1
|
Wang Y, Payne SJ. Static autoregulation in humans. J Cereb Blood Flow Metab 2024; 44:1191-1207. [PMID: 37933742 PMCID: PMC11542139 DOI: 10.1177/0271678x231210430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
The process by which cerebral blood flow (CBF) remains approximately constant in response to short-term variations in arterial blood pressure (ABP) is known as cerebral autoregulation. This classic view, that it remains constant over a wide range of ABP, has however been challenged by a growing number of studies. To provide an updated understanding of the static cerebral pressure-flow relationship and to characterise the autoregulation curve more rigorously, we conducted a comprehensive literature research. Results were based on 143 studies in healthy individuals aged 18 to 65 years. The mean sensitivities of CBF to changes in ABP were found to be 1.47 ± 0.71%/% for decreased ABP and 0.37 ± 0.38%/% for increased ABP. The significant difference in CBF directional sensitivity suggests that cerebral autoregulation appears to be more effective in buffering increases in ABP than decreases in ABP. Regression analysis of absolute CBF and ABP identified an autoregulatory plateau of approximately 20 mmHg (ABP between 80 and 100 mmHg), which is much smaller than the widely accepted classical view. Age and sex were found to have no effect on autoregulation strength. This data-driven approach provides a quantitative method of analysing static autoregulation that can be easily updated as more experimental data become available.
Collapse
Affiliation(s)
- Yufan Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
2
|
Jarrard CP, Watso JC, Atkins WC, McKenna ZJ, Foster J, Huang M, Belval LN, Crandall CG. Sex Differences in Sympathetic Responses to Lower-Body Negative Pressure. Med Sci Sports Exerc 2024; 56:1056-1065. [PMID: 38233995 PMCID: PMC11187698 DOI: 10.1249/mss.0000000000003392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Trauma-induced hemorrhage is a leading cause of death in prehospital settings. Experimental data demonstrate that females have a lower tolerance to simulated hemorrhage (i.e., central hypovolemia). However, the mechanism(s) underpinning these responses are unknown. Therefore, this study aimed to compare autonomic cardiovascular responses during central hypovolemia between the sexes. We hypothesized that females would have a lower tolerance and smaller increase in muscle sympathetic nerve activity (MSNA) to simulated hemorrhage. METHODS Data from 17 females and 19 males, aged 19-45 yr, were retrospectively analyzed. Participants completed a progressive lower-body negative pressure (LBNP) protocol to presyncope to simulate hemorrhagic tolerance with continuous measures of MSNA and beat-to-beat hemodynamic variables. We compared responses at baseline, at two LBNP stages (-40 and -50 mmHg), and at immediately before presyncope. In addition, we compared responses at relative percentages (33%, 66%, and 100%) of hemorrhagic tolerance, calculated via the cumulative stress index (i.e., the sum of the product of time and pressure at each LBNP stage). RESULTS Females had lower tolerance to central hypovolemia (female: 561 ± 309 vs male: 894 ± 304 min·mmHg [time·LBNP]; P = 0.003). At LBNP -40 and -50 mmHg, females had lower diastolic blood pressures (main effect of sex: P = 0.010). For the relative LBNP analysis, females exhibited lower MSNA burst frequency (main effect of sex: P = 0.016) accompanied by a lower total vascular conductance (sex: P = 0.028; main effect of sex). CONCLUSIONS Females have a lower tolerance to central hypovolemia, which was accompanied by lower diastolic blood pressure at -40 and -50 mmHg LBNP. Notably, females had attenuated MSNA responses when assessed as relative LBNP tolerance time.
Collapse
Affiliation(s)
- Caitlin P. Jarrard
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas TX
| | - Joseph C. Watso
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Applied Clinical Research Department, University of Texas Southwestern Medical Center, Dallas TX
- College of Health and Human Sciences, Florida State University, Tallahassee, FL
| | - Whitley C. Atkins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zachary J. McKenna
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences and Medicine, Kings College London, London, UNITED KINGDOM
| | - Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Office of Science, Medicine, and Health, American Heart Association, Dallas, TX
| | - Luke N. Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Craig G. Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Shankhwar V, Urvec J, Steuber B, Schmid Zalaudek K, Saloň A, Hawliczek A, Bergauer A, Aljasmi K, Abdi A, Naser A, Himeidi M, Alsuwaidi H, Du Plessis S, Alsheikh-Ali A, Kellett C, Bayoumi R, Blaber AP, Goswami N. Effects of menstrual cycle on hemodynamic and autonomic responses to central hypovolemia. Front Cardiovasc Med 2024; 11:1290703. [PMID: 38361585 PMCID: PMC10867210 DOI: 10.3389/fcvm.2024.1290703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Background Estrogen and progesterone levels undergo changes throughout the menstrual cycle. Existing literature regarding the effect of menstrual phases on cardiovascular and autonomic regulation during central hypovolemia is contradictory. Aims and study This study aims to explore the influence of menstrual phases on cardiovascular and autonomic responses in both resting and during the central hypovolemia induced by lower body negative pressure (LBNP). This is a companion paper, in which data across the menstrual phases from healthy young females, whose results are reported in Shankwar et al. (2023), were further analysed. Methods The study protocol consisted of three phases: (1) 30 min of supine rest; (2) 16 min of four LBNP levels; and (3) 5 min of supine recovery. Hemodynamic and autonomic responses (assessed via heart rate variability, HRV) were measured before-, during-, and after-LBNP application using Task Force Monitor® (CNSystems, Graz, Austria). Blood was also collected to measure estrogen and progesterone levels. Results In this companion paper, we have exclusively assessed 14 females from the previous study (Shankwar et al., 2023): 8 in the follicular phase of the menstrual cycle (mean age 23.38 ± 3.58 years, height 166.00 ± 5.78 cm, weight 57.63 ± 5.39 kg and BMI of 20.92 ± 1.96 25 kg/m2) and 6 in the luteal phase (mean age 22.17 ± 1.33 years, height 169.83 ± 5.53 cm, weight 62.00 ± 7.54 kg and BMI of 21.45 ± 2.63 kg/m2). Baseline estrogen levels were significantly different from the follicular phase as compared to the luteal phase: (33.59 pg/ml, 108.02 pg/ml, respectively, p < 0.01). Resting hemodynamic variables showed no difference across the menstrual phases. However, females in the follicular phase showed significantly lower resting values of low-frequency (LF) band power (41.38 ± 11.75 n.u. and 58.47 ± 14.37 n.u., p = 0.01), but higher resting values of high frequency (HF) band power (58.62 ± 11.75 n.u. and 41.53 ± 14.37 n.u., p = 0.01), as compared to females in the luteal phase. During hypovolemia, the LF and HF band powers changed only in the follicular phase F(1, 7) = 77.34, p < 0.0001 and F(1, 7) = 520.06, p < 0.0001, respectively. Conclusions The menstrual phase had an influence on resting autonomic variables, with higher sympathetic activity being observed during the luteal phase. Central hypovolemia leads to increased cardiovascular and autonomic responses, particularly during the luteal phase of the menstrual cycle, likely due to higher estrogen levels and increased sympathetic activity.
Collapse
Affiliation(s)
- Vishwajeet Shankhwar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Janez Urvec
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bianca Steuber
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Karin Schmid Zalaudek
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Adam Saloň
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Anna Hawliczek
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrej Bergauer
- Department of Surgery, General Hospital (LKH) Südsteiermark, Wagna, Austria
| | - Khawla Aljasmi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Asrar Abdi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Asmaa Naser
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Maya Himeidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hanan Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Catherine Kellett
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Andrew Phillip Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Nandu Goswami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- Department of Integrative Medicine, Alma Mater Europea, Maribor, Slovenia
| |
Collapse
|
4
|
Johnson NE, Burma JS, Seok J, Miutz LN, Smirl JD. Influence of sex on the reliability of cerebral blood velocity regulation during lower body negative pressure and supine cycling with considerations of the menstrual cycle. Physiol Meas 2023; 44:114001. [PMID: 37848016 DOI: 10.1088/1361-6579/ad0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Objective.To evaluate sex differences in the reliability of absolute and relative cerebral blood velocity (CBv) during concurrent supine cycling with lower body negative pressure (LBNP).Approach. A total of 19 participants (11 females; aged 20-33 years) completed five testing sessions, occurring on 7 d intervals. Visit 1 was a maximal-ramp-cycle test to ascertain peak CBv wattage. During visits 2-5, supine cycling protocol occurred at individualized peak CBv wattages with progressive decreases in LBNP from 0 to -20, -40, -60, -70, and -80 Torr. Menstrual cycle day was self-reported via the Rhinessa Women's Questionnaire. Transcranial Doppler ultrasound insonated bilateral middle cerebral artery velocity (MCAv). Two-way ANOVA assessed potential day- and sex-differences at each LBNP stage. Reliability was determined using intraclass correlation coefficients (ICC) and coefficient of variation (CoV).Main results. For all physiological measures, no main-effects were present for day- or interaction-terms (p> 0.067; negligible-to-small effect sizes), while sex differences were noted for MCAv, blood pressure, and heart rate (p< 0.046). Across visits, males and females displayed excellent and good-to-excellent levels of reliability for MCAv metrics, respectively (ICC range: 0.745-0.999; CoV range: 0.33%-9.90%).Significance. During the current investigation, both relative and absolute CBv demonstrated high reliability in both male and female participants during a supine LBNP cycling protocol. An exploratory analysis revealed increased variance was found in female participants dependent on contraceptive use. Despite this, results indicate future LBNP studies may include females at any menstrual cycle stage.
Collapse
Affiliation(s)
- Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jina Seok
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, OH, United States of America
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Shankhwar V, Urvec J, Steuber B, Schmid Zalaudek K, Bergauer A, Alsuwaidi H, Du Plessis S, Alsheikh-Ali A, Kellett C, Bayoumi R, Blaber AP, Goswami N. Association of gender with cardiovascular and autonomic responses to central hypovolemia. Front Cardiovasc Med 2023; 10:1211774. [PMID: 37719984 PMCID: PMC10501725 DOI: 10.3389/fcvm.2023.1211774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Lower body negative pressure (LBNP) eliminates the impact of weight-bearing muscles on venous return, as well as the vestibular component of cardiovascular and autonomic responses. We evaluated the hemodynamic and autonomic responses to central hypovolemia, induced by LBNP in both males and females. Methodology A total of 44 participants recruited in the study. However, 9 participants did not complete the study protocol. Data from the remaining 35 participants were analysed, 18 males (25.28 ± 3.61 years, 181.50 ± 7.43 cm height, 74.22 ± 9.16 kg weight) and 17 females (22.41 ± 2.73 years, 167.41 ± 6.29 cm height, 59.06 ± 6.91 kg weight). During the experimental protocol, participants underwent three phases, which included 30 min of supine rest, four 4 min intervals of stepwise increases in LBNP from -10 mmHg to -40 mmHg, and 5 min of supine recovery. Throughout the protocol, hemodynamic variables such as blood pressure, heart rate, stroke index, cardiac index, and total peripheral resistance index were continuously monitored. Autonomic variables were calculated from heart rate variability measures, using low and high-frequency spectra, as indicators of sympathetic and parasympathetic activity, respectively. Results At rest, males exhibited higher systolic (118.56 ± 9.59 mmHg and 110.03 ± 10.88 mmHg, p < 0.05) and mean arterial (89.70 ± 6.86 and 82.65 ± 9.78, p < 0.05) blood pressure as compared to females. Different levels of LBNP altered hemodynamic variables in both males and females: heart rate [F(1,16) = 677.46, p < 0.001], [F(1,16) = 550.87, p < 0.001]; systolic blood pressures [F(1,14) = 3,186.77, p < 0.001], [F(1,17) = 1,345.61, p < 0.001]; diastolic blood pressure [F(1,16) = 1,669.458, p < 0.001], [F(1,16) = 1,127.656, p < 0.001]; mean arterial pressures [F(1,16) = 2,330.44, p < 0.001], [F(1,16) = 1,815.68, p < 0.001], respectively. The increment in heart rates during LBNP was significantly different between both males and females (p = 0.025). The low and high-frequency powers were significantly different for males and females (p = 0.002 and p = 0.001, respectively), with the females having a higher increase in low-frequency spectral power. Conclusions and future directions Cardiovascular activity and autonomic function at rest are influenced by gender. During LBNP application, hemodynamic and autonomic responses differed between genders. These gender-based differences in responses during central hypovolemia could potentially be attributed to the lower sympathetic activity in females. With an increasing number of female crew members in space missions, it is important to understand the role sex-steroid hormones play in the regulation of cardiovascular and autonomic activity, at rest and during LBNP.
Collapse
Affiliation(s)
- Vishwajeet Shankhwar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Janez Urvec
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bianca Steuber
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Karin Schmid Zalaudek
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| | - Andrej Bergauer
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
- Department of Surgery, General Hospital (LKH Südsteiermark), Wagna, Austria
| | - Hanan Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Catherine Kellett
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Riad Bayoumi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Andrew Phillip Blaber
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Nandu Goswami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Physiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- Department of Integrative Medicine, Alma Mater Europea, Maribor, Slovenia
| |
Collapse
|
6
|
Burma JS, Seok J, Johnston NE, Smirl JD. Cerebral blood velocity during concurrent supine cycling, lower body negative pressure, and head-up tilt challenges: implications for concussion rehabilitation. Physiol Meas 2023; 44:084002. [PMID: 37531960 DOI: 10.1088/1361-6579/acecd4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Introduction. The effect of concurrent head-up tilt and lower body negative pressure (LBNP) have been examined on middle cerebral artery velocity (MCAv) at rest; however, it is unknown the superimposed effect these factors have on blunting the elevation in cerebral blood velocity associated with moderate-intensity exercise.Methods. 23 healthy adults (11 females / 12 males, 20-33 years) completed three visits. The first consisted of a maximal ramp supine cycling test to identify the wattage associated with individualized maximal MCAv. Subsequent visits included randomized no LBNP (control) or LBNP at -40 Torr (experimental) with successively increasing head-up tilt stages of 0, 15, 30, and 45 degrees during the pre-described individualized wattage. Transcranial Doppler ultrasound was utilized to quantify MCAv. Two-factorial repeated measures analysis of variance with effect sizes were used to determine differences between days and tilt stages.Results. Between-day baseline values for MCAv, heart rate, and blood pressure displayed low variability with <5% variation. With no LBNP, MCAv was above baseline on average for all participants; however, 15 degrees and 30 degrees tilt with concurrent -40 Torr LBNP was sufficient to return MCAv to 100% of baseline values in females and males, respectively. Body-weight did not impact the association between tilt and pressure (R2range: 0.01-0.12).Conclusion. Combined LBNP and tilt were sufficient to reduce the increase in MCAv associated with moderate-intensity exercise. This exercise modality shows utility to enable individuals with a concussion to obtain the positive physiological adaptions associated with exercise while minimizing symptom exacerbation due to the notion of the Monro-Kellie doctrine.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| | - Jina Seok
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Nathan E Johnston
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Miutz LN, Burma JS, Van Roessel RK, Johnson NE, Phillips AA, Emery CA, Brassard P, Smirl JD. The effect of supine cycling and progressive lower body negative pressure on cerebral blood velocity responses. J Appl Physiol (1985) 2023; 135:316-325. [PMID: 37348016 DOI: 10.1152/japplphysiol.00758.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
Moderate-intensity aerobic exercise increases cerebral blood velocity (CBv) primarily due to hyperpnea-induced vasodilation; however, the integrative control of cerebral blood flow (CBF) allows other factors to contribute to the vasodilation. Although lower body negative pressure (LBNP) can reduce CBv, the exact LBNP intensity required to blunt the aforementioned exercise-induced CBv response is unknown. This could hold utility for concussion recovery, allowing individuals to exercise at higher intensities without symptom exacerbation. Thirty-two healthy adults (age: 20-33 yr; 19 females/13 males) completed a stepwise maximal exercise test during a first visit to determine each participant's wattage associated with their exercise-induced maximal CBv increase. During the second visit, following supine rest, participants completed moderate-intensity exercise at their determined threshold, while progressive LBNP was applied at 0, -20, -40, -60, -70, -80, and ∼88 Torr. Bilateral middle cerebral artery blood velocities (MCAvs), mean arterial pressure (MAP), heart rate, respiratory rate, and end-tidal carbon dioxide levels were measured continuously. Two-way analysis of variance with effect sizes compared between sexes and stages. Compared with resting supine baseline, averaged MCAv was elevated during 0 and -20 Torr LBNP (q value > 7.73; P < 0.001); however, no differences were noted between baseline and -40 to -70 Torr (q value < |4.24|; P > 0.262). Differences were present between females and males for absolute MCAv measures (q value > 11.2; P < 0.001), but not when normalized to baseline (q value < 0.03; P > 0.951). Supine cycling-elicited increases in MCAv are able to be blunted during the application of LBNP ranging from -40 to -70 Torr. The blunted CBv response demonstrates the potential benefit of allowing individuals to aerobically train (moderate-intensity supine cycling with LBNP) without exacerbating symptoms during the concussion recovery phase.NEW & NOTEWORTHY The current investigation demonstrated that moderate-intensity supine cycling-induced increases in cerebral blood velocities were balanced by the lower body negative pressure-induced decreases in cerebral blood velocity. Although performed in a healthy population, the results may lend themselves to a potential treatment option for individuals recovering from concussion or experience persistent concussion symptoms.
Collapse
Affiliation(s)
- Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, United States
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Rowan K Van Roessel
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Phillips
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, University Laval, Quebec City, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Rosenberg AJ, Kay VL, Anderson GK, Luu ML, Barnes HJ, Sprick JD, Alvarado HB, Rickards CA. The reciprocal relationship between cardiac baroreceptor sensitivity and cerebral autoregulation during simulated hemorrhage in humans. Auton Neurosci 2022; 241:103007. [PMID: 35716525 PMCID: PMC10424721 DOI: 10.1016/j.autneu.2022.103007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
A reciprocal relationship between the baroreflex and cerebral autoregulation (CA) has been demonstrated at rest and in response to acute hypotension. We hypothesized that the reciprocal relationship between cardiac baroreflex sensitivity (BRS) and CA would be maintained during sustained central hypovolemia induced by lower body negative pressure (LBNP), and that the strength of this relationship would be greater in subjects with higher tolerance to this stress. Healthy young adults (n = 51; 23F/28M) completed a LBNP protocol to presyncope. Subjects were classified as high tolerant (HT; completion of -60 mmHg LBNP stage, ≥20-min) or low tolerant (LT; did not complete -60 mmHg LBNP stage, <20-min). R-R intervals (RRI), systolic arterial pressure (SAP), mean arterial pressure (MAP), and middle cerebral artery velocity (MCAv) were measured continuously. Cardiac BRS was calculated in the time domain (ΔHR/ΔSAP) and frequency domain (RRI-SAP low frequency (LF) transfer function gain), and CA was calculated in the time domain (ΔMCAv/ΔMAP) and frequency domain (MAP-mean MCAv LF transfer function gain). There was a moderate relationship between cardiac BRS and CA for the group of 51 subjects in both the time (R = -0.54, P < 0.0001) and frequency (R = 0.61, P < 0.001) domains; there was a stronger relationship in the HT group (R = 0.73) compared to the LT group (R = 0.31) in the frequency domain (P = 0.08), but no difference between groups in the time domain (HT: R = -0.73 vs. LT: R = -0.63; P = 0.27). These findings suggest that an interaction between BRS and CA may be an important compensatory mechanism that contributes to tolerance to simulated hemorrhage in young healthy adults.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois at Chicago, IL, USA; Physiology Department, Midwestern University, IL, USA
| | - Victoria L Kay
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Garen K Anderson
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - My-Loan Luu
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Haley J Barnes
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Justin D Sprick
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah B Alvarado
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Family Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Caroline A Rickards
- Cerebral and Cardiovascular Physiology Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
9
|
Skow RJ, Brothers RM, Claassen JAHR, Day TA, Rickards CA, Smirl JD, Brassard P. On the use and misuse of cerebral hemodynamics terminology using Transcranial Doppler ultrasound: a call for standardization. Am J Physiol Heart Circ Physiol 2022; 323:H350-H357. [PMID: 35839156 DOI: 10.1152/ajpheart.00107.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral hemodynamics (e.g., cerebral blood flow) can be measured and quantified using many different methods, with Transcranial Doppler ultrasound (TCD) being one of the most commonly utilized approaches. In human physiology, the terminology used to describe metrics of cerebral hemodynamics are inconsistent, and in some instances technically inaccurate; this is especially true when evaluating, reporting, and interpreting measures from TCD. Therefore, this perspectives article presents recommended terminology when reporting cerebral hemodynamic data. We discuss the current use and misuse of the terminology in the context of using TCD to measure and quantify cerebral hemodynamics and present our rationale and consensus on the terminology that we recommend moving forward. For example, one recommendation is to discontinue use of the term "cerebral blood flow velocity" in favor of "cerebral blood velocity" with precise indication of the vessel of interest. We also recommend clarity when differentiating between discrete cerebrovascular regulatory mechanisms, namely cerebral autoregulation, neurovascular coupling, and cerebrovascular reactivity. This will be a useful guide for investigators in the field of cerebral hemodynamics research.
Collapse
Affiliation(s)
- Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Caroline A Rickards
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Canada
| |
Collapse
|
10
|
Mol A, Claassen JAHR, Maier AB, van Wezel RJA, Meskers CGM. Determinants of orthostatic cerebral oxygenation assessed using near-infrared spectroscopy. Auton Neurosci 2022; 238:102942. [PMID: 35124323 DOI: 10.1016/j.autneu.2022.102942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/18/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND To understand the relationship between blood pressure changes during standing up and clinical outcome, cerebral oxygenation needs to be measured, which may be performed using near-infrared spectroscopy (NIRS). However, the role of potential determinants of NIRS-derived orthostatic cerebral oxygenation, i.e., age, sex, type of postural change (i.e., standing up from sitting versus supine position), blood pressure (BP) and baroreflex sensitivity (BRS) is still unknown and needed to better interpret findings from studies using orthostatic NIRS measurements. METHODS 34 younger (median age 25 years, inter quartile range (IQR) 22-45) and 31 older adults (median age 77 years, IQR 72-81) underwent BP, BRS and NIRS measurements during standing up from sitting and supine position. Linear regression models were used to assess the potential determinant role of age, sex, type of postural change, BP and BRS in orthostatic cerebral oxygenation drop and recovery. Orthostatic cerebral oxygenation test-retest reliability was assessed using intra class correlations. RESULTS Younger age, male sex and standing up from supine compared to sitting position were positively associated with cerebral oxygenation drop; older age and standing up from sitting compared to supine position were associated with higher cerebral oxygenation recovery. Test-retest reliability was highest (ICC > 0.83) during standing up from supine position. CONCLUSION Based on the findings of this study, age, sex and type of postural change are significant determinants of NIRS-derived orthostatic cerebral oxygenation and should be taken into account in the interpretation of NIRS measurements. In the design of new studies, standing up from supine position is preferable (higher reliability) over standing up from sitting position.
Collapse
Affiliation(s)
- Arjen Mol
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT Amsterdam, the Netherlands; Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Reinier Postlaan 4, 6525 GC Nijmegen, the Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorstraat 9, 1081 BT Amsterdam, the Netherlands; Department of Medicine and Aged Care, @AgeMelbourne, The University of Melbourne, The Royal Melbourne Hospital, City Campus, Level 6 North, 300 Grattan Street, Parkville, Victoria 3050, Australia; Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, National University Health System, 10 Medical Dr, Singapore 117597, Singapore
| | - Richard J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biomedical Signals and Systems, Technical Medical Centre, University of Twente, Zuidhorst Building, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam Movement Sciences, P.O. Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
11
|
O'Brien MW, Kimmerly DS. Is 'Not Different' Enough to Conclude Similar Cardiovascular Responses Across Sexes? Am J Physiol Heart Circ Physiol 2022; 322:H355-H358. [PMID: 34995165 DOI: 10.1152/ajpheart.00687.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of research studies investigating whether similar or different cardiovascular responses or adaptations exist between males and females are increasing. Traditionally, difference-based statistical methods (e.g., t-test, ANOVA, etc.) have been implemented to compare cardiovascular function between males and females, with a P-value >0.05 used to denote similarity between sexes. However, an absence of evidence (i.e., large P-value) is not evidence of absence (i.e., no sex differences). Equivalence testing determines whether two measures or groups provide statistically equivalent outcomes, in that they differ by less than an 'ideally prespecified' smallest effect size of interest. Our perspective discusses the applicability and utility of integrating equivalence testing when conducting sex comparisons in cardiovascular research. An emphasis is placed on how cardiovascular researchers may conduct equivalence testing across multiple study designs (e.g., cross-sectional comparisons, repeated measures intervention, etc.). The strengths and weaknesses of this statistical tool are discussed. Equivalence analyses are relatively simple to conduct, may be used in conjunction with traditional hypothesis testing to interpret findings, and permits the determination of statistically equivalent responses between sexes. We recommend that cardiovascular researchers consider implementing equivalence testing to better our understanding of similar and different cardiovascular processes between sexes.
Collapse
Affiliation(s)
- Myles W O'Brien
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Halifax, Nova Scotia, Canada
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, Halifax, Nova Scotia, Canada
| |
Collapse
|