1
|
Kizhakke Puliyakote AS, Tedjasaputra V, Petersen GM, Sá RC, Hopkins SR. Assessing the pulmonary vascular responsiveness to oxygen with proton MRI. J Appl Physiol (1985) 2024; 136:853-863. [PMID: 38385182 PMCID: PMC11343071 DOI: 10.1152/japplphysiol.00747.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Ventilation-perfusion matching occurs passively and is also actively regulated through hypoxic pulmonary vasoconstriction (HPV). The extent of HPV activity in humans, particularly normal subjects, is uncertain. Current evaluation of HPV assesses changes in ventilation-perfusion relationships/pulmonary vascular resistance with hypoxia and is invasive, or unsuitable for patients because of safety concerns. We used a noninvasive imaging-based approach to quantify the pulmonary vascular response to oxygen as a metric of HPV by measuring perfusion changes between breathing 21% and 30%O2 using arterial spin labeling (ASL) MRI. We hypothesized that the differences between 21% and 30%O2 images reflecting HPV release would be 1) significantly greater than the differences without [Formula: see text] changes (e.g., 21-21% and 30-30%O2) and 2) negatively associated with ventilation-perfusion mismatch. Perfusion was quantified in the right lung in normoxia (baseline), after 15 min of 30% O2 breathing (hyperoxia) and 15 min normoxic recovery (recovery) in healthy subjects (7 M, 7 F; age = 41.4 ± 19.6 yr). Normalized, smoothed, and registered pairs of perfusion images were subtracted and the mean square difference (MSD) was calculated. Separately, regional alveolar ventilation and perfusion were quantified from specific ventilation, proton density, and ASL imaging; the spatial variance of ventilation-perfusion (σ2V̇a/Q̇) distributions was calculated. The O2-responsive MSD was reproducible (R2 = 0.94, P < 0.0001) and greater (0.16 ± 0.06, P < 0.0001) than that from subtracted images collected under the same [Formula: see text] (baseline = 0.09 ± 0.04, hyperoxia = 0.08 ± 0.04, recovery = 0.08 ± 0.03), which were not different from one another (P = 0.2). The O2-responsive MSD was correlated with σ2V̇a/Q̇ (R2 = 0.47, P = 0.007). These data suggest that active HPV optimizes ventilation-perfusion matching in normal subjects. This noninvasive approach could be applied to patients with different disease phenotypes to assess HPV and ventilation-perfusion mismatch.NEW & NOTEWORTHY We developed a new proton MRI method to noninvasively quantify the pulmonary vascular response to oxygen. Using a hyperoxic stimulus to release HPV, we quantified the resulting redistribution of perfusion. The differences between normoxic and hyperoxic images were greater than those between images without [Formula: see text] changes and negatively correlated with ventilation-perfusion mismatch. This suggests that active HPV optimizes ventilation-perfusion matching in normal subjects. This approach is suitable for assessing patients with different disease phenotypes.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Radiology, University of California, San Diego, La Jolla, California, United States
| | - Vincent Tedjasaputra
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Gregory M Petersen
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Radiology, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
2
|
Abstract
The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation-perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.
Collapse
Affiliation(s)
- Susan R. Hopkins
- Department of Radiology, University of California, San Diego, California
| | - Michael K. Stickland
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| |
Collapse
|
3
|
Kizhakke Puliyakote AS, Prisk GK, Elliott AR, Kim NH, Pazar B, Sá RC, Asadi AK, Hopkins SR. The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension. J Appl Physiol (1985) 2023; 134:969-979. [PMID: 36861672 PMCID: PMC10085549 DOI: 10.1152/japplphysiol.00463.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Global fluctuation dispersion (FDglobal), a spatial-temporal metric derived from serial images of the pulmonary perfusion obtained with MRI-arterial spin labeling, describes temporal fluctuations in the spatial distribution of perfusion. In healthy subjects, FDglobal is increased by hyperoxia, hypoxia, and inhaled nitric oxide. We evaluated patients with pulmonary arterial hypertension (PAH, 4F, aged 47 ± 15, mean pulmonary artery pressure 48 ± 7 mmHg) and healthy controls (CON, 7F, aged 47 ± 12) to test the hypothesis that FDglobal is increased in PAH. Images were acquired at ∼4-5 s intervals during voluntary respiratory gating, inspected for quality, registered using a deformable registration algorithm, and normalized. Spatial relative dispersion (RD = SD/mean) and the percent of the lung image with no measurable perfusion signal (%NMP) were also assessed. FDglobal was significantly increased in PAH (PAH = 0.40 ± 0.17, CON = 0.17 ± 0.02, P = 0.006, a 135% increase) with no overlap in values between the two groups, consistent with altered vascular regulation. Both spatial RD and %NMP were also markedly greater in PAH vs. CON (PAH RD = 1.46 ± 0.24, CON = 0.90 ± 0.10, P = 0.0004; PAH NMP = 13.4 ± 6.1%; CON = 2.3 ± 1.4%, P = 0.001 respectively) consistent with vascular remodeling resulting in poorly perfused regions of lung and increased spatial heterogeneity. The difference in FDglobal between normal subjects and patients with PAH in this small cohort suggests that spatial-temporal imaging of perfusion may be useful in the evaluation of patients with PAH. Since this MR imaging technique uses no injected contrast agents and has no ionizing radiation it may be suitable for use in diverse patient populations.NEW & NOTEWORTHY Using proton MRI-arterial spin labeling to obtain serial images of pulmonary perfusion, we show that global fluctuation dispersion (FDglobal), a metric of temporal fluctuations in the spatial distribution of perfusion, was significantly increased in female patients with pulmonary arterial hypertension (PAH) compared with healthy controls. This potentially indicates pulmonary vascular dysregulation. Dynamic measures using proton MRI may provide new tools for evaluating individuals at risk of PAH or for monitoring therapy in patients with PAH.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - G Kim Prisk
- Department of Radiology, University of California, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Ann R Elliott
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, California, United States
| | - Beni Pazar
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Amran K Asadi
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| |
Collapse
|
4
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
5
|
Kelly T, Brown C, Bryant-Ekstrand M, Lord R, Dawkins T, Drane A, Futral JE, Barak O, Dragun T, Stembridge M, Spajić B, Drviš I, Duke JW, Ainslie PN, Foster GE, Dujic Z, Lovering AT. Blunted hypoxic pulmonary vasoconstriction in apnoea divers. Exp Physiol 2022; 107:1225-1240. [PMID: 35993480 DOI: 10.1113/ep090326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is new and noteworthy? What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right-heart work in apnoea divers? What is the main finding and its importance? Compared to sex- and age-matched controls, Divers had a significantly lower change in total pulmonary resistance in response to short duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting Divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction may be beneficial during apnoea diving. ABSTRACT Competitive apnoea divers repetitively dive to depths beyond 50 m. During the final portions of ascent, Divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume, increasing pulmonary artery pressure. We hypothesized that Divers would have exaggerated hypoxic pulmonary vasoconstriction leading to increased right-heart work due to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in Divers. We recruited 16 Divers and 16 age and sex matched non-diving controls (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 minutes of isocapnic hypoxia (end-tidal PO2 = 50 mm Hg) were measured one hour following ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than controls after 20-30 minutes isocapnic hypoxia (Δ -3.85 ± 72.85 vs 73.74 ± 91.06 dynes/sec/cm-5 , p = .0222). With sildenafil, Divers and Controls had similarly blunted increases in total pulmonary resistance after 20-30 minutes of hypoxia. Divers also had a significantly lower systemic vascular resistance following sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization under hypoxemic conditions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tyler Kelly
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Courtney Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | | | - Rachel Lord
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Tony Dawkins
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Aimee Drane
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Otto Barak
- Department of Physiology, University of Novi Sad, Novi Sad, Serbia
| | - Tanja Dragun
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Michael Stembridge
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Boris Spajić
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Ivan Drviš
- Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
6
|
Geier ET, Prisk GK, Sá RC. Measuring short-term changes in specific ventilation using dynamic specific ventilation imaging. J Appl Physiol (1985) 2022; 132:1370-1378. [PMID: 35482322 DOI: 10.1152/japplphysiol.00652.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation imaging (SVI) measures the spatial distribution of specific ventilation (SV) in the lung with MRI by using inhaled oxygen as a contrast agent. Because of the inherently low signal to noise ratio in the technique, multiple switches between inspiring air and O2 are utilized, and the high spatial resolution SV distribution determined as an average over the entire imaging period (~20 minutes). We hypothesized that a trade-off between spatial and temporal resolution could allow imaging at a higher temporal resolution, at the cost of a coarser, yet acceptable, spatial resolution. The appropriate window length and spatial resolution compromise was determined by generating synthetic data with signal- and contrast-to-noise characteristics reflective of that in previously published experimental data, with a known and unchanging distribution of SV, and showed that acceptable results could be obtained in an imaging period of ~7 minutes (80 breaths), with a spatial resolution of ~1cm3. Previously published data were then reanalyzed. The average heterogeneity of the temporally resolved maps of SV were not different to the previous overall analysis, however the temporally resolved maps were less effective at detecting the amount of bronchoconstriction resulting from methacholine administration. The results further indicated that the initial response to inhaled methacholine and subsequent inhalation of albuterol were largely complete within ~22 minutes and ~9 minutes respectively, although there was a tendency for an ongoing developing effect in both cases. These results suggest that it is feasible to use a shortened SVI protocol, with a modest sacrifice in spatial resolution, in order to measure temporally dynamic processes.
Collapse
Affiliation(s)
- Eric T Geier
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Gordon Kim Prisk
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Buxton RB, Prisk GK, Hopkins SR. A novel nonlinear analysis of blood flow dynamics applied to the human lung. J Appl Physiol (1985) 2022; 132:1546-1559. [PMID: 35421317 DOI: 10.1152/japplphysiol.00715.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial/temporal dynamics of blood flow in the human lung can be measured noninvasively with magnetic resonance imaging (MRI) using arterial spin labeling (ASL). We report a novel data analysis method using nonlinear prediction to identify dynamic interactions between blood flow units (image voxels), potentially providing a probe of underlying vascular control mechanisms. The approach first estimates the linear relationship (predictability) of one voxel time series with another using correlation analysis, and after removing the linear component estimates the nonlinear relationship with a numerical mutual information approach. Dimensionless global metrics for linear prediction (FL) and nonlinear prediction (FNL) represent the average amplitude of fluctuations in one voxel estimated by another voxel, as a percentage of the global average voxel flow. A proof-of-principle test of this approach analyzed experimental data from a study of high-altitude pulmonary edema (HAPE), providing two groups exhibiting known differences in vascular reactivity. Subjects were mountaineers divided into HAPE-susceptible (S, n=4) and HAPE-resistant (R, n=5) groups based on prior history at high altitude. Dynamic ASL measurements in the lung in normoxia (N, FIO2=0.21) and hypoxia (H, FIO2=0.13±0.01) were compared. The nonlinear prediction metric FNL decreased with hypoxia (7.4±1.3(N) vs. 6.3±0.7(H), P=0.03) and was significantly different between groups (7.4±1.2 (R) vs. 6.2±14.1 (S), P=0.03). This proof-of-principle test demonstrates that this nonlinear analysis approach applied to ASL data is sensitive to physiological effects even in small subject cohorts, and potentially can be used in a wide range of studies in health and disease in the lung and other organs.
Collapse
Affiliation(s)
| | | | - Susan Roberta Hopkins
- Department of Radiology, University of California San Diego.,Department of Medicine, University of California San Diego
| |
Collapse
|
8
|
Asadi AK, Sá RC, Arai TJ, Theilmann RJ, Hopkins SR, Buxton RB, Prisk GK. Regional pulmonary perfusion patterns in humans are not significantly altered by inspiratory hypercapnia. J Appl Physiol (1985) 2019; 127:365-375. [PMID: 31169470 DOI: 10.1152/japplphysiol.00254.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular tone is known to be sensitive to both local alveolar Po2 and Pco2. Although the effects of hypoxia are well studied, the hypercapnic response is relatively less understood. We assessed changes in regional pulmonary blood flow in humans in response to hypercapnia using previously developed MRI techniques. Dynamic measures of blood flow were made in a single slice of the right lung of seven healthy volunteers following a block-stimulus paradigm (baseline, challenge, recovery), with CO2 added to inspired gas during the challenge block to effect a 7-Torr increase in end-tidal CO2. Effects of hypercapnia on blood flow were evaluated based on changes in spatiotemporal variability (fluctuation dispersion, FD) and in regional perfusion patterns in comparison to hypoxic effects previously studied. Hypercapnia increased FD 2.5% from baseline (relative to control), which was not statistically significant (P = 0.07). Regional perfusion patterns were not significantly changed as a result of increased FICO2 (P = 0.90). Reanalysis of previously collected data using a similar protocol but with the physiological challenge replaced by decreased FIO2 (FIO2 = 0.125) showed marked flow redistribution (P = 0.01) with the suggestion of a gravitational pattern, demonstrating hypoxia has the ability to affect regional change with a global stimulus. Taken together, these data indicate that hypercapnia of this magnitude does not lead to appreciable changes in the distribution of pulmonary perfusion, and that this may represent an interesting distinction between the hypoxic and hypercapnic regulatory response.NEW & NOTEWORTHY Although it is well known that the pulmonary circulation responds to local alveolar hypoxia, and that this mechanism may facilitate ventilation-perfusion matching, the relative role of CO2 is not well appreciated. This study demonstrates that an inspiratory hypercapnic stimulus is significantly less effective at inducing changes in pulmonary perfusion patterns than inspiratory hypoxia, suggesting that in these circumstances hypercapnia is not sufficient to induce substantial integrated feedback control of ventilation-perfusion mismatch across the lung.
Collapse
Affiliation(s)
- Amran K Asadi
- Department of Anesthesiology, Stanford University, Stanford, California
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tatsuya J Arai
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, Kawut SM, Langleben D, Lumens J, Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53:13993003.01900-2018. [PMID: 30545976 PMCID: PMC6351344 DOI: 10.1183/13993003.01900-2018] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
The function of the right ventricle determines the fate of patients with pulmonary hypertension. Since right heart failure is the consequence of increased afterload, a full physiological description of the cardiopulmonary unit consisting of both the right ventricle and pulmonary vascular system is required to interpret clinical data correctly. Here, we provide such a description of the unit and its components, including the functional interactions between the right ventricle and its load. This physiological description is used to provide a framework for the interpretation of right heart catheterisation data as well as imaging data of the right ventricle obtained by echocardiography or magnetic resonance imaging. Finally, an update is provided on the latest insights in the pathobiology of right ventricular failure, including key pathways of molecular adaptation of the pressure overloaded right ventricle. Based on these outcomes, future directions for research are proposed. State of the art and research perspectives in pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension with theoretical and practical aspectshttp://ow.ly/18v830mgLiP
Collapse
Affiliation(s)
- Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kelly Marie Chin
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - François Haddad
- Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Steven Mark Kawut
- Penn Cardiovascular Institute, Dept of Medicine, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Langleben
- Center for Pulmonary Vascular Disease, Cardiology Division, Jewish General Hospital and McGill University, Montreal, QC, Canada
| | - Joost Lumens
- Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands.,Université de Bordeaux, LIRYC (L'Institut de Rythmologie et Modélisation Cardiaque), Bordeaux, France
| | - Robert Naeije
- Dept of Cardiology, Erasme University Hospital, Brussels, Belgium.,Laboratory of Cardiorespiratory Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Walker SC, Asadi AK, Hopkins SR, Buxton RB, Prisk GK. A statistical clustering approach to discriminating perfusion from conduit vessel signal contributions in a pulmonary ASL MR image. NMR IN BIOMEDICINE 2015; 28:1117-1124. [PMID: 26182890 PMCID: PMC4537803 DOI: 10.1002/nbm.3358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/17/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
The measurement of pulmonary perfusion (blood delivered to the capillary bed within a voxel) using arterial spin labeling (ASL) magnetic resonance imaging is often complicated by signal artifacts from conduit vessels that carry blood destined for voxels at a distant location in the lung. One approach to dealing with conduit vessel contributions involves the application of an absolute threshold on the ASL signal. While useful for identifying a subset of the most dominant high signal conduit image features, signal thresholding cannot discriminate between perfusion and conduit vessel contributions at intermediate and low signal. As an alternative, this article discusses a data-driven statistical approach based on statistical clustering for characterizing and discriminating between capillary perfusion and conduit vessel contributions over the full signal spectrum. An ASL flow image is constructed from the difference between a pair of tagged magnetic resonance images. However, when viewed as a bivariate projection that treats the image pair as independent measures (rather than the univariate quantity that results from the subtraction of the two images), the signal associated with capillary perfusion contributions is observed to cluster independently of the signal associated with conduit vessel contributions. Analyzing the observed clusters using a Gaussian mixture model makes it possible to discriminate between conduit vessel and capillary-perfusion-dominated signal contributions over the full signal spectrum of the ASL image. As a demonstration of feasibility, this study compares the proposed clustering approach with the standard absolute signal threshold strategy in a small number of test images.
Collapse
Affiliation(s)
| | - Amran K. Asadi
- Department of Medicine, University of California, San Diego
| | - Susan R. Hopkins
- Department of Medicine, University of California, San Diego
- Department of Radiology, University of California, San Diego
| | | | - G. Kim Prisk
- Department of Medicine, University of California, San Diego
- Department of Radiology, University of California, San Diego
| |
Collapse
|
12
|
Miller GW, Mugler JP, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR IN BIOMEDICINE 2014; 27:1542-56. [PMID: 24990096 PMCID: PMC4515033 DOI: 10.1002/nbm.3156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 05/05/2023]
Abstract
The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.
Collapse
Affiliation(s)
- G. Wilson Miller
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
- Address correspondence to: Wilson Miller, Radiology Research, 480 Ray C. Hunt Dr., Box 801339, Charlottesville, VA 22908, Phone: 434-243-9216, Fax: 434-924-9435,
| | - John P. Mugler
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
| | - Rui C. Sá
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
| | - Talissa A. Altes
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
| | - G. Kim Prisk
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| | - Susan R. Hopkins
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| |
Collapse
|
13
|
Asadi AK, Sá RC, Kim NH, Theilmann RJ, Hopkins SR, Buxton RB, Prisk GK. Inhaled nitric oxide alters the distribution of blood flow in the healthy human lung, suggesting active hypoxic pulmonary vasoconstriction in normoxia. J Appl Physiol (1985) 2014; 118:331-43. [PMID: 25429099 DOI: 10.1152/japplphysiol.01354.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is thought to actively regulate ventilation-perfusion (V̇a/Q̇) matching, reducing perfusion in regions of alveolar hypoxia. We assessed the extent of HPV in the healthy human lung using inhaled nitric oxide (iNO) under inspired oxygen fractions (FiO2 ) of 0.125, 0.21, and 0.30 (a hyperoxic stimulus designed to abolish HPV without the development of atelectasis). Dynamic measures of blood flow were made in a single sagittal slice of the right lung of five healthy male subjects using an arterial spin labeling (ASL) MRI sequence, following a block stimulus pattern (3 × 60 breaths) with 40 ppm iNO administered in the central block. The overall spatial heterogeneity, spatiotemporal variability, and regional pattern of pulmonary blood flow was quantified as a function of condition (FiO2 × iNO state). While spatial heterogeneity did not change significantly with iNO administration or FiO2 , there were statistically significant increases in Global Fluctuation Dispersion, (a marker of spatiotemporal flow variability) when iNO was administered during hypoxia (5.4 percentage point increase, P = 0.003). iNO had an effect on regional blood flow that was FiO2 dependent (P = 0.02), with regional changes in the pattern of blood flow occurring in hypoxia (P = 0.007) and normoxia (P = 0.008) tending to increase flow to dependent lung at the expense of nondependent lung. These findings indicate that inhaled nitric oxide significantly alters the distribution of blood flow in both hypoxic and normoxic healthy subjects, and suggests that some baseline HPV may indeed be present in the normoxic lung.
Collapse
Affiliation(s)
- Amran K Asadi
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, La Jolla, California; and
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Radiology, University of California, San Diego, La Jolla, California
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California; and Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) continues to fascinate cardiopulmonary physiologists and clinicians since its definitive description in 1946. Hypoxic vasoconstriction exists in all vertebrate gas exchanging organs. This fundamental response of the pulmonary vasculature in air breathing animals has relevance to successful fetal transition to air breathing at birth and as a mechanism of ventilation-perfusion matching in health and disease. It is a complex process intrinsic to the vascular smooth muscle, but with in vivo modulation by a host of factors including the vascular endothelium, erythrocytes, pulmonary innervation, circulating hormones and acid-base status to name only a few. This review will provide a broad overview of HPV and its mechansms and discuss the advantages and disadvantages of HPV in normal physiology, disease and high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
15
|
Sá RC, Asadi AK, Theilmann RJ, Hopkins SR, Prisk GK, Darquenne C. Validating the distribution of specific ventilation in healthy humans measured using proton MR imaging. J Appl Physiol (1985) 2014; 116:1048-56. [PMID: 24505099 DOI: 10.1152/japplphysiol.00982.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation imaging (SVI) uses proton MRI to quantitatively map the distribution of specific ventilation (SV) in the human lung, using inhaled oxygen as a contrast agent. To validate this recent technique, we compared the quantitative measures of heterogeneity of the SV distribution in a 15-mm sagittal slice of lung obtained in 10 healthy supine subjects, (age 37 ± 10 yr, forced expiratory volume in 1 s 97 ± 7% predicted) using SVI to those obtained in the whole lung from multiple-breath nitrogen washout (MBW). Using the analysis of Lewis et al. (Lewis SM, Evans JW, Jalowayski AA. J App Physiol 44: 416-423, 1978), the most likely distribution of SV from the MBW data was computed and compared with the distribution of SV obtained from SVI, after normalizing for the difference in tidal volume. The average SV was 0.30 ± 0.10 MBW, compared with 0.36 ± 0.10 SVI (P = 0.01). The width of the distribution, a measure of the heterogeneity, obtained using both methods was comparable: 0.51 ± 0.06 and 0.47 ± 0.08 in MBW and SVI, respectively (P = 0.15). The MBW estimated width of the SV distribution was 0.05 (10.7%) higher than that estimated using SVI, and smaller than the intertest variability of the MBW estimation [inter-MBW (SD) for the width of the SV distribution was 0.08 (15.8)%]. To assess reliability, SVI was performed twice on 13 subjects showing small differences between measurements of SV heterogeneity (typical error 0.05, 12%). In conclusion, quantitative estimations of SV heterogeneity from SVI are reliable and similar to those obtained using MBW, with SVI providing spatial information that is absent in MBW.
Collapse
Affiliation(s)
- Rui Carlos Sá
- Pulmonary Imaging Laboratory, Department of Medicine, University of California, San Diego, La Jolla, California
| | | | | | | | | | | |
Collapse
|
16
|
Tedjasaputra V, Sá RC, Arai TJ, Holverda S, Theilmann RJ, Chen WT, Wagner PD, Davis CK, Kim Prisk G, Hopkins SR. The heterogeneity of regional specific ventilation is unchanged following heavy exercise in athletes. J Appl Physiol (1985) 2013; 115:126-35. [PMID: 23640585 DOI: 10.1152/japplphysiol.00778.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heavy exercise increases ventilation-perfusion mismatch and decreases pulmonary gas exchange efficiency. Previous work using magnetic resonance imaging (MRI) arterial spin labeling in athletes has shown that, after 45 min of heavy exercise, the spatial heterogeneity of pulmonary blood flow was increased in recovery. We hypothesized that the heterogeneity of regional specific ventilation (SV, the local tidal volume over functional residual capacity ratio) would also be increased following sustained exercise, consistent with the previously documented changes in blood flow heterogeneity. Trained subjects (n = 6, maximal O2 consumption = 61 ± 7 ml·kg(-1)·min(-1)) cycled 45 min at their individually determined ventilatory threshold. Oxygen-enhanced MRI was used to quantify SV in a sagittal slice of the right lung in supine posture pre- (preexercise) and 15- and 60-min postexercise. Arterial spin labeling was used to measure pulmonary blood flow in the same slice bracketing the SV measures. Heterogeneity of SV and blood flow were quantified by relative dispersion (RD = SD/mean). The alveolar-arterial oxygen difference was increased during exercise, 23.3 ± 5.3 Torr, compared with rest, 6.3 ± 3.7 Torr, indicating a gas exchange impairment during exercise. No significant change in RD of SV was seen after exercise: preexercise 0.78 ± 0.15, 15 min postexercise 0.81 ± 0.13, 60 min postexercise 0.78 ± 0.08 (P = 0.5). The RD of blood flow increased significantly postexercise: preexercise 1.00 ± 0.12, 15 min postexercise 1.15 ± 0.10, 45 min postexercise 1.10 ± 0.10, 60 min postexercise 1.19 ± 0.11, 90 min postexercise 1.11 ± 0.12 (P < 0.005). The lack of a significant change in RD of SV postexercise, despite an increase in the RD of blood flow, suggests that airways may be less susceptible to the effects of exercise than blood vessels.
Collapse
Affiliation(s)
- Vince Tedjasaputra
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|