1
|
Yi D, Sugimoto T, Matsumura T, Yokoyama S, Fujisato T, Nakamura T, Hashimoto T. Investigating the Combined Effects of Mechanical Stress and Nutrition on Muscle Hypertrophic Signals Using Contractile 3D-Engineered Muscle (3D-EM). Nutrients 2023; 15:4083. [PMID: 37764867 PMCID: PMC10536268 DOI: 10.3390/nu15184083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Since 3D-EM closely resembles in vivo muscles, the aim of this study was to investigate the effects of exercise (electrical pulse stimulation (EPS)) and nutrition (maca), which contains triterpenes, on muscle hypertrophy by using 3D-EM for the first time. The 3D-EM was composed of C2C12 cells and type 1 collagen gel, was differentiated for 14 days, and was divided into four groups: control, maca, EPS, and maca + EPS. The medium was replaced every two days before each EPS intervention, and the concentration of maca in the culture solution was 1 mg/mL. The intervention conditions of the EPS were 30 V, 1 Hz, and 2 ms (24 h on, 24 h off, for one week). The expression levels of proteins were examined by Western blotting. The intervention of maca and EPS upregulated the expression of MHC-fast/slow (both p < 0.05) compared with the control group, and the addition of maca had no effect on the phosphorylation of mTOR (p = 0.287) but increased the AMPK phosphorylation (p = 0.001). These findings suggest that intervention with maca and EPS has a positive effect on muscle hypertrophy, which has a positive impact on sarcopenia. However, the underlying mechanisms remain to be further explored.
Collapse
Affiliation(s)
- Dong Yi
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| | - Takeshi Sugimoto
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| | - Teppei Matsumura
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| | - Sho Yokoyama
- Department of Mechanical Engineering, School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Osaka 535-8585, Osaka, Japan;
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Osaka 535-8585, Osaka, Japan;
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Osaka 535-8585, Osaka, Japan;
| | - Takeshi Hashimoto
- Faculty of Sport and Health Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (D.Y.); (T.S.); (T.M.)
| |
Collapse
|
2
|
Sugimoto T, Nakamura T, Yokoyama S, Fujisato T, Konishi S, Hashimoto T. Investigation of Brain Function-Related Myokine Secretion by Using Contractile 3D-Engineered Muscle. Int J Mol Sci 2022; 23:ijms23105723. [PMID: 35628536 PMCID: PMC9144730 DOI: 10.3390/ijms23105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Brain function-related myokines, such as lactate, irisin, and cathepsin B (CTSB), are upstream factors that control brain-derived neurotrophic factor (BDNF) expression and are secreted from skeletal muscle by exercise. However, whether irisin and CTSB are secreted by muscle contraction remains controversial. Three-dimensional (3D)-engineered muscle (3D-EM) may help determine whether skeletal muscle contraction leads to the secretion of irisin and CTSB, which has never been identified with the addition of drugs in conventional 2D muscle cell cultures. We aimed to investigate the effects of electrical pulse stimulation (EPS)-evoked muscle contraction on irisin and CTSB secretion in 3D-EM. The 3D-EM, which consisted of C2C12 myoblasts and type-1 collagen gel, was allowed to differentiate for 2 weeks and divided into the control and EPS groups. EPS was applied at 13 V, 66 Hz, and 2 msec for 3 h (on: 5 s/off: 5 s). Irisin and CTSB secretion into the culture medium was measured by Western blotting. Irisin secretion was significantly increased following EPS (p < 0.05). However, there was no significant difference in CTSB secretion between the two groups. The present study suggests that irisin may be a contractile muscle-derived myokine, but CTSB is not secreted by EPS-evoked muscle contractile stimulation in 3D-EM.
Collapse
Affiliation(s)
- Takeshi Sugimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Tomohiro Nakamura
- Division of Human Sciences, Faculty of Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Sho Yokoyama
- Department of Mechanical Engineering, School of Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Toshia Fujisato
- Graduate Course in Applied Chemistry, Environmental and Biomedical Engineering, Osaka Institute of Technology, Ohmiya 535-8585, Japan;
| | - Satoshi Konishi
- Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan;
| | - Takeshi Hashimoto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-4134
| |
Collapse
|