1
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
2
|
Gholampour S. Feasibility of assessing non-invasive intracranial compliance using FSI simulation-based and MR elastography-based brain stiffness. Sci Rep 2024; 14:6493. [PMID: 38499758 PMCID: PMC10948846 DOI: 10.1038/s41598-024-57250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
Intracranial compliance (ICC) refers to the change in intracranial volume per unit change in intracranial pressure (ICP). Magnetic resonance elastography (MRE) quantifies brain stiffness by measuring the shear modulus. Our objective is to investigate the relationship between ICC and brain stiffness through fluid-structure interaction (FSI) simulation, and to explore the feasibility of using MRE to assess ICC based on brain stiffness. This is invaluable due to the clinical importance of ICC, as well as the fast and non-invasive nature of the MRE procedure. We employed FSI simulation in hydrocephalus patients with aqueductal stenosis to non-invasively calculate ICP which is the basis of the calculation of ICC and FSI-based brain stiffness. The FSI simulated parameters used have been validated with experimental data. Our results showed that there is no relationship between FSI simulated-based brain stiffness and ICC in hydrocephalus patients. However, MRE-based brain stiffness may be sensitive to changes in intracranial fluid dynamic parameters such as cerebral perfusion pressure (CPP), cerebral blood flow (CBF), and ICP, as well as to mechano-vascular changes in the brain, which are determining parameters in ICC assessment. Although optimism has been found regarding the assessment of ICC using MRE-based brain stiffness, especially for acute-onset brain disorders, further studies are necessary to clarify their direct relationship.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Neurological Surgery, The University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Wang TW, Huang MK, Hsu CC, Jo SY, Lin YK, How CK, Tseng SF, Chung K, Chien DK, Chang WH, Chiu YH. High myopia at high altitudes. Front Physiol 2024; 15:1350051. [PMID: 38523807 PMCID: PMC10957768 DOI: 10.3389/fphys.2024.1350051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/08/2024] [Indexed: 03/26/2024] Open
Abstract
Background: Optic nerve sheath diameter (ONSD) increases significantly at high altitudes, and is associated with the presence and severity of acute mountain sickness (AMS). Exposure to hypobaria, hypoxia, and coldness when hiking also impacts intraocular pressure (IOP). To date, little is known about ocular physiological responses in trekkers with myopia at high altitudes. This study aimed to determine changes in the ONSD and IOP between participants with and without high myopia (HM) during hiking and to test whether these changes could predict symptoms of AMS. Methods: Nine participants with HM and 18 without HM participated in a 3-day trek of Xue Mountain. The ONSD, IOP, and questionnaires were examined before and during the trek of Xue Mountain. Results: The ONSD values increased significantly in both HM (p = 0.005) and non-HM trekkers (p = 0.018) at an altitude of 1,700 m. In the HM group, IOP levels were greater than those in the non-HM group (p = 0.034) on the first day of trekking (altitude: 3,150 m). No statistically significant difference was observed between the two groups for the values of ONSD. Fractional changes in ONSD at an altitude of 1,700 m were related to the development of AMS (r pb = 0.448, p = 0.019) and the presence of headache symptoms (r pb = 0.542, p = 0.004). The area under the ROC curve for the diagnostic performance of ONSD fractional changes at an altitude of 1,700 m was 0.859 for predicting the development of AMS and 0.803 for predicting the presence of headache symptoms. Conclusion: Analysis of changes in ONSD at moderate altitude could predict AMS symptoms before an ascent to high altitude. Myopia may impact physiological accommodation at high altitudes, and HM trekkers potentially demonstrate suboptimal regulation of aqueous humor in such environments.
Collapse
Affiliation(s)
- Ta-Wei Wang
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Ming-Kun Huang
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Chun Hsu
- Department of Emergency, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Szu-Yang Jo
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Fen Tseng
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Kong Chung
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Ding-Kuo Chien
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Han Chang
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Yu-Hui Chiu
- Department of Emergency Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Wang Y, Zhang Q, Ma Q, Wang Q, Huang D, Ji X. Intermittent hypoxia preconditioning can attenuate acute hypoxic injury after a sustained normobaric hypoxic exposure: A randomized clinical trial. CNS Neurosci Ther 2024; 30:e14662. [PMID: 38477221 PMCID: PMC10934266 DOI: 10.1111/cns.14662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) is emerging as a cost-effective nonpharmacological method for vital organ protection. We aimed to assess the effects of a short-term moderate intermittent hypoxia preconditioning protocol (four cycles of 13% hypoxia lasting for 10 min with 5-min normoxia intervals) on acute hypoxic injury induced by sustained hypoxic exposure (oxygen concentration of 11.8% for 6 h). METHODS One hundred healthy volunteers were recruited and randomized to the IH group and the control group to receive IH or sham-IH preconditioning for 5 days, respectively, and then were sent to a hypoxic chamber for simulated acute high-altitude exposure (4500 m). RESULTS The overall incidence of acute mountain sickness was 27% (27/100), with 14% (7/50) in the IH group and 40% (20/50) in the control group (p = 0.003). After 6-h simulated high-altitude exposure, the mean Lake Louise Score was lower in the IH group as compared to controls (1.30 ± 1.27 vs. 2.04 ± 1.89, p = 0.024). Mean peripheral oxygen saturations (SpO2 ) and intracranial pressure (ICP) measures after acute hypoxic exposure exhibited significant differences, with the IH group showing significantly greater SpO2 values (85.47 ± 5.14 vs. 83.10 ± 5.15%, p = 0.026) and lower ICP levels than the control group (115.59 ± 32.15 vs. 130.36 ± 33.83 mmH2 O, p = 0.028). IH preconditioning also showed greater effects on serum protein gene product 9.5 (3.89 vs. 29.16 pg/mL; p = 0.048) and C-reactive protein (-0.28 vs. 0.41 mg/L; p = 0.023). CONCLUSION The short-term moderate IH improved the tolerance to hypoxia and exerted protection against acute hypoxic injury induced by exposure to sustained normobaric hypoxia, which provided a novel method and randomized controlled trial evidence to develop treatments for hypoxia-related disease.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qihan Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qingfeng Ma
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dan Huang
- Development Coordination OfficeBeijing Xiaotangshan HospitalBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Bhattachar S, Malhotra VK, Yanamandra U, Singh S, Sikri G, Patrikar S, Kotwal A. Ibuprofen Compared to Acetazolamide for the Prevention of Acute Mountain Sickness: A Randomized Placebo-Controlled Trial. Cureus 2024; 16:e55998. [PMID: 38606209 PMCID: PMC11007448 DOI: 10.7759/cureus.55998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Acetazolamide is recommended for the prevention of acute mountain sickness (AMS); however, its use is limited in some areas because of side effects. Previous studies report ibuprofen to be similar to or slightly inferior to acetazolamide. This randomized, triple-blinded, parallel-group, placebo-controlled trial was designed to compare ibuprofen with acetazolamide for the prevention of AMS. METHODS Four hundred forty-three healthy Asian Indian men with a mean age of 29 (range: 20-49) years were randomized into three groups A, B, and P at 350m (SL). Acetazolamide (A): 85 mg; ibuprofen (B): 600 mg; or placebo (P): calcium carbonate was administered thrice daily, starting one day prior and continuing for three days after arrival at 3500m (HA). Participants were evaluated for AMS using the Lake Louise Questionnaire and for pulse, BP, SpO2, and respiratory rate twice daily for the first two days during rest and once a day for days three to six at HA. RESULTS Of the 443 participants recruited at SL, 139 could not be airlifted due to logistical limitations, and 304 were available for follow-up at HA. Among these, 254 had ascended as per protocol. By intent to treat (IT) (N = 304; A = 99, B = 102, P = 103), the incidence of AMS (LLQS>/=3) was 12%, 5%, and 13%, and the incidence of severe AMS was 1%, 2%, and 6%, in groups A, B, and P, respectively. Using per protocol analysis (PP) (N = 254; A = 83, B = 87, P = 84), the incidence of AMS was 12%, 6%, and 13% in groups A, B, and P, respectively. The relative risk for developing AMS vs. placebo was A-0.96 (CI:0.46-2.0, p=0.91), B-0.39 (CI:0.14-1.04, p=0.06), A-0.94 (CI:0.42-2.1, p=0.88), and B-0.45 (0.16-1.24, p=0.12) by IT and PP, respectively. CONCLUSION Ibuprofen is effective in males for the prevention of AMS with rapid ascent to 3500 m-rest for the first two days. Acetazolamide was superior to ibuprofen in the prevention of moderate-to-severe AMS.
Collapse
Affiliation(s)
- Srinivasa Bhattachar
- Physiology, High Altitude Medical Research Centre, Leh, IND
- Space and Environmental Physiology, Institute of Aerospace Medicine, Bengaluru, IND
| | - Vineet K Malhotra
- Space and Environmental Physiology, Institute of Aerospace Medicine, Bengaluru, IND
| | | | | | - Gaurav Sikri
- Physiology, Armed Forces Medical Services, New Delhi, IND
| | - Seema Patrikar
- Community Medicine, Armed Forces Medical College, Pune, IND
| | - Atul Kotwal
- Community Medicine, National Health Systems Resource Centre, New Delhi, IND
| |
Collapse
|
6
|
Zhang G, Yang G, Zhou Y, Cao Z, Yin M, Ma L, Fan M, Zhao YQ, Zhu L. Intermittent hypoxia training effectively protects against cognitive decline caused by acute hypoxia exposure. Pflugers Arch 2024; 476:197-210. [PMID: 37994929 DOI: 10.1007/s00424-023-02885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Intermittent hypoxia training (IHT) is a promising approach that has been used to induce acclimatization to hypoxia and subsequently lower the risk of developing acute mountain sickness (AMS). However, the effects of IHT on cognitive and cerebrovascular function after acute hypoxia exposure have not been characterized. In the present study, we first confirmed that the simplified IHT paradigm was effective at relieving AMS at 4300 m. Second, we found that IHT improved participants' cognitive and neural alterations when they were exposed to hypoxia. Specifically, impaired working memory performance, decreased conflict control function, impaired cognitive control, and aggravated mental fatigue induced by acute hypoxia exposure were significantly alleviated in the IHT group. Furthermore, a reversal of brain swelling induced by acute hypoxia exposure was visualized in the IHT group using magnetic resonance imaging. An increase in cerebral blood flow (CBF) was observed in multiple brain regions of the IHT group after hypoxia exposure as compared with the control group. Based on these findings, the simplified IHT paradigm might facilitate hypoxia acclimatization, alleviate AMS symptoms, and increase CBF in multiple brain regions, thus ameliorating brain swelling and cognitive dysfunction.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Yanzhao Zhou
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
| | | | - Ming Yin
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Lin Ma
- The First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Ming Fan
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong-Qi Zhao
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Lingling Zhu
- Department of Cognition Sciences and Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
D'Antona L, Craven CL, Haq H, Thorne L, Matharu MS, Toma AK, Watkins LD. A case of recurrent flight-induced cerebrospinal fluid shunt overdrainage. Br J Neurosurg 2023; 37:112-115. [PMID: 35549965 DOI: 10.1080/02688697.2022.2066629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Shunted patients often complain of headaches after flights. The effect of air travel on shunt systems is unknown. We describe the case of a patient with longstanding hydrocephalus, who suffered flight-induced clinical deterioration and shunt overdrainage in two independent occasions. The patient, clinically stable for 1.5 and 5 years before each episode, reported severe headaches starting during the descent stages of the air travel. On both occasions, brain MRI imaging demonstrated pronounced ventricular size reduction. This case suggests that flight-induced shunt overdrainage can occur and should be suspected in patients with prolonged headaches and/or clinical deterioration triggered by air travel.
Collapse
Affiliation(s)
- Linda D'Antona
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.,University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Claudia Louise Craven
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Huzaifah Haq
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Lewis Thorne
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Manjit Singh Matharu
- University College London (UCL) Queen Square Institute of Neurology, London, UK.,Headache and Facial Pain Group, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ahmed Kassem Toma
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.,University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Laurence Dale Watkins
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
8
|
Bad Altitude: Categorizing Elevation Produces Spurious Association With Concussions in the National Football League (NFL). J Orthop Sports Phys Ther 2022; 52:694-701. [PMID: 35881704 DOI: 10.2519/jospt.2022.11220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE: To assess whether prior analyses, where there was a relationship between altitude and concussion rates in American football, would replicate using a larger data set and altitude as a continuous variable. DESIGN: Cohort study replication. METHODS: We analyzed data from all NFL regular season games from 2012-2019. Concussions were identified from public databases and NFL injury reports. The altitude of each stadium was identified using mapping software. Concussion rates were calculated for each stadium and plotted against continuous altitude. We calculated crude rate ratios for several categorical cut points and used logistic and Poisson regression models to assess associations with continuous altitudes. RESULTS: We identified 867 players (1103 player seasons) who sustained 1159 concussions during the time period 2012-2019. All continuous plots and models showed no evidence of any association between concussions and altitude. A Poisson model found an IRR of 1.00 (95% CI, 0.99-1.01) for every 100-ft increase in altitude. A 644-ft cut point (used in previous studies) produced a significant difference (incidence rate ratio [IRR], 0.71; 95% CI, 0.54-0.94) in 2012-2013, but this did not replicate in 2014-2019 (IRR, 0.99; 95% CI, 0.84-1.14). CONCLUSION: We found no association between altitude and concussion rates in the NFL when altitude was analyzed continuously rather than inappropriately categorized. Our findings should increase skepticism of any effect of altitude on concussions at the elevations at which most American football is played, as well as clinical interventions based on that theory. It also underscores the importance of keeping continuous variables continuous wherever possible. J Orthop Sports Phys Ther 2022;52(10):694-701. Epub: 27 July 2022. doi:10.2519/jospt.2022.11220.
Collapse
|
9
|
Klarica M, Radoš M, Erceg G, Jurjević I, Petošić A, Virag Z, Orešković D. Cerebrospinal fluid micro-volume changes inside the spinal space affect intracranial pressure in different body positions of animals and phantom. Front Mol Neurosci 2022; 15:931091. [PMID: 36187355 PMCID: PMC9518230 DOI: 10.3389/fnmol.2022.931091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Interpersonal differences can be observed in the human cerebrospinal fluid pressure (CSFP) in the cranium in an upright body position, varying from positive to subatmospheric values. So far, these changes have been explained by the Monroe–Kellie doctrine according to which CSFP should increase or decrease if a change in at least one of the three intracranial volumes (brain, blood, and CSF) occurs. According to our hypothesis, changes in intracranial CSFP can occur without a change in the volume of intracranial fluids. To test this hypothesis, we alternately added and removed 100 or 200 μl of fluid from the spinal CSF space of four anesthetized cats and from a phantom which, by its dimensions and biophysical characteristics, imitates the cat cerebrospinal system, subsequently comparing CSFP changes in the cranium and spinal space in both horizontal and vertical positions. The phantom was made from a rigid “cranial” part with unchangeable volume, while the “spinal” part was made of elastic material whose modulus of elasticity was in the same order of magnitude as those of spinal dura. When a fluid volume (CSF or artificial CSF) was removed from the spinal space, both lumbar and cranial CSFP pressures decreased by 2.0–2.5 cm H2O for every extracted 100 μL. On the other hand, adding fluid volume to spinal space causes an increase in both lumbar and cranial CSFP pressures of 2.6–3.0 cm H2O for every added 100 μL. Results observed in cats and phantoms did not differ significantly. The presented results on cats and a phantom suggest that changes in the spinal CSF volume significantly affect the intracranial CSFP, but regardless of whether we added or removed the CSF volume, the hydrostatic pressure difference between the measuring sites (lateral ventricle and lumbar subarachnoid space) was always constant. These results suggest that intracranial CSFP can be increased or decreased without significant changes in the volume of intracranial fluids and that intracranial CSFP changes in accordance with the law of fluid mechanics.
Collapse
Affiliation(s)
- Marijan Klarica
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Marijan Klarica
| | - Milan Radoš
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gorislav Erceg
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Jurjević
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Antonio Petošić
- Department of Electroacoustics, Faculty of Electrical Engineering and Computing University of Zagreb, Zagreb, Croatia
| | - Zdravko Virag
- Department of Fluid Mechanics, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | - Darko Orešković
- Department of Molecular Biology, Ruder Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Georges T, Menu P, Le Blanc C, Ferreol S, Dauty M, Fouasson-Chailloux A. Contribution of Hypoxic Exercise Testing to Predict High-Altitude Pathology: A Systematic Review. Life (Basel) 2022; 12:life12030377. [PMID: 35330129 PMCID: PMC8950822 DOI: 10.3390/life12030377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
Altitude travelers are exposed to high-altitude pathologies, which can be potentially serious. Individual susceptibility varies widely and this makes it difficult to predict who will develop these complications. The assessment of physiological adaptations to exercise performed in hypoxia has been proposed to help predict altitude sickness. The purpose of this review is to evaluate the contribution of hypoxic exercise testing, achieved in normobaric conditions, in the prediction of severe high-altitude pathology. We performed a systematic review using the databases PubMed, Science Direct and Embase in October 2021 to collect studies reporting physiological adaptations under hypoxic exercise testing and its interest in predicting high-altitude pathology. Eight studies were eligible, concerning 3558 patients with a mean age of 46.9 years old, and a simulated mean altitude reaching of 5092 m. 597 patients presented an acute mountain sickness during their altitude travels. Three different protocols of hypoxic exercise testing were used. Acute mountain sickness was defined using Hackett’s score or the Lake Louise score. Ventilatory and cardiac responses to hypoxia, desaturation in hypoxia, cerebral oxygenation, core temperature, variation in body mass index and some perceived sensations were the highlighted variables associated with acute mountain sickness. A decision algorithm based on hypoxic exercise tests was proposed by one team. Hypoxic exercise testing provides promising information to help predict altitude complications. Its interest should be confirmed by different teams.
Collapse
Affiliation(s)
- Thomas Georges
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
| | - Pierre Menu
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
| | - Camille Le Blanc
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
| | - Sophie Ferreol
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
| | - Marc Dauty
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
| | - Alban Fouasson-Chailloux
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (T.G.); (P.M.); (C.L.B.); (S.F.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France
- Institut Régional de Médecine du Sport (IRMS), 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
- Correspondence:
| |
Collapse
|
12
|
Bebic Z, Brooks Peterson M, Polaner DM. Respiratory physiology at high altitude and considerations for pediatric patients. Paediatr Anaesth 2022; 32:118-125. [PMID: 34919777 DOI: 10.1111/pan.14380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
Over 150 million people, including many children, live at high altitude (>2500 m) with the majority residing in Asia and South America. With increases in elevation, the partial pressure of oxygen (pO2) is reduced, resulting in a hypobaric hypoxic environment. Fortunately, humans have evolved adaptive processes which serve to acclimate the body to such conditions. These mechanisms, occurring along a specific time course, result in tachypnea, tachycardia, diuresis, and hematopoiesis, and a shift in the oxygen dissociation curve favoring an increased affinity for oxygen. These, along with other physiological effects, including increased pulmonary vascular resistance, alterations in cerebral blood flow, and changes in sensitivity to opioids, must be considered when administering anesthesia at high altitudes. Susceptible individuals or those who ascend too quickly may outpace the body's ability to acclimate resulting in one or more forms of high-altitude sickness ranging from the milder acute mountain sickness to the more serious conditions of high-altitude pulmonary edema and cerebral edema, either of which can be life-threatening if not promptly recognized and treated. Since the adaptive mechanisms for acclimatization greatly affect the cardiopulmonary systems, patients with underlying health issues such as sleep apnea, congenital heart disease, and asthma may have susceptibilities and warrant special consideration. Clinicians should have an understanding of the physiologic adaptations, anesthetic considerations, and special concerns in these populations in order to offer the best care possible.
Collapse
Affiliation(s)
- Zvonimir Bebic
- Department of Anesthesiology, University of Colorado/Children's Hospital Colorado, Aurora, Colorado, USA
| | - Melissa Brooks Peterson
- Department of Anesthesiology, University of Colorado/Children's Hospital Colorado, Aurora, Colorado, USA
| | - David M Polaner
- Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
13
|
Garrido E, Botella de Maglia J, Castillo O. Acute, subacute and chronic mountain sickness. Rev Clin Esp 2021; 221:481-490. [PMID: 34583826 DOI: 10.1016/j.rceng.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022]
Abstract
More than 100 million people ascend to high mountainous areas worldwide every year. At nonextreme altitudes (<5500m), 10-85% of these individuals are affected by acute mountain sickness, the most common disease induced by mild-moderate hypobaric hypoxia. Approximately 140 million individuals live permanently at heights of 2500-5500m, and up to 10% of them are affected by the subacute form of mountain sickness (high-altitude pulmonary hypertension) or the chronic form (Monge's disease), the latter of which is especially common in Andean ethnicities. This review presents the most relevant general concepts of these 3 clinical variants, which can be incapacitating and can result in complications and become life-threatening. Proper prevention, diagnosis, treatment and management of these conditions in a hostile environment such as high mountains are therefore essential.
Collapse
Affiliation(s)
- E Garrido
- Servicio de Hipobaria y Fisiología Biomédica, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, Spain.
| | - J Botella de Maglia
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, Spain
| | - O Castillo
- Instituto Nacional de Biología Andina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
14
|
Yin Y, Shu S, Qin L, Shan Y, Gao JH, Lu J. Effects of mild hypoxia on oxygen extraction fraction responses to brain stimulation. J Cereb Blood Flow Metab 2021; 41:2216-2228. [PMID: 33563081 PMCID: PMC8393298 DOI: 10.1177/0271678x21992896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterizing the effect of limited oxygen availability on brain metabolism during brain activation is an essential step towards a better understanding of brain homeostasis and has obvious clinical implications. However, how the cerebral oxygen extraction fraction (OEF) depends on oxygen availability during brain activation remains unclear, which is mostly attributable to the scarcity and safety of measurement techniques. Recently, a magnetic resonance imaging (MRI) method that enables noninvasive and dynamic measurement of the OEF has been developed and confirmed to be applicable to functional MRI studies. Using this novel method, the present study investigated the motor-evoked OEF response in both normoxia (21% O2) and hypoxia (12% O2). Our results showed that OEF activation decreased in the brain areas involved in motor task execution. Decreases in the motor-evoked OEF response were greater under hypoxia (-21.7% ± 5.5%) than under normoxia (-11.8% ± 3.7%) and showed a substantial decrease as a function of arterial oxygen saturation. These findings suggest a different relationship between oxygen delivery and consumption during hypoxia compared to normoxia. This methodology may provide a new perspective on the effects of mild hypoxia on brain function.
Collapse
Affiliation(s)
- Yayan Yin
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Su Shu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lang Qin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Shan
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institution for Brain Research, Peking University, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Torrecilla SG, Avan P. Wideband tympanometry patterns in relation to intracranial pressure. Hear Res 2021; 408:108312. [PMID: 34298416 DOI: 10.1016/j.heares.2021.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Wideband tympanometry performs a more thorough analysis of middle-ear mechanics than the conventional single-frequency method with a 226-Hz probe tone. The present work examines the sensitivity of wideband tympanometry to the stiffness of the stapes-annular ligament system in relation to intracranial pressure (ICP) and labyrinthine fluid pressure. Here, body tilt allowed ICP to be set at different values. Sixty-eight ears of volunteers were tested sequentially in upright, supine, head-down (-30°) and upright postures. Energy absorbance of the ear was measured in these postures with a commercially available wideband-tympanometry device between 0.25 and 3 kHz, at ear-canal pressures between -600 and 300 daPa. In each posture, it was possible to find a single (posture-dependent) pressure in the ear canal at which a tympanometric peak occurred at all frequencies below about 1.1 kHz. The average across ears of tympanometric-peak pressure (TPP), close to 0 in upright posture, got increasingly positive, +19 daPa in supine and +27 daPa in head-down positions. The three-dimensional plot of energy absorbance against frequency and pressure displayed an invariant shape, merely shifting with TPP along the pressure axis. Thus, a properly adjusted ear-canal pressure neutralized the effects of ICP on the ear's energy absorbance. Comparisons to published invasive assessments of ICP in the different tested body positions led to the proposed relationship ICP ≈ 15 TPP, likely describing the transformer effect between tympanic membrane and stapes-annular ligament system at quasi-static pressures. With wideband tympanometry, the middle ear may serve as a precision scales for noninvasive ICP measurements.
Collapse
Affiliation(s)
| | - Paul Avan
- Neurosensory Biophysics Laboratory, University Clermont Auvergne, France; Institut de l'Audition, Paris, France; Centre Jean Perrin, Clermont-Ferrand, France.
| |
Collapse
|
17
|
Turner REF, Gatterer H, Falla M, Lawley JS. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness? J Appl Physiol (1985) 2021; 131:313-325. [PMID: 33856254 DOI: 10.1152/japplphysiol.00861.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-altitude cerebral edema (HACE) and acute mountain sickness (AMS) are neuropathologies associated with rapid exposure to hypoxia. However, speculation remains regarding the exact etiology of both HACE and AMS and whether they share a common mechanistic pathology. This review outlines the basic principles of HACE development, highlighting how edema could develop from 1) a progression from cytotoxic swelling to ionic edema or 2) permeation of the blood brain barrier (BBB) with or without ionic edema. Thereafter, discussion turns to the available neuroimaging literature in the context of cytotoxic, ionic, or vasogenic edema in both HACE and AMS. Although HACE is clearly caused by an increase in brain water of ionic and/or vasogenic origin, there is very little evidence that this type of edema is present when AMS develops. However, cerebral vasodilation, increased intracranial blood volume, and concomitant intracranial fluid shifts from the extracellular to the intracellular space, as interpreted from changes in diffusion indices within white matter, are observed consistently in persons acutely exposed to hypoxia and with AMS. Therefore, herein we explore the idea that intracellular swelling occurs alongside AMS, and is a critical precursor to extracellular ionic edema formation. We propose that this process produces a subtle modulation of the BBB, which either together with or independent of vasogenic edema provides a transvascular segue from the end-stage of AMS to HACE. Ultimately, this review seeks to shed light on the possible processes underlying HACE pathophysiology, and thus highlights potential avenues for future prevention and treatment.
Collapse
Affiliation(s)
- Rachel E F Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Center for Mind/Brain Sciences and Centre for Neurocognitive Rehabilitation, University of Trento, Rovereto, Italy
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Gholampour S, Fatouraee N. Boundary conditions investigation to improve computer simulation of cerebrospinal fluid dynamics in hydrocephalus patients. Commun Biol 2021; 4:394. [PMID: 33758352 PMCID: PMC7988041 DOI: 10.1038/s42003-021-01920-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Three-D head geometrical models of eight healthy subjects and 11 hydrocephalus patients were built using their CINE phase-contrast MRI data and used for computer simulations under three different inlet/outlet boundary conditions (BCs). The maximum cerebrospinal fluid (CSF) pressure and the ventricular system volume were more effective and accurate than the other parameters in evaluating the patients' conditions. In constant CSF pressure, the computational patient models were 18.5% more sensitive to CSF volume changes in the ventricular system under BC "C". Pulsatile CSF flow rate diagrams were used for inlet and outlet BCs of BC "C". BC "C" was suggested to evaluate the intracranial compliance of the hydrocephalus patients. The results suggested using the computational fluid dynamic (CFD) method and the fully coupled fluid-structure interaction (FSI) method for the CSF dynamic analysis in patients with external and internal hydrocephalus, respectively.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Nasser Fatouraee
- Biological Fluid Mechanics Research Laboratory, Biomechanics Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
19
|
Debenham MIB, Smuin JN, Grantham TDA, Ainslie PN, Dalton BH. Hypoxia and standing balance. Eur J Appl Physiol 2021; 121:993-1008. [PMID: 33484334 DOI: 10.1007/s00421-020-04581-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Standing balance control is important for everyday function and often goes unnoticed until impairments appear. Presently, more than 200 million people live at altitudes > 2500 m above sea level, and many others work at or travel to these elevations. Thus, it is important to understand how hypoxia alters balance owing to implications for occupations and travelers. Herein, the influence of normobaric and hypobaric hypoxia on standing balance control is reviewed and summarized. As postural control relies on the integration of sensorimotor signals, the potential hypoxic-sensitive neurophysiological factors that contribute to balance impairments are also reviewed. Specifically, we examine how hypoxia impairs visual, vestibular, and proprioceptive cues, and their integration within subcortical or cortical areas. METHODS This systematic review included a literature search conducted via multiple databases with keywords related to postural balance, hypoxia, and altitude. Articles (n = 13) were included if they met distinct criteria. RESULTS Compared to normoxia, normobaric hypoxia worsened parameters of standing balance by 2-10% and up to 83 and 240% in hypobaric hypoxia (high-altitude and lab-based, respectively). Although balance was only disrupted during normobaric hypoxia at FIO2 < ~ 0.15, impairments consistently occurred during hypobaric hypoxia at altitudes > 1524 m (~ FIO2 < 0.18). CONCLUSION Hypoxia, especially hypobaric, impairs standing balance. The mechanisms underpinning postural decrements likely involve alterations to processing and integration of sensorimotor signals within subcortical or cortical structures involving visual, vestibular, and proprioceptive pathways and subsequent motor commands that direct postural adjustments. Future studies are required to determine the sensorimotor factors that may influence balance control in hypoxia.
Collapse
Affiliation(s)
- Mathew I B Debenham
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Janelle N Smuin
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Tess D A Grantham
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Philip N Ainslie
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada.
| |
Collapse
|
20
|
Barclay H, Mukerji S, Kayser B, O'Donnell T, Tzeng YC, Hill S, Knapp K, Legg S, Frei D, Fan JL. Respiratory alkalinization and posterior cerebral artery dilatation predict acute mountain sickness severity during 10 h normobaric hypoxia. Exp Physiol 2020; 106:175-190. [PMID: 33347666 DOI: 10.1113/ep088938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? The pathophysiology of acute mountain sickness (AMS), involving the respiratory, renal and cerebrovascular systems, remains poorly understood. How do the early adaptations in these systems during a simulated altitude of 5000 m relate to AMS risk? What is the main finding and its importance? The rate of blood alkalosis and cerebral artery dilatation predict AMS severity during the first 10 h of exposure to a simulated altitude of 5000 m. Slow metabolic compensation by the kidneys of respiratory alkalosis attributable to a brisk breathing response together with excessive brain blood vessel dilatation might be involved in early development of AMS. ABSTRACT The complex pathophysiology of acute mountain sickness (AMS) remains poorly understood and is likely to involve maladaptive responses of the respiratory, renal and cerebrovascular systems to hypoxia. Using stepwise linear regression, we tested the hypothesis that exacerbated respiratory alkalosis, as a result of a brisk ventilatory response, sluggish renal compensation in acute hypoxia and dysregulation of cerebral perfusion predict AMS severity. We assessed the Lake Louise score (LLS, an index of AMS severity), fluid balance, ventilation, venous pH, bicarbonate, sodium and creatinine concentrations, body weight, urinary pH and cerebral blood flow [internal carotid artery (ICA) and vertebral artery (VA) blood flow and diameter], in 27 healthy individuals (13 women) throughout 10 h exposures to normobaric normoxia (fraction of inspired O2 = 0.21) and normobaric hypoxia (fraction of inspired O2 = 0.117, simulated 5000 m) in a randomized, single-blinded manner. In comparison to normoxia, hypoxia increased the LLS, ventilation, venous and urinary pH, and blood flow and diameter in the ICA and VA, while venous concentrations of both bicarbonate and creatinine were decreased (P < 0.001 for all). There were significant correlations between AMS severity and the rates of change in blood pH, sodium concentration and VA diameter and more positive fluid balance (P < 0.05). Stepwise regression found increased blood pH [beta coefficient (β) = 0.589, P < 0.001] and VA diameter (β = 0.418, P = 0.008) to be significant predictors of AMS severity in our cohort [F(2, 20) = 16.1, R2 = 0.617, P < 0.001, n = 24], accounting for 62% of the variance in peak LLS. Using classic regression variable selection, our data implicate the degree of respiratory alkalosis and cerebrovascular dilatation in the early stages of AMS development.
Collapse
Affiliation(s)
- Holly Barclay
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Saptarshi Mukerji
- Emergency Department, Wellington Regional Hospital, Capital & Coast District Health Board, Wellington, New Zealand
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Terrence O'Donnell
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Stephen Hill
- School of Psychology, Massey University, Palmerston North, New Zealand
| | - Katie Knapp
- School of Psychology, Massey University, Palmerston North, New Zealand
| | - Stephen Legg
- Centre for Ergonomics, Occupational Health and Safety, Massey University, Palmerston North, New Zealand
| | - Dan Frei
- Department of Anaesthesia and Pain Medicine, Wellington Regional Hospital, Capital & Coast District Health Board, Wellington, New Zealand
| | - Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Biollaz J, Buclin T, Hildebrandt W, Décosterd LA, Nussberger J, Swenson ER, Bärtsch P. No renal dysfunction or salt and water retention in acute mountain sickness at 4,559 m among young resting males after passive ascent. J Appl Physiol (1985) 2020; 130:226-236. [PMID: 33180647 DOI: 10.1152/japplphysiol.00382.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the role and function of the kidney at high altitude in relation to fluid balance and the development of acute mountain sickness (AMS), avoiding confounders that have contributed to conflicting results in previous studies. We examined 18 healthy male resting volunteers (18-40 yr) not acclimatized to high altitude while on a controlled diet for 24 h at Lausanne (altitude: 560 m) followed by a period of 44 h after reaching the Regina Margherita hut (4,559 m) by helicopter. AMS scores peaked after 20 h at 4,559 m. AMS was defined as functional Lake Louise score ≥ 2. There were no significant differences between 10 subjects with and 8 subjects without AMS for urinary flow, fluid balance, and weight change. Sodium excretion rate was lower in those with AMS after 24 h at altitude. Microalbuminuria increased at altitude but was not different between the groups. Creatinine clearance was not affected by altitude or AMS, whereas clearances of sinistrin and p-aminohippuric acid decreased slightly, somewhat more in those without AMS. Plasma concentrations of epinephrine, norepinephrine, atrial natriuretic factor, and vasopressin increased whereas renin activity, angiotensin, and aldosterone decreased at altitude. Circulating hormone concentrations did not differ between those with and without AMS. Summarizing, in healthy resting young men flown by helicopter to 4,559 m, renal function was not affected by hypoxia except for minor microalbuminuria, high altitude diuresis did not occur, and AMS was not associated with salt and water retention or renal dysfunction.NEW & NOTEWORTHY Kidney function remained essentially unaffected and acute mountain sickness (AMS) was not associated with salt and water retention in healthy young men flown to and resting at the Margherita hut (4,559 m) under strictly controlled conditions maintaining water, salt, and food intake at pre-exposure levels. Thus, renal dysfunction and fluid retention are not essential factors contributing to the pathophysiology of AMS.
Collapse
Affiliation(s)
- Jérôme Biollaz
- Service of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Thierry Buclin
- Service of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Wulf Hildebrandt
- Institute of Anatomy and Cell Biology, Philipps-University of Marburg, Marburg, Germany.,Department of Internal Medicine, University Clinic, Heidelberg, Germany
| | - Laurent A Décosterd
- Service of Clinical Pharmacology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jürg Nussberger
- Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Erik R Swenson
- Department of Internal Medicine, University Clinic, Heidelberg, Germany.,Pulmonary and Critical Care Medicine, Medical Service, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - Peter Bärtsch
- Department of Internal Medicine, University Clinic, Heidelberg, Germany
| |
Collapse
|
22
|
Benveniste H, Elkin R, Heerdt PM, Koundal S, Xue Y, Lee H, Wardlaw J, Tannenbaum A. The glymphatic system and its role in cerebral homeostasis. J Appl Physiol (1985) 2020; 129:1330-1340. [PMID: 33002383 DOI: 10.1152/japplphysiol.00852.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The brain's high bioenergetic state is paralleled by high metabolic waste production. Authentic lymphatic vasculature is lacking in brain parenchyma. Cerebrospinal fluid (CSF) flow has long been thought to facilitate central nervous system detoxification in place of lymphatics, but the exact processes involved in toxic waste clearance from the brain remain incompletely understood. Over the past 8 yr, novel data in animals and humans have begun to shed new light on these processes in the form of the "glymphatic system," a brain-wide perivascular transit passageway dedicated to CSF transport and interstitial fluid exchange that facilitates metabolic waste drainage from the brain. Here we will discuss glymphatic system anatomy and methods to visualize and quantify glymphatic system (GS) transport in the brain and also discuss physiological drivers of its function in normal brain and in neurodegeneration.
Collapse
Affiliation(s)
- Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Rena Elkin
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| | - Paul M Heerdt
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Sunil Koundal
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Yuechuan Xue
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, Dementia Research Institute at the University of Edinburgh, Edinburgh, United Kingdom
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
23
|
Berger MM, Sareban M, Bärtsch P. Acute mountain sickness: Do different time courses point to different pathophysiological mechanisms? J Appl Physiol (1985) 2020; 128:952-959. [DOI: 10.1152/japplphysiol.00305.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acute mountain sickness (AMS) is a syndrome of nonspecific symptoms (i.e., headache, anorexia, nausea, vomiting, dizziness, and fatigue) that may develop in nonacclimatized individuals after rapid exposure to altitudes ≥2,500 m. In field studies, mean AMS scores usually peak after the first night at a new altitude. Analyses of the individual time courses of AMS in four studies performed at 3,450 m and 4,559 m revealed that three different patterns are hidden in the above-described overall picture. In 41% of those who developed AMS (i.e., AMS-C score >0.70), symptoms peaked on day 1, in 39%, symptoms were most prominent on day 2, and in 20%, symptoms were most prominent on day 3. We suggest to name the different time courses of AMS type I, type II, and type III, respectively. Here, we hypothesize that the variation of time courses of AMS are caused by different pathophysiological mechanisms. This assumption could explain why no consistent correlations between an overall assessment of AMS and single pathophysiological factors have been found in a large number of studies over the past 50 yr. In this paper, we will briefly review the fundamental mechanisms implicated in the pathophysiology of AMS and discuss how they might contribute to the three different AMS time courses.
Collapse
Affiliation(s)
- Marc M. Berger
- Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Germany
| | - Mahdi Sareban
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bärtsch
- Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Garrido E, Botella de Maglia J, Castillo O. Acute, subacute and chronic mountain sickness. Rev Clin Esp 2020; 221:S0014-2565(20)30064-3. [PMID: 32197780 DOI: 10.1016/j.rce.2019.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022]
Abstract
More than 100 million people ascend to high mountainous areas worldwide every year. At nonextreme altitudes (<5500 m), 10-85% of these individuals are affected by acute mountain sickness, the most common disease induced by mild-moderate hypobaric hypoxia. Approximately 140 million individuals live permanently at heights of 2500-5500 m, and up to 10% of them are affected by the subacute form of mountain sickness (high-altitude pulmonary hypertension) or the chronic form (Monge's disease), the latter of which is especially common in Andean ethnicities. This review presents the most relevant general concepts of these 3 clinical variants, which can be incapacitating and can result in complications and become life-threatening. Proper prevention, diagnosis, treatment and management of these conditions in a hostile environment such as high mountains are therefore essential.
Collapse
Affiliation(s)
- E Garrido
- Servicio de Hipobaria y Fisiología Biomédica, Universidad de Barcelona, L'Hospitalet de Llobregat, Barcelona, España; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, España.
| | - J Botella de Maglia
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Estudios de Medicina de Montaña (IEMM), Barcelona, España
| | - O Castillo
- Instituto Nacional de Biología Andina, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
25
|
Gatterer H, Bernatzky G, Burtscher J, Rainer M, Kayser B, Burtscher M. Are Pre-Ascent Low-Altitude Saliva Cortisol Levels Related to the Subsequent Acute Mountain Sickness Score? Observations from a Field Study. High Alt Med Biol 2019; 20:337-343. [DOI: 10.1089/ham.2019.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Günther Bernatzky
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
- Austrian Society for Alpine and Mountain Medicine, Austria
| |
Collapse
|
26
|
Kühn S, Gerlach D, Noblé HJ, Weber F, Rittweger J, Jordan J, Limper U. An Observational Cerebral Magnetic Resonance Imaging Study Following 7 Days at 4554 m. High Alt Med Biol 2019; 20:407-416. [DOI: 10.1089/ham.2019.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Sven Kühn
- German Air Force Center of Aerospace Medicine, Fürstenfeldbruck, Germany
| | - Darius Gerlach
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Hans-Jürgen Noblé
- German Air Force Center of Aerospace Medicine, Fürstenfeldbruck, Germany
| | - Frank Weber
- German Air Force Center of Aerospace Medicine, Fürstenfeldbruck, Germany
| | - Jörn Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Ulrich Limper
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Hospitals of Cologne, University of Witten/Herdecke, Cologne, Germany
| |
Collapse
|
27
|
Gholampour S, Bahmani M, Shariati A. Comparing the Efficiency of Two Treatment Methods of Hydrocephalus: Shunt Implantation and Endoscopic Third Ventriculostomy. Basic Clin Neurosci 2019; 10:185-198. [PMID: 31462974 PMCID: PMC6712634 DOI: 10.32598/bcn.9.10.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/28/2018] [Accepted: 08/26/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction: Hydrocephalus is one of the most common diseases in children, and its treatment requires brain operation. However, the pathophysiology of the disease is very complicated and still unknown. Methods: Endoscopic Third Ventriculostomy (ETV) and Ventriculoperitoneal Shunt (VPS) implantation are among the common treatments of hydrocephalus. In this study, Cerebrospinal Fluid (CSF) hydrodynamic parameters and efficiency of the treatment methods were compared with numerical simulation and clinical follow-up of the treated patients. Results: Studies have shown that in patients under 19 years of age suffering from hydrocephalus related to a Posterior Fossa Brain Tumor (PFBT), the cumulative failure rate was 21% and 29% in ETV and VPS operation, respectively. At first, the ETV survival curve shows a sharp decrease and after two months it gets fixed while VPS curve makes a gradual decrease and reaches to a level lower than ETV curve after 5.7 months. Post-operative complications in ETV and VPS methods are 17% and 31%, respectively. In infants younger than 12 months with hydrocephalus due to congenital Aqueduct Stenosis (AS), and also in the elderly patients suffering from Normal Pressure Hydrocephalus (NPH), ETV is a better treatment option. Computer simulations show that the maximum CSF pressure is the most reliable hydrodynamic index for the evaluation of the treatment efficacy in these patients. After treatment by ETV and shunt methods, CSF pressure decreases about 9 and 5.3 times, respectively and 2.5 years after shunt implantation, this number returns to normal range. Conclusion: In infants with hydrocephalus, initial treatment by ETV was more reasonable than implanting the shunt. In adult with hydrocephalus, the initial failure in ETV occurred sooner compared to shunt therapy; however, ETV was more efficient.
Collapse
Affiliation(s)
- Seifollah Gholampour
- Department of Biomedical Engineering, Faculty of Electrical & Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnoush Bahmani
- Department of Biomedical Engineering, Faculty of Electrical & Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Shariati
- Department of Biomedical Engineering, Faculty of Electrical & Computer Engineering, Tehran North Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Dobashi S, Koyama K, Endo J, Kiuchi M, Horiuchi M. Impact of Dietary Nitrate Supplementation on Executive Function During Hypoxic Exercise. High Alt Med Biol 2019; 20:187-191. [DOI: 10.1089/ham.2018.0114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Shohei Dobashi
- Integrated Graduate School, Department of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Junko Endo
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Japan
| | - Masataka Kiuchi
- Graduate School, Department of Education, University of Yamanashi, Kofu, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Japan
| |
Collapse
|
29
|
Hoiland RL, Howe CA, Carter HH, Tremblay JC, Willie CK, Donnelly J, MacLeod DB, Gasho C, Stembridge M, Boulet LM, Niroula S, Ainslie PN. UBC‐Nepal expedition: phenotypical evidence for evolutionary adaptation in the control of cerebral blood flow and oxygen delivery at high altitude. J Physiol 2019; 597:2993-3008. [DOI: 10.1113/jp277596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ryan L. Hoiland
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | - Howard H. Carter
- Department of Nutrition, Exercise and SportsUniversity of Copenhagen Nørre Allé 51 DK‐2200 Copenhagen Denmark
| | - Joshua C. Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health StudiesQueen's University 28 Division Street Kingston Ontario Canada K7L 3N6
| | - Chris K. Willie
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesCambridge Biomedical Campus, University of Cambridge Cambridge CB2 0QQ UK
| | - David B. MacLeod
- Human Pharmacology and Physiology Lab, Department of AnesthesiologyDuke University Medical Center Durham NC 27708 USA
| | - Chris Gasho
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine Loma Linda CA USA
| | - Mike Stembridge
- Cardiff Centre for Exercise and HealthCardiff Metropolitan University Cyncoed Road Cardiff CF23 6XD UK
| | - Lindsey M. Boulet
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | | | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| |
Collapse
|
30
|
Beidleman BA, Fulco CS, Glickman EL, Cymerman A, Kenefick RW, Cadarette BS, Andrew SP, Staab JE, Sils IV, Muza SR. Acute Mountain Sickness is Reduced Following 2 Days of Staging During Subsequent Ascent to 4300 m. High Alt Med Biol 2018; 19:329-338. [PMID: 30517038 DOI: 10.1089/ham.2018.0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To determine whether 2 days of staging at 2500-3500 m, combined with either high or low physical activity, reduces acute mountain sickness (AMS) during subsequent ascent to 4300 m. METHODS Three independent groups of unacclimatized men and women were staged for 2 days at either 2500 m (n = 18), 3000 m (n = 16), or 3500 m (n = 15) before ascending and living for 2 days at 4300 m and compared with a control group that directly ascended to 4300 m (n = 12). All individuals departed to the staging altitudes or 4300 m after spending one night at 2000 m during which they breathed supplemental oxygen to simulate sea level conditions. Half in each group participated in ∼3 hours of daily physical activity while half were sedentary. Women accounted for ∼25% of each group. AMS incidence was assessed using the Environmental Symptoms Questionnaire. AMS was classified as mild (≥0.7 and <1.5), moderate (≥1.5 and <2.6), and severe (≥2.6). RESULTS While staging, the incidence of AMS was lower (p < 0.001) in the 2500 m (0%), 3000 m (13%), and 3500 m (40%) staged groups than the direct ascent control group (83%). After ascent to 4300 m, the incidence of AMS was lower in the 3000 m (43%) and 3500 m (40%) groups than the 2500 m group (67%) and direct ascent control (83%). Neither activity level nor sex influenced the incidence of AMS during further ascent to 4300 m. CONCLUSIONS Two days of staging at either 3000 or 3500 m, with or without physical activity, reduced AMS during subsequent ascent to 4300 m but staging at 3000 m may be recommended because of less incidence of AMS.
Collapse
Affiliation(s)
- Beth A Beidleman
- 1 Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Charles S Fulco
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Allen Cymerman
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Robert W Kenefick
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Bruce S Cadarette
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Sean P Andrew
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Janet E Staab
- 3 Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Ingrid V Sils
- 2 Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stephen R Muza
- 4 Strategic Scientific Management Office, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
31
|
Joyce K, Lucas S, Imray C, Balanos G, Wright AD. Advances in the available non-biological pharmacotherapy prevention and treatment of acute mountain sickness and high altitude cerebral and pulmonary oedema. Expert Opin Pharmacother 2018; 19:1891-1902. [DOI: 10.1080/14656566.2018.1528228] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- K.E. Joyce
- School of Sport, Exercise, & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - S.J.E. Lucas
- School of Sport, Exercise, & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - C.H.E. Imray
- Department of Vascular Surgery, University Hospitals of Coventry and Warwickshire; Warwick Medical School, Coventry, UK
| | - G.M Balanos
- School of Sport, Exercise, & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - A. D. Wright
- Department of Medicine, University of Birmingham, Edgbaston, UK
| |
Collapse
|
32
|
Simka M, Latacz P, Czaja J. Possible Role of Glymphatic System of the Brain in the Pathogenesis of High-Altitude Cerebral Edema. High Alt Med Biol 2018; 19:394-397. [PMID: 30239222 DOI: 10.1089/ham.2018.0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article, we suggest that the glymphatic system of the brain can play an important role in the pathogenesis of high-altitude cerebral edema (HACE). Water enters the intercellular space of the brain primarily through aquaporin-4 (AQP-4) water channels, the main component of the glymphatic system, whereas acetazolamide, pharmacological agent used in the prevention of HACE, is the blocker of the AQP-4 molecule. In animal experiments, cerebral edema caused by hypobaric hypoxia was associated with an increased expression of AQP-4 by astrocytes. Also, the glymphatic system is primarily active during sleep, although sleep at high altitude is a well-known risk factor of developing HACE. All these findings support our hypothesis. We suggest that future research on the prevention and treatment of HACE should involve factors that are already known to modify activity of the glymphatic system, such as angiotensin-converting enzyme inhibitors or other pharmaceutical agents affecting noradrenergic system of the brain, body posture during sleep, anatomy of the veins draining the cranial cavity, and the influence of physical activity before and during exposure to high altitude, especially in relation to sleep.
Collapse
Affiliation(s)
- Marian Simka
- 1 Department of Anatomy, University of Opole, Opole, Poland
| | - Paweł Latacz
- 2 Department of Neurology, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Joanna Czaja
- 1 Department of Anatomy, University of Opole, Opole, Poland
| |
Collapse
|
33
|
Schatz A, Guggenberger V, Fischer MD, Schommer K, Bartz-Schmidt KU, Gekeler F, Willmann G. Optic nerve oedema at high altitude occurs independent of acute mountain sickness. Br J Ophthalmol 2018; 103:bjophthalmol-2018-312224. [PMID: 29973364 DOI: 10.1136/bjophthalmol-2018-312224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS The study aims to investigate changes in the optic nerve sheath diameter (ONSD) at high altitude and to assess correlation to optic disc oedema (ODE) and acute mountain sickness (AMS). This investigation is part of the Tübingen High Altitude Ophthalmology study. METHODS Fourteen volunteers ascended to 4559 m for 4 days before returning to low altitude. Ultrasonography of ONSD, quantification of optic disc parameters using a scanning laser ophthalmoscope and fluorescein angiography were performed at 341 m and at high altitude. Pearson's coefficient was used to correlate changes in ONSD with the optic disc and AMS. Assessment of AMS was performed using the Lake Louise (LL) and AMS-cerebral (AMS-C) scores of the Environmental Symptom Questionnaire-III. All volunteers were clinically monitored for heart rate (HR) and oxygen saturation (SpO2). RESULTS The mean ONSD at high altitude (4.6±0.3 mm, p<0.05) was significantly increased compared with baseline (3.8±0.4 mm) and remained enlarged throughout high-altitude exposure. This change in ONSD did not correlate with AMS (AMS-C, r=0.26, p=0.37; LL, r=0.21, p=0.48) and high-altitude headache (r=0.54, p=0.046), or clinical parameters of SpO2 (r=0.11, p=0.72) and HR (r=0.22, p=0.44). Increased ONSD did not correlate with altered key stereometric parameters of the optic disc describing ODE at high altitude (r<0.1, p>0.5). CONCLUSION High-altitude exposure leads to marked oedema formation of the optic nerve independent of AMS. Increased ONSD and ODE reflect hypoxia-driven oedema formation of the optic nerve at high altitude, providing important pathophysiological insight into high-altitude illness development and for future research.
Collapse
Affiliation(s)
- Andreas Schatz
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Katharinenhospital, Stuttgart, Germany
| | | | - M Dominik Fischer
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Kai Schommer
- Medizinischer Dienst der Krankenversicherungen, MDK Baden-Württemberg, Mannheim, Germany
| | | | - Florian Gekeler
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Katharinenhospital, Stuttgart, Germany
| | - Gabriel Willmann
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Katharinenhospital, Stuttgart, Germany
| |
Collapse
|
34
|
FSI simulation of CSF hydrodynamic changes in a large population of non-communicating hydrocephalus patients during treatment process with regard to their clinical symptoms. PLoS One 2018; 13:e0196216. [PMID: 29708982 PMCID: PMC5927404 DOI: 10.1371/journal.pone.0196216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
3D fluid-structure interaction modelling was utilized for simulation of 13 normal subjects, 11 non-communicating hydrocephalus (NCH) patients at pre-treatment phase, and 3 patients at five post-treatment phases. Evaluation of ventricles volume and maximum CSF pressure (before shunting) following results validation indicated that these parameters were the most proper hydrodynamic indices and the NCH type doesn't have any significant effect on changes in two indices. The results confirmed an appropriate correlation between these indices although the correlation decreased slightly after the occurrence of disease. NCH raises the intensity of vortex and pulsatility (2.4 times) of CSF flow while the flow remains laminar. On day 18 after shunting, the CSF pressure decreased 81.0% and all clinical symptoms of patients vanished except for headache. Continuing this investigation during the treatment process showed that maximum CSF pressure is the most sensitive parameter to patients' clinical symptoms. Maximum CSF pressure has decreased proportional to the level of decrease in clinical symptoms and has returned close to the pressure range in normal subjects faster than other parameters and simultaneous with disappearance of patients' clinical symptoms (from day 81 after shunting). However, phase lag between flow rate and pressure gradient functions and the degree of CSF pulsatility haven't returned to normal subjects' conditions even 981 days after shunting and NCH has also caused a permanent volume change (of 20.1%) in ventricles. Therefore, patients have experienced a new healthy state in new hydrodynamic conditions after shunting and healing. Increase in patients' intracranial compliance was predicted with a more accurate non-invasive method than previous experimental methods up to more than 981 days after shunting. The changes in hydrodynamic parameters along with clinical reports of patients can help to gain more insight into the pathophysiology of NCH patients.
Collapse
|
35
|
Kurtzman RA, Caruso JL. High-Altitude Illness Death Investigation. Acad Forensic Pathol 2018; 8:83-97. [PMID: 31240027 PMCID: PMC6474454 DOI: 10.23907/2018.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 11/12/2022]
Abstract
High altitude illness (HAI) is the current accepted clinical term for a group of disorders including acute mountain sickness (AMS), high-altitude cerebral edema (HACE), and high-altitude pulmonary edema (HAPE), which occur in travelers visiting high-altitude locations. High-altitude illness is due to hypobaric hypoxia, is not associated with age or physical conditioning, and mild forms are easily treated. High-altitude cerebral edema and HAPE are medical emergencies that are fatal if not promptly treated and fortunately are uncommon. The cause of most high-altitude fatalities is not related to HAI and can be easily distinguished from HACE and HAPE; however, other causes of death may have symptoms and physical findings that overlap with HAI, making postmortem diagnosis challenging. Fatalities due to HAPE and HACE are diagnoses of exclusion. Medical examiners and coroners who work in jurisdictions with high-altitude locations should be aware of the risk factors, physiology, pathology, differential diagnosis, and classification of HAI to accurately recognize HAI as a cause of death. Medical examiners who do not work in jurisdictions with high-altitude locations may be asked to evaluate deaths that occur overseas associated with high-altitude trekking and mountaineering activities.
Collapse
|
36
|
Muza SR. Wearable physiological sensors and real-time algorithms for detection of acute mountain sickness. J Appl Physiol (1985) 2018; 124:557-563. [DOI: 10.1152/japplphysiol.00367.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This is a minireview of potential wearable physiological sensors and algorithms (process and equations) for detection of acute mountain sickness (AMS). Given the emerging status of this effort, the focus of the review is on the current clinical assessment of AMS, known risk factors (environmental, demographic, and physiological), and current understanding of AMS pathophysiology. Studies that have examined a range of physiological variables to develop AMS prediction and/or detection algorithms are reviewed to provide insight and potential technological roadmaps for future development of real-time physiological sensors and algorithms to detect AMS. Given the lack of signs and nonspecific symptoms associated with AMS, development of wearable physiological sensors and embedded algorithms to predict in the near term or detect established AMS will be challenging. Prior work using [Formula: see text], HR, or HRv has not provided the sensitivity and specificity for useful application to predict or detect AMS. Rather than using spot checks as most prior studies have, wearable systems that continuously measure SpO2 and HR are commercially available. Employing other statistical modeling approaches such as general linear and logistic mixed models or time series analysis to these continuously measured variables is the most promising approach for developing algorithms that are sensitive and specific for physiological prediction or detection of AMS.
Collapse
Affiliation(s)
- Stephen R. Muza
- Strategic Science Management Office, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
37
|
Rossetti GMK, Macdonald JH, Wylie LJ, Little SJ, Newton V, Wood B, Hawkins KA, Beddoe R, Davies HE, Oliver SJ. Dietary nitrate supplementation increases acute mountain sickness severity and sense of effort during hypoxic exercise. J Appl Physiol (1985) 2017; 123:983-992. [DOI: 10.1152/japplphysiol.00293.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022] Open
Abstract
Dietary nitrate supplementation enhances sea level performance and may ameliorate hypoxemia at high altitude. However, nitrate may exacerbate acute mountain sickness (AMS), specifically headache. This study investigated the effect of nitrate supplementation on AMS symptoms and exercise responses with 6-h hypoxia. Twenty recreationally active men [age, 22 ± 4 yr, maximal oxygen consumption (V̇o2max), 51 ± 6 ml·min−1·kg−1, means ± SD] completed this randomized double-blinded placebo-controlled crossover study. Twelve participants were classified as AMS− on the basis of Environmental Symptoms Questionnaire [Acute Cerebral Mountain Sickness score (AMS-C)] <0.7 in both trials, and five participants were classified as AMS+ on the basis of AMS-C ≥0.7 on placebo. Five days of nitrate supplementation (70-ml beetroot juice containing ~6.4 mmol nitrate daily) increased plasma NO metabolites by 182 µM compared with placebo but did not reduce AMS or improve exercise performance. After 4-h hypoxia [inspired O2 fraction ([Formula: see text]) = 0.124], nitrate increased AMS-C and headache severity (visual analog scale; whole sample ∆10 [1, 20] mm, mean difference [95% confidence interval]; P = 0.03) compared with placebo. In addition, after 5-h hypoxia, nitrate increased sense of effort during submaximal exercise (∆7 [−1, 14]; P = 0.07). In AMS−, nitrate did not alter headache or sense of effort. In contrast, in AMS+, nitrate increased headache severity (∆26 [−3, 56] mm; P = 0.07), sense of effort (∆14 [1, 28]; P = 0.04), oxygen consumption, ventilation, and mean arterial pressure during submaximal exercise. On the next day, in a separate acute hypoxic exercise test ([Formula: see text] = 0.141), nitrate did not improve time to exhaustion at 80% hypoxic V̇o2max. In conclusion, dietary nitrate increases AMS and sense of effort during exercise, particularly in those who experience AMS. Dietary nitrate is therefore not recommended as an AMS prophylactic or ergogenic aid in nonacclimatized individuals at altitude. NEW & NOTEWORTHY This is the first study to identify that the popular dietary nitrate supplement (beetroot) does not reduce acute mountain sickness (AMS) or improve exercise performance during 6-h hypoxia. The consumption of nitrate in those susceptible to AMS exacerbates AMS symptoms (headache) and sense of effort and raises oxygen cost, ventilation, and blood pressure during walking exercise in 6-h hypoxia. These data question the suitability of nitrate supplementation during altitude travel in nonacclimatized people.
Collapse
Affiliation(s)
- Gabriella M. K. Rossetti
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Jamie H. Macdonald
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Lee J. Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, United Kingdom
| | - Samuel J. Little
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Victoria Newton
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Benjamin Wood
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Kieran A. Hawkins
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Rhys Beddoe
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Hannah E. Davies
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Samuel J. Oliver
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| |
Collapse
|
38
|
Beidleman BA, Fulco CS, Cadarette BS, Cymerman A, Buller MJ, Salgado RM, Posch AM, Staab JE, Sils IV, Yurkevicius BR, Luippold AJ, Welles AP, Muza SR. Is normobaric hypoxia an effective treatment for sustaining previously acquired altitude acclimatization? J Appl Physiol (1985) 2017; 123:1214-1227. [PMID: 28705998 DOI: 10.1152/japplphysiol.00344.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022] Open
Abstract
This study examined whether normobaric hypoxia (NH) treatment is more efficacious for sustaining high-altitude (HA) acclimatization-induced improvements in ventilatory and hematologic responses, acute mountain sickness (AMS), and cognitive function during reintroduction to altitude (RA) than no treatment at all. Seventeen sea-level (SL) residents (age = 23 ± 6 yr; means ± SE) completed in the following order: 1) 4 days of SL testing; 2) 12 days of HA acclimatization at 4,300 m; 3) 12 days at SL post-HA acclimatization (Post) where each received either NH (n = 9, [Formula: see text] = 0.122) or Sham (n = 8; [Formula: see text] = 0.207) treatment; and 4) 24-h reintroduction to 4,300-m altitude (RA) in a hypobaric chamber (460 Torr). End-tidal carbon dioxide pressure ([Formula: see text]), hematocrit (Hct), and AMS cerebral factor score were assessed at SL, on HA2 and HA11, and after 20 h of RA. Cognitive function was assessed using the SynWin multitask performance test at SL, on HA1 and HA11, and after 4 h of RA. There was no difference between NH and Sham treatment, so data were combined. [Formula: see text] (mmHg) decreased from SL (37.2 ± 0.5) to HA2 (32.2 ± 0.6), decreased further by HA11 (27.1 ± 0.4), and then increased from HA11 during RA (29.3 ± 0.6). Hct (%) increased from SL (42.3 ± 1.1) to HA2 (45.9 ± 1.0), increased again from HA2 to HA11 (48.5 ± 0.8), and then decreased from HA11 during RA (46.4 ± 1.2). AMS prevalence (%) increased from SL (0 ± 0) to HA2 (76 ± 11) and then decreased at HA11 (0 ± 0) and remained depressed during RA (17 ± 10). SynWin scores decreased from SL (1,615 ± 62) to HA1 (1,306 ± 94), improved from HA1 to HA11 (1,770 ± 82), and remained increased during RA (1,707 ± 75). These results demonstrate that HA acclimatization-induced improvements in ventilatory and hematologic responses, AMS, and cognitive function are partially retained during RA after 12 days at SL whether or not NH treatment is utilized.NEW & NOTEWORTHY This study demonstrates that normobaric hypoxia treatment over a 12-day period at sea level was not more effective for sustaining high-altitude (HA) acclimatization during reintroduction to HA than no treatment at all. The noteworthy aspect is that athletes, mountaineers, and military personnel do not have to go to extraordinary means to retain HA acclimatization to an easily accessible and relevant altitude if reexposure occurs within a 2-wk time period.
Collapse
Affiliation(s)
- Beth A Beidleman
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| | - Charles S Fulco
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Bruce S Cadarette
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Allen Cymerman
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Mark J Buller
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Roy M Salgado
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Alexander M Posch
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Janet E Staab
- Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts; and
| | - Ingrid V Sils
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Beau R Yurkevicius
- Thermal and Mountain Medicine Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Alexander P Welles
- Biophysics and Biomedical Modeling Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stephen R Muza
- Scientifc Strategic Management Office, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
39
|
Phillips L, Basnyat B, Chang Y, Swenson ER, Harris NS. Findings of Cognitive Impairment at High Altitude: Relationships to Acetazolamide Use and Acute Mountain Sickness. High Alt Med Biol 2017; 18:121-127. [PMID: 28509579 DOI: 10.1089/ham.2016.0001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phillips, Lara, Buddha Basnyat, Yuchiao Chang, Erik R. Swenson, and N. Stuart Harris. Findings of cognitive impairment at high altitude: relationships to acetazolamide use and acute mountain sickness. High Alt Med Biol. 18:121-127, 2017. OBJECTIVE Acute mountain sickness (AMS) is defined by patient-reported symptoms using the Lake Louise Score (LLS), which provides limited insight into any possible underlying central nervous system (CNS) dysfunction. Some evidence suggests AMS might coexist with altered neural functioning. Cognitive impairment (CI) may go undetected unless a sensitive test is applied. Our hypothesis was that a standardized test for mild CI would provide an objective measure of CNS dysfunction, which may correlate with the symptoms of AMS and so provide a potential new tool to better characterize altitude-related CNS dysfunction. We compared a cognitive screening tool with the LLS to see if it correlated with CNS dysfunction. METHODS Adult native English-speaking subjects visiting Himalayan Rescue Association aid stations in Nepal at 3520 m (11,548 ft) and 4550 m (14,927 ft) were recruited. Subjects were administered the LLS and a slightly modified version of the environmental Quick mild cognitive impairment screen (eQmci). Medication use for altitude illness was recorded. Scores were compared using the Spearman's correlation coefficient. Data also included medication use. RESULTS Seventy-nine subjects were enrolled. A cut-off of three or greater was used for the LLS to diagnose AMS and 67 or less for the eQmci to diagnose CI. There were 22 (28%) subjects who met criteria for AMS and 17 (22%) subjects who met criteria for CI. There was a weak correlation (r2 = 0.06, p = 0.04) between eQmci score and LLS. In matched subjects with identical LLS, recent acetazolamide use was associated with significantly more CI. CONCLUSION Field assessment of CI using a rapid standardized tool demonstrated that a substantial number of subjects were found to have mild CI following rapid ascent to 3520-4550 m (11,548-14,927 ft). The weak correlation between the LLS and eQmci suggests that AMS does not result in CI. Use of acetazolamide appears to be associated with CI at all levels of AMS severity.
Collapse
Affiliation(s)
- Lara Phillips
- 1 Division of Wilderness Medicine, Department of Emergency Medicine, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Buddha Basnyat
- 2 Oxford University Clinical Research Unit - Nepal , Himalayan Rescue Association, Kathmandu, Nepal
| | - Yuchiao Chang
- 1 Division of Wilderness Medicine, Department of Emergency Medicine, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Erik R Swenson
- 3 Medical Service, Veterans Affairs Puget Sound Health Care System, University of Washington , Seattle, Washington
| | - N Stuart Harris
- 1 Division of Wilderness Medicine, Department of Emergency Medicine, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Davis C, Hackett P. Advances in the Prevention and Treatment of High Altitude Illness. Emerg Med Clin North Am 2017; 35:241-260. [PMID: 28411926 DOI: 10.1016/j.emc.2017.01.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
High altitude illness encompasses a spectrum of clinical entities to include: acute mountain sickness, high altitude cerebral edema, and high altitude pulmonary edema. These illnesses occur as a result of a hypobaric hypoxic environment. Although a mild case of acute mountain sickness may be self-limited, high altitude cerebral edema and high altitude pulmonary edema represent critical emergencies that require timely intervention. This article reviews recent advances in the prevention and treatment of high altitude illness, including new pharmacologic strategies for prophylaxis and revised treatment guidelines.
Collapse
Affiliation(s)
- Christopher Davis
- Department of Emergency Medicine, University of Colorado School of Medicine, 12401 East 17th Avenue, Aurora, CO 80045, USA.
| | - Peter Hackett
- Institute for Altitude Medicine, PO Box 1229, Telluride, CO 81435, USA
| |
Collapse
|
41
|
Abstract
The respiratory and central nervous systems are intimately connected. Ventilatory control is strictly regulated by central mechanisms in a complex process that involves central and peripheral chemoreceptors, baroreceptors, the cardiovascular system, and specific areas of the brain responsible for autonomic control. Disorders of the lung and respiratory system can interfere with these mechanisms and temporarily or permanently disrupt this complex network resulting in mild to severe neurological sequelae. This article explores the wide variety of neurological problems resulting from respiratory dysfunction, with emphasis on its pathophysiology, clinical features, prognosis, and long-term outcome.
Collapse
|
42
|
Luks AM, Swenson ER, Bärtsch P. Acute high-altitude sickness. Eur Respir Rev 2017; 26:26/143/160096. [PMID: 28143879 PMCID: PMC9488514 DOI: 10.1183/16000617.0096-2016] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/23/2016] [Indexed: 12/28/2022] Open
Abstract
At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases. Lack of acclimatisation is the main risk factor for acute altitude illness; descent is the optimal treatmenthttp://ow.ly/45d2305JyZ0
Collapse
Affiliation(s)
- Andrew M Luks
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA
| | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA, USA.,Medical Service, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Peter Bärtsch
- Dept of Internal Medicine, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
43
|
Smoliga JM, Zavorsky GS. "Tighter fit" theory-physiologists explain why "higher altitude" and jugular occlusion are unlikely to reduce risks for sports concussion and brain injuries. J Appl Physiol (1985) 2017; 122:215-217. [PMID: 27609202 DOI: 10.1152/japplphysiol.00661.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- James M Smoliga
- Department of Physical Therapy, High Point University, High Point, North Carolina; and
| | - Gerald S Zavorsky
- Department of Respiratory Therapy, Georgia State University, Georgia State University, Atlanta, Georgia
| |
Collapse
|
44
|
Sightings, edited by Erik R. Swenson and Peter Bärtsch. High Alt Med Biol 2016. [DOI: 10.1089/ham.2016.29009.stg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|