Venzi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Cognitive Dysfunction after Heart Disease: A Manifestation of the Heart-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4899688. [PMID: 34457113 PMCID: PMC8387198 DOI: 10.1155/2021/4899688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 12/26/2022]
Abstract
The functions of the brain and heart, which are the two main supporting organs of human life, are closely linked. Numerous studies have expounded the mechanisms of the brain-heart axis and its related clinical applications. However, the effect of heart disease on brain function, defined as the heart-brain axis, is less studied even though cognitive dysfunction after heart disease is one of its most frequently reported manifestations. Hypoperfusion caused by heart failure appears to be an important risk factor for cognitive decline. Blood perfusion, the immune response, and oxidative stress are the possible main mechanisms of cognitive dysfunction, indicating that the blood-brain barrier, glial cells, and amyloid-β may play active roles in these mechanisms. Clinicians should pay more attention to the cognitive function of patients with heart disease, especially those with heart failure. In addition, further research elucidating the associated mechanisms would help discover new therapeutic targets to intervene in the process of cognitive dysfunction after heart disease. This review discusses cognitive dysfunction in relation to heart disease and its potential mechanisms.
Collapse
|
12
|
Elias GJB, Germann J, Boutet A, Pancholi A, Beyn ME, Bhatia K, Neudorfer C, Loh A, Rizvi SJ, Bhat V, Giacobbe P, Woodside DB, Kennedy SH, Lozano AM. Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain 2021; 145:362-377. [PMID: 34324658 DOI: 10.1093/brain/awab284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
Subcallosal cingulate deep brain stimulation (SCC-DBS) produces long-term clinical improvement in approximately half of patients with severe treatment-resistant depression (TRD). We hypothesized that both structural and functional brain attributes may be important in determining responsiveness to this therapy. In a TRD SCC-DBS cohort, we retrospectively examined baseline and longitudinal differences in MRI-derived brain volume (n = 65) and 18F-fluorodeoxyglucose-PET glucose metabolism (n = 21) between responders and non-responders. Support-vector machines (SVMs) were subsequently trained to classify patients' response status based on extracted baseline imaging features. A machine learning model incorporating pre-operative frontopolar, precentral/frontal opercular, and orbitofrontal local volume values classified binary response status (12 months) with 83% accuracy (leave-one-out cross-validation (LOOCV): 80% accuracy) and explained 32% of the variance in continuous clinical improvement. It was also predictive in an out-of-sample SCC-DBS cohort (n = 21) with differing primary indications (bipolar disorder/anorexia nervosa) (76% accuracy). Adding pre-operative glucose metabolism information from rostral anterior cingulate cortex and temporal pole improved model performance, enabling it to predict response status in the TRD cohort with 86% accuracy (LOOCV: 81% accuracy) and explain 67% of clinical variance. Response-related patterns of metabolic and structural post-DBS change were also observed, especially in anterior cingulate cortex and neighbouring white matter. Areas where responders differed from non-responders - both at baseline and longitudinally - largely overlapped with depression-implicated white matter tracts, namely uncinate fasciculus, cingulum bundle, and forceps minor/rostrum of corpus callosum. The extent of patient-specific engagement of these same tracts (according to electrode location and stimulation parameters) also served as a predictor of TRD response status (72% accuracy; LOOCV: 70% accuracy) and augmented performance of the volume-based (88% accuracy; LOOCV: 82% accuracy) and combined volume/metabolism-based SVMs (100% accuracy; LOOCV: 94% accuracy). Taken together, these results indicate that responders and non-responders to SCC-DBS exhibit differences in brain volume and metabolism, both pre- and post-surgery. Baseline imaging features moreover predict response to treatment (particularly when combined with information about local tract engagement) and could inform future patient selection and other clinical decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Kartik Bhatia
- Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Sakina J Rizvi
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Venkat Bhat
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - D Blake Woodside
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| |
Collapse
|
13
|
Henriksen OM, Gjedde A, Vang K, Law I, Aanerud J, Rostrup E. Regional and interindividual relationships between cerebral perfusion and oxygen metabolism. J Appl Physiol (1985) 2021; 130:1836-1847. [PMID: 33830816 DOI: 10.1152/japplphysiol.00939.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantitative measurements of resting cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2) show large between-subject and regional variability, but the relationships between CBF and CMRO2 measurements regionally and globally are not fully established. Here, we investigated the between-subject and regional associations between CBF and CMRO2 measures with independent and quantitative PET techniques. We included resting CBF and CMRO2 measurements from 50 healthy volunteers (aged 22-81 yr), and calculated the regional and global values of oxygen delivery (Do2) and oxygen extraction fraction (OEF). Linear mixed-model analysis showed that CBF and CMRO2 measurements were closely associated regionally, but no significant between-subject association could be demonstrated, even when adjusting for arterial Pco2 and hemoglobin concentration. The analysis also showed regional differences of OEF, reflecting variable relationship between Do2 and CMRO2, resulting in lower estimates of OEF in thalami, brainstem, and mesial temporal cortices and higher estimates of OEF in occipital cortex. In the present study, we demonstrated no between-subject association of quantitative measurements of CBF and CMRO2 in healthy subjects. Thus, quantitative measurements of CBF did not reflect the underlying between-subject variability of oxygen metabolism measures, mainly because of large interindividual OEF variability not accounted for by Pco2 and hemoglobin concentration.NEW & NOTEWORTHY Using quantitative PET-measurements in healthy human subjects, we confirmed a regional association of CBF and CMRO2, but did not find an association of these values across subjects. This suggests that subjects have an individual coupling between perfusion and metabolism and shows that absolute perfusion measurements does not serve as a surrogate measure of individual measures of oxygen metabolism. The analysis further showed smaller, but significant regional differences of oxygen extraction fraction at rest.
Collapse
Affiliation(s)
- Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Albert Gjedde
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Translational Neuropsychiatry Unit, Aarhus University and University Hospital, Aarhus, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Joel Aanerud
- Department of Nuclear Medicine and PET Centre, Aarhus University and University Hospital, Aarhus, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark.,Mental Health Center Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Tastevin M, Boyer L, Korchia T, Fond G, Lançon C, Richieri R, Guedj E. Brain SPECT perfusion and PET metabolism as discordant biomarkers in major depressive disorder. EJNMMI Res 2020; 10:121. [PMID: 33030615 PMCID: PMC7544792 DOI: 10.1186/s13550-020-00713-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023] Open
Abstract
Background Brain SPECT perfusion and PET metabolism have been, most often interchangeably, proposed to study the underlying pathological process in major depressive disorder (MDD). The objective of this study was to specify similarities and inconsistencies between these two biomarkers according to global characteristics of the disease. We conducted a retrospective study in 16 patients suffering from treatment-resistant MDD who underwent, during the same current episode, a cerebral perfusion SPECT with 99mTc-HMPAO and a metabolic PET with 18F-FDG. Whole-brain voxel-based SPM(T) maps were generated in correlation with the number of depressive episodes and in correlation with the depression duration, separately for the two exams (p-voxel < 0.001 uncorrected, k > 20). Results No significant correlations were found between brain metabolism and either the number of depressive episodes or the duration of the disease, even at an uncorrected p-voxel < 0.005. On the other hand, the increased number of depressive episodes was correlated with decreased perfusion of the right middle frontal cortex, the right anterior cingulum cortex, the right insula, the right medial temporal cortex and the left precuneus. The increased depression duration was correlated with decreased perfusion of the right anterior cingulum cortex. Conclusions This preliminary study demonstrates more significant results with brain perfusion compared with glucose metabolism in treatment-resistant MDD, highlighting the value of brain SPECT despite less favourable instrumentation detection compared to PET.
Collapse
Affiliation(s)
- Maud Tastevin
- Department of Psychiatry, Sainte Marguerite University Hospital, Assistance Publique- Hôpitaux de Marseille, Marseille, France
| | - Laurent Boyer
- CEReSS-Health Service Research and Quality of Life Centre, Aix Marseille University, Marseille, France.,Department of Medical Information and Public Health, APHM, Marseille, France.,Department of Epidemiology and Health Economics, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Theo Korchia
- Department of Psychiatry, Sainte Marguerite University Hospital, Assistance Publique- Hôpitaux de Marseille, Marseille, France
| | - Guillaume Fond
- Department of Psychiatry, Sainte Marguerite University Hospital, Assistance Publique- Hôpitaux de Marseille, Marseille, France.,CEReSS-Health Service Research and Quality of Life Centre, Aix Marseille University, Marseille, France.,Department of Medical Information and Public Health, APHM, Marseille, France
| | - Christophe Lançon
- Department of Psychiatry, Sainte Marguerite University Hospital, Assistance Publique- Hôpitaux de Marseille, Marseille, France.,CEReSS-Health Service Research and Quality of Life Centre, Aix Marseille University, Marseille, France
| | - Raphaëlle Richieri
- Department of Psychiatry, Sainte Marguerite University Hospital, Assistance Publique- Hôpitaux de Marseille, Marseille, France.,CNRS, Centrale Marseille, Institut Fresnel, Aix Marseille University, Marseille, France
| | - Eric Guedj
- Nuclear Medicine Department, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Aix Marseille University, Marseille, France.
| |
Collapse
|
15
|
Ko TS, Mavroudis CD, Baker WB, Morano VC, Mensah-Brown K, Boorady TW, Schmidt AL, Lynch JM, Busch DR, Gentile J, Bratinov G, Lin Y, Jeong S, Melchior RW, Rosenthal TM, Shade BC, Schiavo KL, Xiao R, Gaynor JW, Yodh AG, Kilbaugh TJ, Licht DJ. Non-invasive optical neuromonitoring of the temperature-dependence of cerebral oxygen metabolism during deep hypothermic cardiopulmonary bypass in neonatal swine. J Cereb Blood Flow Metab 2020; 40:187-203. [PMID: 30375917 PMCID: PMC6928559 DOI: 10.1177/0271678x18809828] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Management of deep hypothermic (DH) cardiopulmonary bypass (CPB), a critical neuroprotective strategy, currently relies on non-invasive temperature to guide cerebral metabolic suppression during complex cardiac surgery in neonates. Considerable inter-subject variability in temperature response and residual metabolism may contribute to the persisting risk for postoperative neurological injury. To characterize and mitigate this variability, we assess the sufficiency of conventional nasopharyngeal temperature (NPT) guidance, and in the process, validate combined non-invasive frequency-domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for direct measurement of cerebral metabolic rate of oxygen (CMRO2). During CPB, n = 8 neonatal swine underwent cooling from normothermia to 18℃, sustained DH perfusion for 40 min, and then rewarming to simulate cardiac surgery. Continuous non-invasive and invasive measurements of intracranial temperature (ICT) and CMRO2 were acquired. Significant hysteresis (p < 0.001) between cooling and rewarming periods in the NPT versus ICT and NPT versus CMRO2 relationships were found. Resolution of this hysteresis in the ICT versus CMRO2 relationship identified a crucial insufficiency of conventional NPT guidance. Non-invasive CMRO2 temperature coefficients with respect to NPT (Q10 = 2.0) and ICT (Q10 = 2.5) are consistent with previous reports and provide further validation of FD-DOS/DCS CMRO2 monitoring during DH CPB to optimize management.
Collapse
Affiliation(s)
- Tiffany S Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Constantine D Mavroudis
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vincent C Morano
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Kobina Mensah-Brown
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Timothy W Boorady
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jennifer M Lynch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Busch
- Department of Anesthesiology & Pain Management, University of Texas Southwestern, Dallas, TX, USA.,Department of Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Javier Gentile
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sejin Jeong
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Richard W Melchior
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tami M Rosenthal
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brandon C Shade
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kellie L Schiavo
- Department of Perfusion Services, Cardiac Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Pediatrics, Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
16
|
Dolui S, Tisdall D, Vidorreta M, Jacobs DR, Nasrallah IM, Bryan RN, Wolk DA, Detre JA. Characterizing a perfusion-based periventricular small vessel region of interest. NEUROIMAGE-CLINICAL 2019; 23:101897. [PMID: 31233954 PMCID: PMC6595083 DOI: 10.1016/j.nicl.2019.101897] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 10/27/2022]
Abstract
The periventricular white matter (PVWM) is supplied by terminal distributions of small vessels and is particularly susceptible to developing white matter lesions (WML) associated with cerebral small vessel disease (CSVD). We obtained group-averaged cerebral blood flow (CBF) maps from Arterial Spin Labeled (ASL) perfusion MRI data obtained in 436 middle-aged (50.4 ± 3.5 years) subjects in the NHLBI CARDIA study and in 61 elderly (73.3 ± 6.9 years) cognitively normal subjects recruited from the Penn Alzheimer's Disease Center (ADC) and found that the lowest perfused brain voxels are located within the PVWM. We constructed a white matter periventricular small vessel (PSV) region of interest (ROI) by empirically thresholding the group averaged CARDIA CBF map at CBF < 15 ml/100 g/min. Thereafter we compared CBF in the PSV ROI and in the remaining white matter (RWM) with the location and volume of WML measured with Fluid Attenuated Inversion Recovery (FLAIR) MRI. WM CBF was lower within WML than outside WML voxels (p < <0.0001) in both the PSV and RWM ROIs, however this difference was much smaller (p < <0.0001) in the PSV ROI than in the RWM suggesting a more homogenous reduction of CBF in the PSV region. Normalized WML volumes were significantly higher in the PSV ROI than in the RWM and in the elderly cohort as compared to the middle-aged cohort (p < <0.0001). Additionally, the PSV ROI showed a significantly (p = .001) greater increase in lesion volume than the RWM in the elderly ADC cohort than the younger CARDIA cohort. Considerable intersubject variability in PSV CBF observed in both study cohorts likely represents biological variability that may be predictive of future WML and/or cognitive decline. In conclusion, a data-driven PSV ROI defined by voxels with low perfusion in middle age defines a region with homogeneously reduced CBF that is particularly susceptible to progressive ischemic injury in elderly controls. PSV CBF may provide a mechanistically specific biomarker of CSVD.
Collapse
Affiliation(s)
- Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Dylan Tisdall
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Vidorreta
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA; Siemens Healthcare S.L.U., Madrid, Spain
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - R Nick Bryan
- Department of Diagnostic Medicine, University of Texas, Austin, Austin, TX, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|