1
|
Kastritseas L, Koutlas A, Kounoupis A, Kritikou S, Papadopoulos S, Smilios I, Dipla K, Zafeiridis A. Boys vs men differences in muscular fatigue, muscle and cerebral oxygenation during maximal effort isometric contractions: the effect of muscle blood flow restriction. Eur J Appl Physiol 2025; 125:1191-1203. [PMID: 39611943 DOI: 10.1007/s00421-024-05670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To examine whether the children's superiority, over adults, to resist fatigue during repeated maximal-efforts depends on their often-cited oxidative advantage, attributed to greater muscle blood flow and O2-delivery. We also investigated the mechanisms underlying child-adult differences in muscle-oxygenation (due to O2-supply or O2-utilization) and examined if there are age-differences in cerebral-oxygenation response (a brain-activation index). METHODS Eleven men (23.3 ± 1.8yrs) and eleven boys (11.6 ± 1.1 yrs) performed 15 maximal-effort handgrips (3-s contraction/3-s rest) under two conditions: free-flow circulation (FF) and arterial-occlusion (OCC). Force, muscle-oxygenation (TSImuscle) and cerebral-oxygenation (oxyhemoglobin-O2Hbcerebral; total hemoglobin-tHbcerebral; deoxyhemoglobin-HHbcerebral) were assessed. RESULTS In boys, force declined less (- 26.3 ± 2.6 vs. - 34.4 ± 2.4%) and at slower rate (- 1.56 ± 0.16 vs. - 2.24 ± 0.17%·rep-1) vs. men in FF (p < 0.01-0.05; d = 0.60-1.24). However, in OCC there were no age-differences in the magnitude (- 38.3 ± 3.0 vs. - 37.8 ± 3.0%) and rate (- 2.44 ± 0.26 vs. - 2.54 ± 0.26%·rep-1) of force decline. Boys compared to men, exhibited less TSImuscle decline in both protocols, and lower muscle VO2 (p < 0.05). Boys, also, presented a smaller O2Hbcerebral and tHbcerebral rise than men in FF; exercising with OCC increased the O2Hbcerebral and tHbcerebral response in boys. Using MVIC as a covariate in FF condition, abolished boys-men differences in force and TSImuscle decline and O2Hbcerebral rise. CONCLUSION During repeated maximal-efforts: (i) blood flow is a significant contributor to children's superiority over adults to resist fatigue; (ii) age-difference in muscle hypoxia/deoxygenation is rather attributed to men's greater metabolic demand than to lower muscle-perfusion; and (iii) cerebral oxygenation/blood volume increase more in men than boys under free circulation, implying greater brain activation.
Collapse
Affiliation(s)
- Leonidas Kastritseas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece
| | - Aggelos Koutlas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece
| | - Anastasios Kounoupis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece
| | - Stella Kritikou
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece
| | - Stavros Papadopoulos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece
| | - Ilias Smilios
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100, Komotini, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62100, Serres, Greece.
| |
Collapse
|
2
|
Kritikou S, Zafeiridis A, Pitsiou G, Gkalgkouranas I, Kastritseas L, Boutou A, Dipla K. Brain Oxygenation During Exercise in Different Types of Chronic Lung Disease: A Narrative Review. Sports (Basel) 2025; 13:9. [PMID: 39852605 PMCID: PMC11769342 DOI: 10.3390/sports13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
Chronic lung diseases such as Chronic Obstructive Pulmonary Disease, Interstitial Lung Disease (ILD), and Pulmonary Hypertension (PH) are characterized by progressive symptoms such as dyspnea, fatigue, and muscle weakness, often leading to physical inactivity, and reduced quality of life. Many patients also experience significantly impaired exercise tolerance. While pulmonary, cardiovascular, respiratory, and peripheral muscle dysfunction contribute to exercise limitations, recent evidence suggests that hypoxia and impairments in cerebral oxygenation may also play a role in exercise intolerance. This narrative review (i) summarizes studies investigating cerebral oxygenation responses during exercise in patients with different types of chronic lung diseases and (ii) discusses possible mechanisms behind the blunted cerebral oxygenation during exercise reported in many of these conditions; however, the extent of cerebral desaturation and the intensity at which it occurs can vary. These differences depend on the specific pathophysiology of the lung disease and the presence of comorbidities. Notably, reduced cerebral oxygenation during exercise in fibrotic-ILD has been linked with the development of dyspnea and early exercise termination. Understanding the effects of chronic lung disease on cerebral oxygenation during exercise may improve our understanding of exercise intolerance mechanisms and help identify therapeutic strategies to enhance brain health and exercise capacity in these patients.
Collapse
Affiliation(s)
- Stella Kritikou
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Georgia Pitsiou
- Department of Respiratory Failure, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Ioannis Gkalgkouranas
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Leonidas Kastritseas
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
| | - Afroditi Boutou
- Department of Respiratory Medicine, Ippokrateio Hospital of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Sport Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece; (S.K.); (A.Z.); (I.G.); (L.K.)
- Department of Respiratory Failure, G. Papanikolaou Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| |
Collapse
|
3
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
4
|
Hiura M, Funaki A, Shibutani H, Takahashi K, Katayama Y. Dissociated coupling between cerebral oxygen metabolism and perfusion in the prefrontal cortex during exercise: a NIRS study. Front Physiol 2023; 14:1165939. [PMID: 37565141 PMCID: PMC10411551 DOI: 10.3389/fphys.2023.1165939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: The present study used near-infrared spectroscopy to investigate the relationships between cerebral oxygen metabolism and perfusion in the prefrontal cortex (PFC) during exercises of different intensities. Methods: A total of 12 recreationally active men (age 24 ± 6 years) were enrolled. They performed 17 min of low-intensity exercise (ExL), followed by 3 min of moderate-intensity exercise (ExM) at constant loads. Exercise intensities for ExL and ExM corresponded to 30% and 45% of the participants' heart rate reserve, respectively. Cardiovascular and respiratory parameters were measured. We used near-infrared time-resolved spectroscopy (TRS) to measure the cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]), which can indicate the cerebral blood volume (CBV). As the cerebral metabolic rate for oxygen (CMRO2) is calculated using cerebral blood flow (CBF) and ScO2, we assumed a constant power law relationship between CBF and CBV based on investigations by positron emission tomography (PET). We estimated the relative changes in CMRO2 (rCMRO2) and CBV (rCBV) from the baseline. During ExL and ExM, the rate of perceived exertion was monitored, and alterations in the subjects' mood induced by exercise were evaluated using the Profile of Moods Scale-Brief. Results: Three minutes after exercise initiation, ScO2 decreased and rCMRO2 surpassed rCBV in the left PFC. When ExL changed to ExM, cardiovascular variables and the sense of effort increased concomitantly with an increase in [HbT] but not in ScO2, and the relationship between rCMRO2 and rCBV was dissociated in both sides of the PFC. Immediately after ExM, [HbT], and ScO2 increased, and the disassociation between rCMRO2 and rCBV was prominent in both sides of the PFC. While blood pressure decreased and a negative mood state was less prominent following ExM compared with that at rest, ScO2 decreased 15 min after exercise and rCMRO2 surpassed rCBV in the left PFC. Conclusion: Dissociated coupling between cerebral oxidative metabolism and perfusion in the PFC was consistent with the effort required for increased exercise intensity and associated with post-exercise hypotension and altered mood status after exercise. Our result demonstrates the first preliminary results dealing with the coupling between cerebral oxidative metabolism and perfusion in the PFC using TRS.
Collapse
Affiliation(s)
- Mikio Hiura
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| | - Akio Funaki
- Faculty of Sociology, Aomori University, Aomori, Japan
| | | | - Katsumi Takahashi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yoichi Katayama
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| |
Collapse
|
5
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
6
|
Ishii K, Idesako M, Asahara R, Liang N, Matsukawa K. Central command suppresses pressor-evoked bradycardia at the onset of voluntary standing up in conscious cats. Exp Physiol 2023; 108:28-37. [PMID: 36404613 PMCID: PMC10103771 DOI: 10.1113/ep090718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Standing up can cause hypotension and tachycardia. Accumulated evidence poses the simple question, does the cardiac baroreflex operate at the onset of standing up? If the cardiac baroreflex is suppressed, what mechanism is responsible for baroreflex inhibition? What is the main finding and its importance? In cats, we found blunting of cardiac baroreflex sensitivity in the pressor range at the onset of voluntary hindlimb standing, but not of passive hindlimb standing. This finding suggests that central command suppresses pressor-evoked bradycardia at the onset of standing up, probably in advance, to prevent or buffer orthostatic hypotension. ABSTRACT It remains unclear whether cardiac baroreflex function is preserved or suppressed at the onset of standing up. To answer the question and, if cardiac baroreflex is suppressed, to investigate the mechanism responsible for the suppression, we compared the sensitivity of the arterial cardiac baroreflex at the onset of voluntary and passive hindlimb standing in conscious cats. Cardiac baroreflex sensitivity was estimated from the maximal slope of the baroreflex curve between the responses of systolic arterial blood pressure and heart rate to a brief occlusion of the abdominal aorta. The systolic arterial blood pressure response to standing up without aortic occlusion was greater in the voluntary case than in the passive case. Cardiac baroreflex sensitivity was clearly decreased at the onset of voluntary standing up compared with rest (P = 0.005) and the onset of passive standing up (P = 0.007). The cardiac baroreflex sensitivity at the onset of passive standing up was similar to that at rest (P = 0.909). The findings suggest that central command would transmit a modulatory signal to the cardiac baroreflex system during the voluntary initiation of standing up. Furthermore, the present data tempt speculation on a close relationship between central inhibition of the cardiac baroreflex and the centrally induced tachycardiac response to standing up.
Collapse
Affiliation(s)
- Kei Ishii
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| | - Mitsuhiro Idesako
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| | - Ryota Asahara
- Human Informatics and Interaction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| | - Nan Liang
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
- Cognitive Motor Neuroscience, Human Health SciencesGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Kanji Matsukawa
- Department of Integrative PhysiologyGraduate School of Biomedical and Health SciencesHiroshima UniversityMinami‐kuHiroshimaJapan
| |
Collapse
|
7
|
Molina-Rodríguez S, Mirete-Fructuoso M, Martínez LM, Ibañez-Ballesteros J. Frequency-domain analysis of fNIRS fluctuations induced by rhythmic mental arithmetic. Psychophysiology 2022; 59:e14063. [PMID: 35394075 PMCID: PMC9540762 DOI: 10.1111/psyp.14063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Functional near‐infrared spectroscopy (fNIRS) is an increasingly used technology for imaging neural correlates of cognitive processes. However, fNIRS signals are commonly impaired by task‐evoked and spontaneous hemodynamic oscillations of non‐cerebral origin, a major challenge in fNIRS research. In an attempt to isolate the task‐evoked cortical response, we investigated the coupling between hemodynamic changes arising from superficial and deep layers during mental effort. For this aim, we applied a rhythmic mental arithmetic task to induce cyclic hemodynamic fluctuations suitable for effective frequency‐resolved measurements. Twenty university students aged 18–25 years (eight males) underwent the task while hemodynamic changes were monitored in the forehead using a newly developed NIRS device, capable of multi‐channel and multi‐distance recordings. We found significant task‐related fluctuations for oxy‐ and deoxy‐hemoglobin, highly coherent across shallow and deep tissue layers, corroborating the strong influence of surface hemodynamics on deep fNIRS signals. Importantly, after removing such surface contamination by linear regression, we show that the frontopolar cortex response to a mental math task follows an unusual inverse oxygenation pattern. We confirm this finding by applying for the first time an alternative method to estimate the neural signal, based on transfer function analysis and phasor algebra. Altogether, our results demonstrate the feasibility of using a rhythmic mental task to impose an oscillatory state useful to separate true brain functional responses from those of non‐cerebral origin. This separation appears to be essential for a better understanding of fNIRS data and to assess more precisely the dynamics of the neuro‐visceral link. We proposed the use of rhythmic mental arithmetic tasks to induce cyclic oscillations in multi‐distance fNIRS signals measured on the forehead, suitable for effective frequency‐domain analysis to better identify the actual neural functional response. We confirm the impairment of deep signals by task‐evoked non‐cerebral confounds, while providing evidence for an inverse oxygenation response in the frontopolar cortex.
Collapse
Affiliation(s)
- Sergio Molina-Rodríguez
- Cellular and Systems Neurobiology, Institute of Neurosciences, Spanish National Research Council-Miguel Hernandez University, Alicante, Spain
| | - Marcos Mirete-Fructuoso
- Cellular and Systems Neurobiology, Institute of Neurosciences, Spanish National Research Council-Miguel Hernandez University, Alicante, Spain
| | - Luis M Martínez
- Cellular and Systems Neurobiology, Institute of Neurosciences, Spanish National Research Council-Miguel Hernandez University, Alicante, Spain
| | | |
Collapse
|
8
|
Zafeiridis A, Kounoupis A, Papadopoulos S, Koutlas A, Boutou AK, Smilios I, Dipla K. Brain oxygenation during multiple sets of isometric and dynamic resistance exercise of equivalent workloads: Association with systemic haemodynamics. J Sports Sci 2022; 40:1020-1030. [PMID: 35271420 DOI: 10.1080/02640414.2022.2045061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain function relies on sufficient blood flow and oxygen supply. Changes in cerebral oxygenation during exercise have been linked to brain activity and central command. Isometric- and dynamic-resistance exercise-(RE) may elicit differential responses in systemic circulation, neural function and metabolism; all important regulators of cerebral circulation. We examined whether (i) cerebral oxygenation differs between isometric- and dynamic-RE of similar exercise characteristics and (ii) cerebral oxygenation changes relate to cardiovascular adjustments occurring during RE. Fourteen men performed, randomly, an isometric-RE and a dynamic-RE of similar characteristics (bilateral-leg-press, 2-min×4-sets, 30% of maximal-voluntary-contraction, equivalent tension-time-index/workload). Cerebral-oxygenation (oxyhaemoglobin-O2Hb; total haemoglobin-tHb/blood-volume-index; deoxyhemoglobin-HHb) was assessed by NIRS and beat-by-beat haemodynamics via photoplethysmography. Cerebral-O2Hb and tHb progressively increased from the 1st to 4th set in both RE-protocols (p < 0.05); HHb slightly decreased (p < 0.05). Changes in NIRS-parameters were similar between RE-protocols within each exercise-set (p = 0.91-1.00) and during the entire protocol (including resting-phases) (p = 0.48-0.63). O2Hb and tHb changes were not correlated with changes in systemic haemodynamics. In conclusion, cerebral oxygenation/blood-volume steadily increased during multiple-set RE-protocols. Isometric- and dynamic-RE of matched exercise characteristics resulted in similar prefrontal oxygenation/blood volume changes, suggesting similar cerebral haemodynamic and possibly neuronal responses to maintain a predetermined force.
Collapse
Affiliation(s)
- Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios Kounoupis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Stavros Papadopoulos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aggelos Koutlas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, General Papanikolaou Hospital, Thessaloniki, Greece
| | - Ilias Smilios
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
9
|
Asahara R, Ishii K, Liang N, Hatanaka Y, Hihara K, Matsukawa K. Regional difference in prefrontal oxygenation before and during overground walking in humans: a wearable multichannel NIRS study. Am J Physiol Regul Integr Comp Physiol 2022; 322:R28-R40. [PMID: 34843411 DOI: 10.1152/ajpregu.00192.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using wireless multichannel near-infrared spectroscopy, regional difference in cortical activity over the prefrontal cortex (PFC) was examined before and during overground walking and in response to changes in speed and cognitive demand. Oxygenated-hemoglobin concentration (Oxy-Hb) as index of cortical activity in ventrolateral PFC (VLPFC), dorsolateral PFC (DLPFC), and frontopolar cortex (FPC) was measured in 14 subjects, whereas heart rate was measured as estimation of exercise intensity in six subjects. The impact of mental imagery on prefrontal Oxy-Hb was also explored. On both sides, Oxy-Hb in VLPFC, DLPFC, and lateral FPC was increased before the onset of normal-speed walking, whereas Oxy-Hb in medial FPC did not respond before walking onset. During the walking, Oxy-Hb further increased in bilateral VLPFC, whereas Oxy-Hb was decreased in DLPFC and lateral and medial FPC. Increasing walking speed did not alter the increase in Oxy-Hb in VLPFC but counteracted the decrease in Oxy-Hb in DLPFC (but not in lateral and medial FPC). Treadmill running evoked a greater Oxy-Hb increase in DLPFC (n = 5 subjects). Furthermore, increasing cognitive demand during walking, by deprivation of visual feedback, counteracted the decrease in Oxy-Hb in DLPFC and lateral and medial FPC, but it did not affect the increase in Oxy-Hb in VLPFC. Taken together, the profound and localized Oxy-Hb increase is a unique response for the VLPFC. The regional heterogeneity of the prefrontal Oxy-Hb responses to natural overground walking was accentuated by increasing walking speed or cognitive demand, suggesting functional distinction within the PFC.
Collapse
Affiliation(s)
- Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Human Informatics and Interaction Research Institute, grid.208504.bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Human Informatics and Interaction Research Institute, grid.208504.bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukari Hatanaka
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Hihara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
De Wachter J, Proost M, Habay J, Verstraelen M, Díaz-García J, Hurst P, Meeusen R, Van Cutsem J, Roelands B. Prefrontal Cortex Oxygenation During Endurance Performance: A Systematic Review of Functional Near-Infrared Spectroscopy Studies. Front Physiol 2021; 12:761232. [PMID: 34764885 PMCID: PMC8576380 DOI: 10.3389/fphys.2021.761232] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Introduction: A myriad of factors underlie pacing-/exhaustion-decisions that are made during whole-body endurance performance. The prefrontal cortex (PFC) is a brain region that is crucial for decision-making, planning, and attention. PFC oxygenation seems to be a mediating factor of performance decisions during endurance performance. Nowadays, there is no general overview summarizing the current knowledge on how PFC oxygenation evolves during whole-body endurance performance and whether this is a determining factor. Methods: Three electronic databases were searched for studies related to the assessment of PFC oxygenation, through near-IR spectroscopy (NIRS), during endurance exercise. To express PFC oxygenation, oxygenated (HbO2) and deoxygenated hemoglobin (HHb) concentrations were the primary outcome measures. Results: Twenty-eight articles were included. Ten articles focused on assessing prefrontal oxygenation through a maximal incremental test (MIT) and 18 focused on using endurance tasks at workloads ranging from low intensity to supramaximal intensity. In four MIT studies measuring HbO2, an increase of HbO2 was noticed at the respiratory compensation point (RCP), after which it decreased. HbO2 reached a steady state in the four studies and increased in one study until exhaustion. All studies found a decrease or steady state in HHb from the start until RCP and an increase to exhaustion. In regard to (non-incremental) endurance tasks, a general increase in PFC oxygenation was found while achieving a steady state at vigorous intensities. PCF deoxygenation was evident for near-to-maximal intensities at which an increase in oxygenation and the maintenance of a steady state could not be retained. Discussion/Conclusion: MIT studies show the presence of a cerebral oxygenation threshold (ThCox) at RCP. PFC oxygenation increases until the RCP threshold, thereafter, a steady state is reached and HbO2 declines. This study shows that the results obtained from MIT are transferable to non-incremental endurance exercise. HbO2 increases during low-intensity and moderate-intensity until vigorous-intensity exercise, and it reaches a steady state in vigorous-intensity exercise. Furthermore, ThCox can be found between vigorous and near-maximal intensities. During endurance exercise at near-maximal intensities, PFC oxygenation increases until the value exceeding this threshold, resulting in a decrease in PFC oxygenation. Future research should aim at maintaining and improving PFC oxygenation to help in improving endurance performance and to examine whether PFC oxygenation has a role in other performance-limiting factors.
Collapse
Affiliation(s)
- Jonas De Wachter
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias Proost
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jelle Habay
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias Verstraelen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jesús Díaz-García
- Faculty of Sport Sciences, University of Extremadura, Caceres, Spain
| | - Philip Hurst
- The School of Psychology & Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jeroen Van Cutsem
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium.,VIPER Research Unit, Royal Military Academy, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol 2021; 170:75-88. [PMID: 34666105 DOI: 10.1016/j.ijpsycho.2021.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
An interoception model for the acute exercise-cognition interaction is presented. During exercise following the norepinephrine threshold, interoceptive feedback induces increased tonic release of extracellular catecholamines, facilitating phasic release hence better cognitive performance of executive functions. When exercise intensity increases to maximum, the nature of task-induced norepinephrine release from the locus coeruleus is dependent on interaction between motivation, perceived effort costs and perceived availability of resources. This is controlled by interaction between the rostral and dorsolateral prefrontal cortices, orbitofrontal cortex, anterior cingulate cortex and anterior insula cortex. If perceived available resources are sufficient to meet predicted effort costs and reward value is high, tonic release from the locus coeruleus is attenuated thus facilitating phasic release, therefore cognition is not inhibited. However, if perceived available resources are insufficient to meet predicted effort costs or reward value is low, tonic release from the locus coeruleus is induced, attenuating phasic release. As a result, cognition is inhibited, although long-term memory and tasks that require switching to new stimuli-response couplings are probably facilitated.
Collapse
Affiliation(s)
- Terry McMorris
- Institute of Sport, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom; Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2ER, United Kingdom.
| |
Collapse
|
12
|
Matsukawa K, Asahara R, Uzumaki M, Hashiguchi Y, Ishii K, Wang J, Smith SA. Central command-related increases in blood velocity of anterior cerebral artery and prefrontal oxygenation at the onset of voluntary tapping. Am J Physiol Heart Circ Physiol 2021; 321:H518-H531. [PMID: 34328343 DOI: 10.1152/ajpheart.00062.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anterior cerebral artery (ACA) supplies blood predominantly to the frontal lobe including the prefrontal cortex. Our laboratory reported that prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) increased before and at exercise onset, as long as exercise is arbitrarily started. Moreover, the increased prefrontal oxygenation seems independent of both exercise intensity and muscle mass. If so, mean blood velocity of the ACA (ACABV) should increase with "very light motor effort," concomitantly with the preexercise and initial increase in prefrontal Oxy-Hb. This study aimed to examine the responses in ACABV and vascular conductance index (ACAVCI) of the ACA as well as prefrontal Oxy-Hb during arbitrary or cued finger tapping in 12 subjects, an activity with a Borg scale perceived exertion rating of 7 (median). With arbitrary start, ACABV increased at tapping onset (14 ± 9%) via an elevation in ACAVCI. Likewise, prefrontal Oxy-Hb increased at the onset of tapping with a time course resembling that of ACABV. A positive cross correlation between the initial changes in ACABV and prefrontal Oxy-Hb was found significant in 67% of subjects, having a time lag of 2 s, whereas a positive linear regression between them was significant in 75% of subjects. When tapping was forced to start by cue, the initial increases in ACABV, ACAVCI, and prefrontal Oxy-Hb were delayed and blunted as compared with an arbitrary start. Thus, active vasodilatation of the ACA vascular bed occurs at tapping onset, as long as tapping is arbitrarily started, and contributes to immediate increases in blood flow and prefrontal oxygenation.NEW & NOTEWORTHY Anterior cerebral artery blood velocity and vascular conductance index along with prefrontal oxygenated-hemoglobin concentration all increased at the onset of finger tapping, peaking immediately after tapping onset, as long as tapping was arbitrarily started. Positive cross correlation and linear regression between the increases in ACABV and prefrontal Oxy-Hb were significant in 67%-75% of subjects. Active vasodilatation of the ACA vascular bed occurs with arbitrary tapping onset and contributes to increased ACABV and prefrontal oxygenation.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryota Asahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Minami Uzumaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Hashiguchi
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jijia Wang
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Matsukawa K, Asahara R, Ishii K, Kunishi M, Yamashita Y, Hashiguchi Y, Liang N, Smith SA. Increased prefrontal oxygenation prior to and at the onset of over-ground locomotion in humans. J Appl Physiol (1985) 2020; 129:1161-1172. [DOI: 10.1152/japplphysiol.00392.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We found using wireless near-infrared spectroscopy that prefrontal oxygenation increased before the onset of arbitrary over-ground walking, whereas the preexercise increase was absent when walking was suddenly started by cue. The difference in prefrontal oxygenation between start modes (considered related to central command) preceded heart rate response variances and demonstrated a positive relationship with the difference in heart rate. The central command-related prefrontal activity may contribute to cardiac adjustment, synchronized with the beginning of over-ground walking.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ryota Asahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kei Ishii
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mayo Kunishi
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yurino Yamashita
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Hashiguchi
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
14
|
Triantafyllou GA, Dipla K, Triantafyllou A, Gkaliagkousi E, Douma S. Measurement and Changes in Cerebral Oxygenation and Blood Flow at Rest and During Exercise in Normotensive and Hypertensive Individuals. Curr Hypertens Rep 2020; 22:71. [PMID: 32852614 DOI: 10.1007/s11906-020-01075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Summarize the methods used for measurement of cerebral blood flow and oxygenation; describe the effects of hypertension on cerebral blood flow and oxygenation. RECENT FINDINGS Information regarding the effects of hypertension on cerebrovascular circulation during exercise is very limited, despite a plethora of methods to help with its assessment. In normotensive individuals performing incremental exercise testing, total blood flow to the brain increases. In contrast, the few studies performed in hypertensive patients suggest a smaller increase in cerebral blood flow, despite higher blood pressure levels. Endothelial dysfunction and increased vasoconstrictor concentration, as well as large vessel atherosclerosis and decreased small vessel number, have been proposed as the underlying mechanisms. Hypertension may adversely impact oxygen and blood delivery to the brain, both at rest and during exercise. Future studies should utilize the newer, noninvasive techniques to better characterize the interplay between the brain and exercise in hypertension.
Collapse
Affiliation(s)
- Georgios A Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62122, Serres, Greece
| | - Areti Triantafyllou
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece.
| | - Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece
| | - Stella Douma
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road Nea Eukarpia, 56403, Thessaloniki, Greece
| |
Collapse
|
15
|
Endo K, Liang N, Idesako M, Ishii K, Matsukawa K. Incremental rate of prefrontal oxygenation determines performance speed during cognitive Stroop test: the effect of ageing. J Physiol Sci 2018; 68:807-824. [PMID: 29460037 PMCID: PMC10717520 DOI: 10.1007/s12576-018-0599-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/06/2018] [Indexed: 11/30/2022]
Abstract
Cognitive function declines with age. The underlying mechanisms responsible for the deterioration of cognitive performance, however, remain poorly understood. We hypothesized that an incremental rate of prefrontal oxygenation during a cognitive Stroop test decreases in progress of ageing, resulting in a slowdown of cognitive performance. To test this hypothesis, we identified, using multichannel near-infrared spectroscopy, the characteristics of the oxygenated-hemoglobin concentration (Oxy-Hb) responses of the prefrontal cortex to both incongruent Stroop and congruent word-reading test. Spatial distributions of the significant changes in the three components (initial slope, peak amplitude, and area under the curve) of the Oxy-Hb response were compared between young and elderly subjects. The Stroop interference time (as a difference in total periods for executing Stroop and word-reading test, respectively) approximately doubled in elderly as compared to young subjects. The Oxy-Hb in the rostrolateral, but not caudal, prefrontal cortex increased during the Stroop test in both age groups. The initial slope of the Oxy-Hb response, rather than the peak and area under the curve, had a strong correlation with cognitive performance speed. Taken together, it is likely that the incremental rate of prefrontal oxygenation may decrease in progress of ageing, resulting in a decline in cognitive performance.
Collapse
Affiliation(s)
- Kana Endo
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Mitsuhiro Idesako
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
16
|
Ishii K, Liang N, Asahara R, Takahashi M, Matsukawa K. Feedforward- and motor effort-dependent increase in prefrontal oxygenation during voluntary one-armed cranking. J Physiol 2018; 596:5099-5118. [PMID: 30175404 DOI: 10.1113/jp276956] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Some cortical areas are believed to transmit a descending signal in association with motor intention and/or effort that regulates the cardiovascular system during exercise (termed central command). However, there was no evidence for the specific cortical area responding prior to arbitrary motor execution and in proportion to the motor effort. Using a multichannel near-infrared spectroscopy system, we found that the oxygenation of the dorsolateral and ventrolateral prefrontal cortices on the right side increases in a feedforward- and motor effort-dependent manner during voluntary one-armed cranking with the right arm. This finding may suggest a role of the dorsolateral and ventrolateral prefrontal cortices in triggering off central command and may help us to understand impaired regulation of the cardiovascular system in association with lesion of the prefrontal cortex. ABSTRACT Output from higher brain centres (termed central command) regulates the cardiovascular system during exercise in a feedforward- and motor effort-dependent manner. This study aimed to determine a cortical area responding prior to arbitrarily started exercise and in proportion to the effort during exercise. The oxygenation responses in the frontal and frontoparietal areas during one-armed cranking with the right arm were measured using multichannel near-infrared spectroscopy, as indexes of regional blood flow responses, in 20 subjects. The intensity of voluntary exercise was 30% and 60% of the maximal voluntary effort (MVE). At the start period of both voluntary cranking tasks, the oxygenation increased (P < 0.05) only in the lateral and dorsal part of the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC) and sensorimotor cortices. Then, the oxygenation increased gradually in all cortical areas during cranking at 60% MVE, while oxygenation increased only in the frontoparietal area and some of the frontal area during cranking at 30% MVE. The rating of perceived exertion to the cranking tasks correlated (P < 0.05) with the oxygenation responses on the right side of the lateral-DLPFC (r = 0.46) and VLPFC (r = 0.48) and the frontopolar areas (r = 0.47-0.49). Motor-driven passive one-armed cranking decreased the oxygenation in most cortical areas, except the contralateral frontoparietal areas. Accordingly, the lateral-DLPFC and VLPFC on the right side would respond in a feedforward- and motor effort-dependent manner during voluntary exercise with the right arm. Afferent inputs from mechanosensitive afferents may decrease the cortical oxygenation.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Automotive Human Factors Research Centre, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Nan Liang
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Deactivation of the prefrontal cortex during exposure to pleasantly-charged emotional challenge. Sci Rep 2018; 8:14540. [PMID: 30266925 PMCID: PMC6162331 DOI: 10.1038/s41598-018-32752-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/14/2018] [Indexed: 12/02/2022] Open
Abstract
Our laboratory reported that facial skin blood flow may serve as a sensitive tool to assess an emotional status and that both prefrontal oxygenation (as index of regional cerebral blood flow) and facial skin blood flow decrease during positively-charged emotional stimulation, without changing hand skin blood flow and arterial pressure. However, the focal location of the prefrontal responses in concentration of oxygenated haemoglobin (Oxy-Hb) that correlate with peripheral autonomic reaction remained unknown. This study was undertaken using 22-channel near-infrared spectroscopy to reveal spatial distribution of the responses in Oxy-Hb within the prefrontal cortex (PFC) during emotionally-charged audiovisual stimulation. Pleasantly-charged (comedy) stimulation caused a substantial decrease of Oxy-Hb in all regions of the PFC in 18 subjects, especially in the rostroventral frontopolar PFC, whereas negatively-charged (horror) or neutral stimulation (landscape) exhibited a weaker decrease or insignificant change in the prefrontal Oxy-Hb. In the rostral parts of the dorsolateral and ventral frontopolar PFC, the oxygenation response during comedy stimulation exhibited the most significant positive correlation with the decrease in facial skin blood flow. Thus the rostral regions of the PFC play a role in recognition and regulation of positive emotion and may be linked with neurally-mediated vasoconstriction of facial skin blood vessels.
Collapse
|
18
|
Cognitive Load Changes during Music Listening and its Implication in Earcon Design in Public Environments: An fNIRS Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102075. [PMID: 30248908 PMCID: PMC6210363 DOI: 10.3390/ijerph15102075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
Abstract
A key for earcon design in public environments is to incorporate an individual’s perceived level of cognitive load for better communication. This study aimed to examine the cognitive load changes required to perform a melodic contour identification task (CIT). While healthy college students (N = 16) were presented with five CITs, behavioral (reaction time and accuracy) and cerebral hemodynamic responses were measured using functional near-infrared spectroscopy. Our behavioral findings showed a gradual increase in cognitive load from CIT1 to CIT3 followed by an abrupt increase between CIT4 (i.e., listening to two concurrent melodic contours in an alternating manner and identifying the direction of the target contour, p < 0.001) and CIT5 (i.e., listening to two concurrent melodic contours in a divided manner and identifying the directions of both contours, p < 0.001). Cerebral hemodynamic responses showed a congruent trend with behavioral findings. Specific to the frontopolar area (Brodmann’s area 10), oxygenated hemoglobin increased significantly between CIT4 and CIT5 (p < 0.05) while the level of deoxygenated hemoglobin decreased. Altogether, the findings indicate that the cognitive threshold for young adults (CIT5) and appropriate tuning of the relationship between timbre and pitch contour can lower the perceived cognitive load and, thus, can be an effective design strategy for earcon in a public environment.
Collapse
|
19
|
Asahara R, Matsukawa K. Decreased prefrontal oxygenation elicited by stimulation of limb mechanosensitive afferents during cycling exercise. Am J Physiol Regul Integr Comp Physiol 2018; 315:R230-R240. [DOI: 10.1152/ajpregu.00454.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our laboratory reported using near-infrared spectroscopy that feedback from limb mechanoafferents may decrease prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) during the late period of voluntary and passive cycling. To test the hypothesis that the decreased Oxy-Hb of the prefrontal cortex would be augmented depending on the extent of limb mechanoafferent input, the prefrontal Oxy-Hb response was measured during motor-driven one- and two-legged passive cycling for 1 min at various revolutions of pedal movement in 19 subjects. Furthermore, we examined whether calculated tissue oxygenation index (TOI) decreased during passive cycling as the Oxy-Hb did, simultaneously assessing blood flows of extracranial cutaneous tissue and the common and internal carotid arteries (CCA and ICA) with laser and ultrasound Doppler flowmetry. Minute ventilation and cardiac output increased and peripheral resistance decreased during passive cycling, depending on both revolutions of pedal movement and number of limbs, whereas mean arterial blood pressure did not change. Passive cycling did not change end-tidal CO2, suggesting absence of a hypocapnic change. Prefrontal Oxy-Hb decreased during passive cycling, being in proportion to revolution of pedal movement but not number of cycling limbs. In addition, prefrontal TOI decreased during passive cycling as Oxy-Hb did, whereas blood flows of forehead cutaneous tissue, CCA, and ICA did not change significantly. Thus, a decrease in Oxy-Hb reflected a decrease in tissue blood flow of the intracerebral vasculature but not the extracerebral compartment. It is likely that feedback from mechanoafferents decreased regional cerebral blood flow of the prefrontal cortex in relation to the revolutions of pedal movement.
Collapse
Affiliation(s)
- Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
20
|
Matsukawa K, Endo K, Asahara R, Yoshikawa M, Kusunoki S, Ishida T. Prefrontal oxygenation correlates to the responses in facial skin blood flows during exposure to pleasantly charged movie. Physiol Rep 2018; 5:5/21/e13488. [PMID: 29122959 PMCID: PMC5688780 DOI: 10.14814/phy2.13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/24/2022] Open
Abstract
Our laboratory reported that facial skin blood flow may serve as a sensitive tool to assess an emotional status. Cerebral neural correlates during emotional interventions should be sought in relation to the changes in facial skin blood flow. To test the hypothesis that prefrontal activity has positive relation to the changes in facial skin blood flow during emotionally charged stimulation, we examined the dynamic changes in prefrontal oxygenation (with near‐infrared spectroscopy) and facial skin blood flows (with two‐dimensional laser speckle and Doppler flowmetry) during emotionally charged audiovisual challenges for 2 min (by viewing comedy, landscape, and horror movie) in 14 subjects. Hand skin blood flow and systemic hemodynamics were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by subjective rating from −5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Positively charged emotional stimulation (comedy) simultaneously decreased (P < 0.05) prefrontal oxygenation and facial skin blood flow, whereas negatively charged (horror) or neutral (landscape) emotional stimulation did not alter or slightly decreased them. Any of hand skin blood flow and systemic cardiovascular variables did not change significantly during positively charged emotional stimulation. The changes in prefrontal oxygenation had a highly positive correlation with the changes in facial skin blood flow without altering perfusion pressure, and they were inversely correlated with the subjective rating of pleasantness. The reduction in prefrontal oxygenation during positively charged emotional stimulation suggests a decrease in prefrontal neural activity, which may in turn elicit neurally mediated vasoconstriction of facial skin blood vessels.
Collapse
Affiliation(s)
- Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Endo
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Yoshikawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinya Kusunoki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Ishida
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Asahara R, Endo K, Liang N, Matsukawa K. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass. Eur J Appl Physiol 2018; 118:1689-1702. [DOI: 10.1007/s00421-018-3901-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/24/2018] [Indexed: 01/29/2023]
|
22
|
Asahara R, Matsukawa K, Ishii K, Liang N, Endo K. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command. J Appl Physiol (1985) 2016; 121:1115-1126. [DOI: 10.1152/japplphysiol.00401.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022] Open
Abstract
When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco2) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco2. Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation.
Collapse
Affiliation(s)
- Ryota Asahara
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanji Matsukawa
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Ishii
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nan Liang
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kana Endo
- Departments of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
23
|
Ishii K, Matsukawa K, Liang N, Endo K, Idesako M, Asahara R, Kadowaki A, Wakasugi R, Takahashi M. Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise. J Appl Physiol (1985) 2016; 120:1424-33. [DOI: 10.1152/japplphysiol.00103.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/15/2016] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% ( P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident ( P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Integrative Physiology and
| | | | - Nan Liang
- Department of Integrative Physiology and
| | - Kana Endo
- Department of Integrative Physiology and
| | | | | | | | | | - Makoto Takahashi
- Department of Biomechanics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|