1
|
Dugrenot E, Guernec A, Orsat J, Guerrero F. Gene expression of Decompression Sickness-resistant rats through a miRnome/transcriptome crossed approach. Commun Biol 2024; 7:1245. [PMID: 39358457 PMCID: PMC11446962 DOI: 10.1038/s42003-024-06963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Susceptibility to decompression sickness (DCS) is characterized by a wide inter-individual variability, the origins of which are still poorly understood. We selectively bred rats with at least a 3-fold greater resistance to DCS than standard rats after 6 generations. In order to better understand DCS mechanisms, we compared the static genome expression of these resistant rats from the 10th generation to their counterparts of the initial non-resistant Wistar strain, by a microarray transcriptomic approach coupled and crossed with a PCR plates miRnome study. Thus, we identified differentially expressed genes on selected males and females, as well as gender differences in those genes, and we crossed these transcripts with the respective targets of the differentially expressed microRNAs. Our results highlight pathways involved in inflammatory responses, circadian clock, cell signaling and motricity, phagocytosis or apoptosis, and they confirm the importance of inflammation in DCS pathophysiology.
Collapse
Affiliation(s)
- Emmanuel Dugrenot
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France.
- Tek Diving SAS, Brest, France.
- Divers Alert Network, Durham, NC, USA.
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, NC, USA.
| | - Anthony Guernec
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - Jérémy Orsat
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| | - François Guerrero
- Univ Brest, ORPHY's Laboratory, 6 Av Le Gorgeu, CS93837, F-29238, Brest, Cedex, France
| |
Collapse
|
2
|
Orsat J, Guernec A, Le Maréchal C, Pichereau V, Guerrero F. Association between rat decompression sickness resistance, transthyretin single nucleotide polymorphism, and expression: A pilot study. Physiol Rep 2024; 12:e16160. [PMID: 39039431 PMCID: PMC11262998 DOI: 10.14814/phy2.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Decompression sickness (DCS) is a systemic syndrome that can occur after an environmental pressure reduction. Previously, we showed that the plasmatic tetrameric form of transthyretin (TTR) nearly disappeared in rats suffering DCS but not in asymptomatic ones. In this pilot study, we assessed whether the resistance to DCS could be associated with polymorphism of the gene of TTR. For this study, Sanger sequencing was performed on purified PCR products from the liver of 14-week-old male and female standard and DCS-resistant rats (n = 5 per group). Hepatic TTR mRNA expression was assessed by RT-qPCR in 18-19 week-old male and female standard and resistant rats (n = 6 per group). There is a synonymous single nucleotide polymorphism (SNP) on the third base of codon 46 (c.138 C > T). The thymine allele was present in 90% and 100% of males and females standard, respectively. However, this allele is present in only 30% of DCS-resistant males and females (p = 0.0002301). In the liver, there is a significant effect of the resistance to DCS (p = 0.043) and sex (p = 0.047) on TTR expression. Levels of TTR mRNA were lower in DCS-resistant animals. To conclude, DCS resistance might be associated with a SNP and a lower expression of TTR.
Collapse
Affiliation(s)
- J. Orsat
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| | - A. Guernec
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| | - C. Le Maréchal
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHRU Brest, UMR1078BrestFrance
| | - V. Pichereau
- LEMAR UMR 6539 CNRS/UBO/IRD/IfremerUniv BrestBrestFrance
| | - F. Guerrero
- Laboratoire ORPHY EA 4324Univ BrestBrestFrance
| |
Collapse
|
3
|
Ashworth ET, Ogawa R, Vera DR, Lindholm P. Effects of oxygen-prebreathing on tissue nitrogenation in normobaric and hyperbaric conditions. PLoS One 2024; 19:e0294611. [PMID: 38252649 PMCID: PMC10802958 DOI: 10.1371/journal.pone.0294611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/05/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Breathing pure oxygen causes nitrogen washout from tissues, a method commonly deployed to prevent decompression sickness from hypobaric exposure. Theoretically prebreathing oxygen increases the capacity for nitrogen uptake and potentially limits supersaturation during dives of short duration. We aimed to use 13N2, a radioactive nitrogen isotope, to quantify tissue nitrogen following normobaric and hyperbaric exposures. METHODS Twenty Sprague Dawley rats were divided in 4 conditions; normobaric prebreathe, normobaric control, hyperbaric prebreathe, hyperbaric control. Prebreathed rats breathed oxygen for 1 h prior to the experiment whilst controls breathed air. Normobaric rats breathed air containing 13N2 at 100 kPa for 30 min, whereas hyperbaric rats breathed 13N2 at 700 kPa before being decompressed and sedated using air-isoflurane (without 13N2 for a few minutes). After euthanization, blood, brain, liver, femur and thigh muscle were analyzed by gamma counting. RESULTS At normobaria prebreathing oxygen resulted in higher absolute nitrogen counts in blood (p = .034), as well as higher normalized counts in both the liver and muscle (p = .034). However, following hyperbaric exposure no differences were observed between conditions for any organ (p>.344). Both bone and muscle showed higher normalized counts after hyperbaria compared to normobaria. CONCLUSIONS Oxygen prebreathing caused nitrogen elimination in normobaria that led to a larger "sink" and uptake of 13N2. The lack of difference between conditions in hyperbaria could be due to the duration and depth of the dive mitigating the effect of prebreathing. In the hyperbaric conditions the lower counts were likely due to off-gassing of nitrogen during the sedation procedure, suggest a few minutes was enough to off-gas in rodents. The higher normalized counts under hyperbaria in bone and muscle likely relate to these tissues being slower to on and off-gas nitrogen. Future experiments could include shorter dives and euthanization while breathing 13N2 to prevent off-gassing.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Department of Emergency Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Ryotaro Ogawa
- Department of Radiology, University of California San Diego, La Jolla, CA, United States of America
| | - David Robert Vera
- Department of Radiology, University of California San Diego, La Jolla, CA, United States of America
| | - Peter Lindholm
- Department of Emergency Medicine, University of California San Diego, La Jolla, CA, United States of America
- Department of Radiology, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
4
|
Marsh PL, Moore EE, Moore HB, Bunch CM, Aboukhaled M, Condon SM, Al-Fadhl MD, Thomas SJ, Larson JR, Bower CW, Miller CB, Pearson ML, Twilling CL, Reser DW, Kim GS, Troyer BM, Yeager D, Thomas SG, Srikureja DP, Patel SS, Añón SL, Thomas AV, Miller JB, Van Ryn DE, Pamulapati SV, Zimmerman D, Wells B, Martin PL, Seder CW, Aversa JG, Greene RB, March RJ, Kwaan HC, Fulkerson DH, Vande Lune SA, Mollnes TE, Nielsen EW, Storm BS, Walsh MM. Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies. Front Immunol 2023; 14:1230049. [PMID: 37795086 PMCID: PMC10546929 DOI: 10.3389/fimmu.2023.1230049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/12/2023] [Indexed: 10/06/2023] Open
Abstract
Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition.
Collapse
Affiliation(s)
- Phillip L. Marsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Ernest E. Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hunter B. Moore
- University of Colorado Health Transplant Surgery - Anschutz Medical Campus, Aurora, CO, United States
| | - Connor M. Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Shaun M. Condon
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | | | - Samuel J. Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - John R. Larson
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Charles W. Bower
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Craig B. Miller
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | - Michelle L. Pearson
- Department of Family Medicine, Saint Joseph Health System, Mishawaka, IN, United States
| | | | - David W. Reser
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - George S. Kim
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Brittany M. Troyer
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Doyle Yeager
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Scott G. Thomas
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Daniel P. Srikureja
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Shivani S. Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sofía L. Añón
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Anthony V. Thomas
- Indiana University School of Medicine, South Bend, IN, United States
| | - Joseph B. Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - David E. Van Ryn
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
- Department of Emergency Medicine, Beacon Health System, Elkhart, IN, United States
| | - Saagar V. Pamulapati
- Department of Internal Medicine, Mercy Health Internal Medicine Residency Program, Rockford, IL, United States
| | - Devin Zimmerman
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Byars Wells
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Peter L. Martin
- Department of Emergency Medicine, Goshen Health, Goshen, IN, United States
| | - Christopher W. Seder
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - John G. Aversa
- Department of Cardiovascular and Thoracic Surgery, RUSH Medical College, Chicago, IL, United States
| | - Ryan B. Greene
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Robert J. March
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Hau C. Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel H. Fulkerson
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Department of Trauma & Surgical Research Services, South Bend, IN, United States
| | - Stefani A. Vande Lune
- Department of Emergency Medicine, Naval Medical Center Portsmouth, Portsmouth, VA, United States
| | - Tom E. Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Erik W. Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Benjamin S. Storm
- Department of Anesthesia and Intensive Care Medicine, Surgical Clinic, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Mark M. Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
- Indiana University School of Medicine, South Bend, IN, United States
| |
Collapse
|
5
|
Vallée N, Dugrenot E, Desruelle AV, Richard S, Coupé S, Ramdani C, Guieu R, Risso JJ, Gaillard S, Guerrero F. Highlighting of the interactions of MYD88 and NFKB1 SNPs in rats resistant to decompression sickness: toward an autoimmune response. Front Physiol 2023; 14:1253856. [PMID: 37664439 PMCID: PMC10470123 DOI: 10.3389/fphys.2023.1253856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Decompression sickness (DCS) with neurological disorders includes an inappropriate inflammatory response which degenerates slowly, even after the disappearance of the bubbles. There is high inter-individual variability in terms of the occurrence of DCS that could have been mastered by the selection and then the breeding of DCS-resistant rats. We hypothesized the selection of single-nucleotide polymorphisms (SNPs) linked to autoimmunity operated upon a generation of a DCS-resistant strain of rats. We used the candidate gene approach and targeted SNPs linked to the signaling cascade that directly regulates inflammation of innate immunity transiting by the Toll-like receptors. Twenty candidate SNPs were investigated in 36 standard rats and 33 DCS-resistant rats. For the first time, we identify a diplotype (i.e., with matched haplotypes)-when coinherited-that strengthens protection against DCS, which is not strictly homozygous and suggests that a certain tolerance may be considered. We deduced an ideal haplotype of six variants from it (MyD88_50-T, _49-A, _97-C coupled to NFKB_85-T, _69-T, _45-T) linked to the resistant phenotype. Four among the six identified variants are located in pre- and/or post-transcriptional areas regulating MyD88 or NFKB1 expression. Because of missense mutations, the other two variants induce a structural change in the NFKB1 protein complex including one damage alteration according to the Missense3D algorithm. In addition to the MyD88/NFKB1 haplotype providing rats with a strong resistance to DCS, this also highlights the importance that the immune response, here linked to the genetic heritage, can have in the development of DCS and offer a new perspective for therapeutic strategies.
Collapse
Affiliation(s)
- Nicolas Vallée
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | - Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | | | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | - Régis Guieu
- Université d’Aix-Marseille, Marseille, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon, France
| | | | | |
Collapse
|
6
|
Loddé B, Giroux-Metges MA, Galinat H, Kerspern H, Pougnet R, Saliou P, Guerrero F, Lafère P. Does Decreased Diffusing Capacity of the Lungs for Carbon Monoxide Constitute a Risk of Decompression Sickness in Occupational Divers? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6516. [PMID: 37569056 PMCID: PMC10418885 DOI: 10.3390/ijerph20156516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Long-term alterations of pulmonary function (mainly decreased airway conductance and capacity of the lungs to diffuse carbon monoxide (DLCO)) have been described after hyperbaric exposures. However, whether these alterations convey a higher risk for divers' safety has never been investigated before. The purpose of the present pilot study was to assess whether decreased DLCO is associated with modifications of the physiological response to diving. In this case-control observational study, 15 "fit-to-dive" occupational divers were split into two groups according to their DLCO measurements compared to references values, either normal (control) or reduced (DLCO group). After a standardized 20 m/40 min dive in a sea water pool, the peak-flow, vascular gas emboli (VGE) grade, micro-circulatory reactivity, inflammatory biomarkers, thrombotic factors, and plasmatic aldosterone concentration were assessed at different times post-dive. Although VGE were recorded in all divers, no cases of decompression sickness (DCS) occurred. Compared to the control, the latency to VGE peak was increased in the DLCO group (60 vs. 30 min) along with a higher maximal VGE grade (p < 0.0001). P-selectin was higher in the DLCO group, both pre- and post-dive. The plasmatic aldosterone concentration was significantly decreased in the control group (-30.4 ± 24.6%) but not in the DLCO group. Apart from a state of hypocoagulability in all divers, other measured parameters remained unchanged. Our results suggest that divers with decreased DLCO might have a higher risk of DCS. Further studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Brice Loddé
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Occupational Diseases Center, Brest University Hospital, 29609 Brest, France
| | - Marie-Agnès Giroux-Metges
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Respiratory Functional Exploration Unit, Brest University Hospital, 29609 Brest, France
| | - Hubert Galinat
- Department of Biological Hematology, Brest University Hospital, 29609 Brest, France
| | - Hèlène Kerspern
- Department of Biochemistry and Pharmaco-Toxicology, Brest University Hospital, 29609 Brest, France
| | - Richard Pougnet
- Occupational Diseases Center, Brest University Hospital, 29609 Brest, France
| | - Philippe Saliou
- ISERM, EFS, UMR 1078, GGB, Infection Control Unit, Western Brittany University (UBO), 29238 Brest, France
| | - François Guerrero
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
| | - Pierre Lafère
- ORPHY Laboratory, EA 4324, Western Brittany University (UBO), 29238 Brest, France
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, HE2B, 1160 Brussels, Belgium
- DAN Europe Research Department, 1160 Brussels, Belgium
| |
Collapse
|
7
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
8
|
Affiliation(s)
- Simon J Mitchell
- From the School of Medicine, University of Auckland, and the Department of Anaesthesia, Auckland City Hospital - both in Auckland, New Zealand (S.J.M.); Prince of Wales Clinical School, University of New South Wales, and Wales Anaesthesia, Prince of Wales Hospital - both in Sydney (M.H.B.); and the Departments of Anesthesiology and Medicine, Duke University Medical Center, and the Center for Hyperbaric Medicine and Environmental Physiology, Duke University - both in Durham, North Carolina (R.E.M.)
| | - Michael H Bennett
- From the School of Medicine, University of Auckland, and the Department of Anaesthesia, Auckland City Hospital - both in Auckland, New Zealand (S.J.M.); Prince of Wales Clinical School, University of New South Wales, and Wales Anaesthesia, Prince of Wales Hospital - both in Sydney (M.H.B.); and the Departments of Anesthesiology and Medicine, Duke University Medical Center, and the Center for Hyperbaric Medicine and Environmental Physiology, Duke University - both in Durham, North Carolina (R.E.M.)
| | - Richard E Moon
- From the School of Medicine, University of Auckland, and the Department of Anaesthesia, Auckland City Hospital - both in Auckland, New Zealand (S.J.M.); Prince of Wales Clinical School, University of New South Wales, and Wales Anaesthesia, Prince of Wales Hospital - both in Sydney (M.H.B.); and the Departments of Anesthesiology and Medicine, Duke University Medical Center, and the Center for Hyperbaric Medicine and Environmental Physiology, Duke University - both in Durham, North Carolina (R.E.M.)
| |
Collapse
|
9
|
Dumić J, Cvetko A, Abramović I, Šupraha Goreta S, Perović A, Njire Bratičević M, Kifer D, Sinčić N, Gornik O, Žarak M. Changes in Specific Biomarkers Indicate Cardiac Adaptive and Anti-inflammatory Response of Repeated Recreational SCUBA Diving. Front Cardiovasc Med 2022; 9:855682. [PMID: 35360010 PMCID: PMC8964121 DOI: 10.3389/fcvm.2022.855682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveRecreational SCUBA (rSCUBA) diving has become a highly popular and widespread sport. Yet, information on molecular events underlying (patho)physiological events that follow exposure to the specific environmental conditions (hyperbaric conditions, coldness, immersion, and elevated breathing pressure), in which rSCUBA diving is performed, remain largely unknown. Our previous study suggested that repeated rSCUBA diving triggers an adaptive response of cardiovascular and immune system. To elucidate further molecular events underlying cardiac and immune system adaptation and to exclude possible adverse effects we measured blood levels of specific cardiac and inflammation markers.MethodsThis longitudinal intervention study included fourteen recreational divers who performed five dives, one per week, on the depth 20–30 m that lasted 30 min, after the non-dive period of 5 months. Blood samples were taken immediately before and after the first, third, and fifth dives. Copeptin, immunoglobulins A, G and M, complement components C3 and C4, and differential blood count parameters, including neutrophil-to-lymphocyte ratio (NLR) were determined using standard laboratory methods. Cell-free DNA was measured by qPCR analysis and N-glycans released from IgG and total plasma proteins (TPP), were analyzed by hydrophilic interaction ultra-performance liquid chromatography.ResultsCopeptin level increased after the first dive but decreased after the third and fifth dive. Increases in immunoglobulins level after every dive and during whole studied period were observed, but no changes in C3, C4, and cfDNA level were detected. NLR increased only after the first dive. IgG and TPP N-glycosylation alterations toward anti-inflammatory status over whole studied period were manifested as an increase in monogalyctosylated and core-fucosylated IgG N-glycans and decrease in agalactosylated TPP N-glycans.ConclusionrSCUBA diving practiced on a regular basis promotes anti-inflammatory status thus contributing cardioprotection and conferring multiple health benefits.
Collapse
Affiliation(s)
- Jerka Dumić
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Ana Cvetko
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Irena Abramović
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sandra Šupraha Goreta
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Antonija Perović
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | | | - Domagoj Kifer
- Department of Biophysics, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nino Sinčić
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Marko Žarak
- Clinical Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
- *Correspondence: Marko Žarak,
| |
Collapse
|
10
|
Effect of SCUBA Diving on Ophthalmic Parameters. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030408. [PMID: 35334584 PMCID: PMC8949343 DOI: 10.3390/medicina58030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objective: Several cases of central serous chorioretinopathy (CSC) in divers have been reported in our medical retina center over the past few years. This study was designed to evaluate possible changes induced by SCUBA diving in ophthalmic parameters and especially subfoveal choroidal thickness (SFCT), since the choroid seems to play a crucial role in physiopathology of CSC. Materials and Methods: Intraocular pressure (IOP), SFCT, pachymetry, flow-mediated dilation (FMD), blood pressure, and heart rate were measured in 15 healthy volunteer divers before diving, 30 and 60 min after a standard deep dive of 25 m depth for 25 min in a dedicated diving pool (NEMO 33). Results: SFCT reduces significantly to 96.63 ± 13.89% of pre-dive values (p = 0.016) 30 min after diving. It recovers after 60 min reaching control values. IOP decreases to 88.05 ± 10.04% of pre-dive value at 30 min, then increases to 91.42 ± 10.35% of its pre-dive value (both p < 0.0001). Pachymetry shows a slight variation, but is significantly increased to 101.63 ± 1.01% (p = 0.0159) of the pre-dive value, and returns to control level after 60 min. FMD pre-dive was 107 ± 6.7% (p < 0.0001), but post-dive showed a diminished increase to 103 ± 6.5% (p = 0.0132). The pre-post difference was significant (p = 0.03). Conclusion: Endothelial dysfunction leading to arterial stiffness after diving may explain the reduced SFCT observed, but SCUBA diving seems to have miscellaneous consequences on eye parameters. Despite this clear influence on SFCT, no clear relationship between CSC and SCUBA diving can be drawn.
Collapse
|
11
|
Evidence of a hormonal reshuffle in the cecal metabolome fingerprint of a strain of rats resistant to decompression sickness. Sci Rep 2021; 11:8317. [PMID: 33859311 PMCID: PMC8050073 DOI: 10.1038/s41598-021-87952-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the fecal metabolome from rat caecum. On the other side, there is high inter-individual variability in terms of occurrence of DCS. One could wonder whether the fecal metabolome could be linked to the DCS-susceptibility. We decided to study male and female rats selected for their resistance to decompression sickness, and we hypothesize a strong impregnation concerning the fecal metabolome. The aim is to verify whether the rats resistant to the accident have a fecal metabolomic signature different from the stem generations sensitive to DCS. 39 DCS-resistant animals (21 females and 18 males), aged 14 weeks, were compared to 18 age-matched standard Wistar rats (10 females and 8 males), i.e., the same as those we used for the founding stock. Conventional and ChemRICH approaches helped the metabolomic interpretation of the 226 chemical compounds analyzed in the cecal content. Statistical analysis shows a panel of 81 compounds whose expression had changed following the selection of rats based on their resistance to DCS. 63 compounds are sex related. 39 are in common. This study shows the spectral fingerprint of the fecal metabolome from the caecum of a strain of rats resistant to decompression sickness. This study also confirms a difference linked to sex in the metabolome of non-selected rats, which disappear with selective breeding. Results suggest hormonal and energetic reshuffle, including steroids sugars or antibiotic compounds, whether in the host or in the microbial community.
Collapse
|