1
|
Pedersen ZO, Pedersen BS, Larsen S, Dysgaard T. A Scoping Review Investigating the "Gene-Dosage Theory" of Mitochondrial DNA in the Healthy Skeletal Muscle. Int J Mol Sci 2023; 24:8154. [PMID: 37175862 PMCID: PMC10179410 DOI: 10.3390/ijms24098154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
This review provides an overview of the evidence regarding mtDNA and valid biomarkers for assessing mitochondrial adaptions. Mitochondria are small organelles that exist in almost all cells throughout the human body. As the only organelle, mitochondria contain their own DNA, mitochondrial DNA (mtDNA). mtDNA-encoded polypeptides are subunits of the enzyme complexes in the electron transport chain (ETC) that are responsible for production of ATP to the cells. mtDNA is frequently used as a biomarker for mitochondrial content, since changes in mitochondrial volume are thought to induce similar changes in mtDNA. However, some exercise studies have challenged this "gene-dosage theory", and have indicated that changes in mitochondrial content can adapt without changes in mtDNA. Thus, the aim of this scoping review was to summarize the studies that used mtDNA as a biomarker for mitochondrial adaptions and address the question as to whether changes in mitochondrial content, induce changes in mtDNA in response to aerobic exercise in the healthy skeletal muscle. The literature was searched in PubMed and Embase. Eligibility criteria included: interventional study design, aerobic exercise, mtDNA measurements reported pre- and postintervention for the healthy skeletal muscle and English language. Overall, 1585 studies were identified. Nine studies were included for analysis. Eight out of the nine studies showed proof of increased oxidative capacity, six found improvements in mitochondrial volume, content and/or improved mitochondrial enzyme activity and seven studies did not find evidence of change in mtDNA copy number. In conclusion, the findings imply that mitochondrial adaptions, as a response to aerobic exercise, can occur without a change in mtDNA copy number.
Collapse
Affiliation(s)
- Zandra Overgaard Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Britt Staevnsbo Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Tina Dysgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Structural functionality of skeletal muscle mitochondria and its correlation with metabolic diseases. Clin Sci (Lond) 2022; 136:1851-1871. [PMID: 36545931 DOI: 10.1042/cs20220636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
The skeletal muscle is one of the largest organs in the mammalian body. Its remarkable ability to swiftly shift its substrate selection allows other organs like the brain to choose their preferred substrate first. Healthy skeletal muscle has a high level of metabolic flexibility, which is reduced in several metabolic diseases, including obesity and Type 2 diabetes (T2D). Skeletal muscle health is highly dependent on optimally functioning mitochondria that exist in a highly integrated network with the sarcoplasmic reticulum and sarcolemma. The three major mitochondrial processes: biogenesis, dynamics, and mitophagy, taken together, determine the quality of the mitochondrial network in the muscle. Since muscle health is primarily dependent on mitochondrial status, the mitochondrial processes are very tightly regulated in the skeletal muscle via transcription factors like peroxisome proliferator-activated receptor-γ coactivator-1α, peroxisome proliferator-activated receptors, estrogen-related receptors, nuclear respiratory factor, and Transcription factor A, mitochondrial. Physiological stimuli that enhance muscle energy expenditure, like cold and exercise, also promote a healthy mitochondrial phenotype and muscle health. In contrast, conditions like metabolic disorders, muscle dystrophies, and aging impair the mitochondrial phenotype, which is associated with poor muscle health. Further, exercise training is known to improve muscle health in aged individuals or during the early stages of metabolic disorders. This might suggest that conditions enhancing mitochondrial health can promote muscle health. Therefore, in this review, we take a critical overview of current knowledge about skeletal muscle mitochondria and the regulation of their quality. Also, we have discussed the molecular derailments that happen during various pathophysiological conditions and whether it is an effect or a cause.
Collapse
|
3
|
Lemieux P, Roudier E, Birot O. Angiostatic freeze or angiogenic move? Acute cold stress prevents angiokine secretion from murine myotubes but primes primary endothelial cells for greater migratory capacity. Front Physiol 2022; 13:975652. [PMID: 36324307 PMCID: PMC9618727 DOI: 10.3389/fphys.2022.975652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
The skeletal muscle tissue can adapt to exercise and environmental stressors with a remarkable plasticity. Prolonged cold stress exposure has been associated to increased skeletal muscle capillarization. Angioadaptation refers to the coordinated molecular and cellular processes that influence the remodeling of skeletal muscle microvasculature. Two cell types are central to angioadaptation: the myocytes, representing an important source of angiokines; and the skeletal muscle endothelial cell (SMECs), targets of these angiokines and main constituents of muscle capillaries. The influence of cold stress on skeletal muscle angioadaptation remains largely unknown, particularly with respect to myocyte-specific angiokines secretion or endothelial cell angioadaptive responses. Here, we use an in vitro model to investigate the impact of cold stress (28°C versus 37°C) on C2C12 myotubes and SMECs. Our main objectives were to evaluate: 1) the direct impact of cold stress on C2C12 cellular expression of angiokines and their release in the extracellular environment; 2) the indirect impact of cold stress on SMECs migration via these C2C12-derived angiokines; and 3) the direct effect of cold stress on SMECs angioadaptive responses, including migration, proliferation, and the activation of the vascular endothelial growth factor receptor-2 (VEGFR2). Cold stress reduced the secretion of angiokines in C2C12 myotubes culture media irrespective their pro-angiogenic or angiostatic nature. In SMECs, cold stress abrogated cell proliferation and reduced the activation of VEGFR2 despite a greater expression of this receptor. Finally, SMECs pre-conditioned to cold stress displayed an enhanced migratory response when migration was stimulated in rewarming conditions. Altogether our results suggest that cold stress may be overall angiostatic. However, cold stress accompanied by rewarming may be seen as a pro-angiogenic stressor for SMECs. This observation questions the potential for using pre-cooling in sport-performance or therapeutic exercise prescription to enhance skeletal muscle angioadaptive responses to exercise.
Collapse
|
4
|
Robins L, Kwon M, McGlynn ML, Rosales AM, Pekas EJ, Collins C, Park SY, Slivka DR. Influence of Local Muscle Cooling on Mitochondrial-Related Gene Expression at Rest. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12028. [PMID: 36231330 PMCID: PMC9566196 DOI: 10.3390/ijerph191912028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to determine the impact of localized cooling of the skeletal muscle during rest on mitochondrial related gene expression. Thermal wraps were applied to the vastus lateralis of each limb of 12 participants. One limb received a cold application (randomized) (COLD), while the other did not (RT). Wraps were removed at the 4 h time point and measurements of skin temperature, blood flow, and intramuscular temperature were taken prior to a muscle biopsy. RT-qPCR was used to measure expression of genes associated with mitochondrial development. Skin and muscle temperatures were lower in COLD than RT (p < 0.05). Femoral artery diameter was lower in COLD after 4 h (0.62 ± 0.05 cm, to 0.60 ± 0.05 cm, p = 0.018). Blood flow was not different in COLD compared to RT (259 ± 69 mL·min-1 vs. 275 ± 54 mL·min-1, p = 0.20). PGC-1α B and GABPA expression was higher in COLD relative to RT (1.57-fold, p = 0.037 and 1.34-fold, p = 0.006, respectively). There was no difference (p > 0.05) in the expression of PGC-1α, NT-PGC-1α, PGC-1α A, TFAM, ESRRα, NRF1, GABPA, VEGF, PINK1, PARK 2, or BNIP3-L. The impact of this small magnitude of difference in gene expression of PGC-1α B and GABPA without alterations in other genes are unknown. There appears to be only limited impact of local muscle cooling on the transcriptional response related to mitochondrial development.
Collapse
Affiliation(s)
- Larry Robins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Monica Kwon
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Alejandro M. Rosales
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
5
|
McGlynn ML, Collins C, Hailes W, Ruby B, Slivka D. Heat Acclimation in Females Does Not Limit Aerobic Exercise Training Outcomes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5554. [PMID: 35564948 PMCID: PMC9103535 DOI: 10.3390/ijerph19095554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Recent aerobic exercise training in the heat has reported blunted aerobic power improvements and reduced mitochondrial-related gene expression in men. It is unclear if this heat-induced blunting of the training response exists in females. The purpose of the present study was to determine the impact of 60 min of cycling in the heat over three weeks on thermoregulation, gene expression, and aerobic capacity in females. Untrained females (n = 22; 24 ± 4yoa) were assigned to three weeks of aerobic training in either 20 °C (n = 12) or 33 °C (n = 10; 40%RH). Maximal aerobic capacity (39.5 ± 6.5 to 41.5 ± 6.2 mL·kg−1·min−1, p = 0.021, ηp2 = 0.240, 95% CI [0.315, 3.388]) and peak aerobic power (191.0 ± 33.0 to 206.7 ± 27.2 W, p < 0.001, ηp2 = 0.531, 95% CI [8.734, 22.383]) increased, while the absolute-intensity trial (50%VO2peak) HR decreased (152 ± 15 to 140 ± 13 b·min−1, p < 0.001, ηp2 = 0.691, 95% CI [15.925, 8.353]), but they were not different between temperatures (p = 0.440, p = 0.955, p = 0.341, respectively). Independent of temperature, Day 22 tolerance trial skin temperatures decreased from Day 1 (p = 0.006, ηp2 = 0.319, 95% CI [1.408, 0.266), but training did not influence core temperature (p = 0.598). Average sweat rates were higher in the 33 °C group vs. the 20 °C group (p = 0.008, ηp2 = 0.303, 95% CI [67.9, 394.9]) but did not change due to training (p = 0.571). Pre-training PGC-1α mRNA increased 4h-post-exercise (5.29 ± 0.70 fold change, p < 0.001), was lower post-training (2.69 ± 0.22 fold change, p = 0.004), and was not different between temperatures (p = 0.455). While training induced some diminished transcriptional stimulus, generally the training temperature had little effect on genes related to mitochondrial biogenesis, mitophagy, and metabolic enzymes. These female participants increased aerobic fitness and maintained an exercise-induced PGC-1α mRNA response in the heat equal to that of room temperature conditions, contrasting with the blunted responses previously observed in men.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| | - Walter Hailes
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA; (W.H.); (B.R.)
| | - Brent Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA; (W.H.); (B.R.)
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (C.C.)
| |
Collapse
|
6
|
Ihsan M, Abbiss CR, Allan R. Adaptations to Post-exercise Cold Water Immersion: Friend, Foe, or Futile? Front Sports Act Living 2021; 3:714148. [PMID: 34337408 PMCID: PMC8322530 DOI: 10.3389/fspor.2021.714148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Allan
- School of Sport and Health Sciences, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
7
|
McGlynn ML, Schnitzler H, Shute R, Ruby B, Slivka D. The Acute Effects of Exercise and Temperature on Regional mtDNA. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6382. [PMID: 34204828 PMCID: PMC8296217 DOI: 10.3390/ijerph18126382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
A reduced mitochondrial DNA (mtDNA) copy number, the ratio of mitochondrial DNA to genomic DNA (mtDNA:gDNA), has been linked with dysfunctional mitochondria. Exercise can acutely induce mtDNA damage manifested as a reduced copy number. However, the influence of a paired (exercise and temperature) intervention on regional mtDNA (MINor Arc and MAJor Arc) are unknown. Thus, the purpose of this study was to determine the acute effects of exercise in cold (7 °C), room temperature (20 °C), and hot (33 °C) ambient temperatures, on regional mitochondrial copy number (MINcn and MAJcn). Thirty-four participants (24.4 ± 5.1 yrs, 87.1 ± 22.1 kg, 22.3 ± 8.5 %BF, and 3.20 ± 0.59 L·min-1 VO2peak) cycled for 1 h (261.1 ± 22.1 W) in either 7 °C, 20 °C, or 33 °C ambient conditions. Muscle biopsy samples were collected from the vastus lateralis to determine mtDNA regional copy numbers via RT-qPCR. mtDNA is sensitive to the stressors of exercise post-exercise (MIN fold change, -1.50 ± 0.11; MAJ fold change, -1.70 ± 0.12) and 4-h post-exercise (MIN fold change, -0.82 ± 0.13; MAJ fold change, -1.54 ± 0.11). The MAJ Arc seems to be more sensitive to heat, showing a temperature-trend (p = 0.056) for a reduced regional copy number ratio after exercise in the heat (fold change -2.81 ± 0.11; p = 0.019). These results expand upon our current knowledge of the influence of temperature and exercise on the acute remodeling of regional mtDNA.
Collapse
Affiliation(s)
- Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (H.S.); (R.S.)
| | - Halee Schnitzler
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (H.S.); (R.S.)
| | - Robert Shute
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (H.S.); (R.S.)
| | - Brent Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA;
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA; (M.L.M.); (H.S.); (R.S.)
| |
Collapse
|
8
|
Exercise in the heat blunts improvements in aerobic power. Eur J Appl Physiol 2021; 121:1715-1723. [PMID: 33682060 DOI: 10.1007/s00421-021-04653-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION PGC-1a has been termed the master regulator of mitochondrial biogenesis. The exercise-induced rise in PGC-1a transcription is blunted when acute exercise takes place in the heat. However, it is unknown if this alteration has functional implications after heat acclimation and exercise training. PURPOSE To determine the impact of 3 weeks of aerobic exercise training in the heat (33 °C) compared to training in room temperature (20 °C) on thermoregulation, PGC-1a mRNA response, and aerobic power. METHODS Twenty-one untrained college aged males (age, 24 ± 4 years; height, 178 ± 6 cm) were randomly assigned to 3 weeks of aerobic exercise training in either 33 °C (n = 12) or 20 °C (n = 11) environmental temperatures. RESULTS The 20 °C training group increased 20 °C [Formula: see text]̇O2peak from 3.21 ± 0.77 to 3.66 ± 0.78 L·min-1 (p < 0.001) while the 33 °C training group did not improve (pre, 3.16 ± 0.48 L·min-1; post, 3.28 ± 0.63 L·min-1; p = 0.283). PGC-1a increased in response to acute aerobic exercise more in 20 °C (6.6 ± 0.7 fold) than 33 °C (4.6 ± 0.7 fold, p = 0.031) before training, but was no different after training in 20 °C (2.4 ± 0.3 fold) or 33 °C (2.4 ± 0.5 fold, p = 0.999). No quantitative alterations in mitochondrial DNA were detected with training or between temperatures (p > 0.05). CONCLUSIONS This research indicates that exercise in the heat may limit the effectiveness of aerobic exercise at increasing aerobic power. Furthermore, this study demonstrates that heat induced blunting of the normal exercise induced PGC-1a response is eliminated after 3 weeks of heat acclimation.
Collapse
|
9
|
Williamson-Reisdorph CM, Quindry TS, Tiemessen KG, Cuddy J, Hailes W, Slivka D, Ruby BC, Quindry JC. Blood oxidative stress and post-exercise recovery are unaffected byhypobaric and hypoxic environments. J Sports Sci 2021; 39:1356-1365. [PMID: 33423613 DOI: 10.1080/02640414.2021.1872960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hypobaria and hypoxia exert independent effects on oxidative stress during exercise, while combined effectson the post-exercise recovery period remain unclear.Accordingly, this study examined the recovery period during lab-simulated hypoxic and hypobaric conditions following exercise-induced oxidative stress. Participants (n=13) performed 60-minutes of cycling (70% watts max) in a normobaric normoxic environment followed by a four-hour recovery under three conditions; 1000m normobaric normoxia (NN, 675mmHg), 4400m normobaric hypoxia (NH, 675mmHg), or 4400m hypobaric hypoxia (HH, 440mmHg). Blood samples collected at Pre, Post, 2-Hours (2-HR), and 4-Hours (4-HR) post-exercise were analyzed fora potential increase in biochemical modifications of proteins(protein carbonyls, PC; 3-nitrotyrosines, 3NT) lipids (lipid hydroperoxides, LOOH; 8-isoprostanes, 8-ISO), and antioxidant capacity (FRAP, TEAC). Gene transcripts (EPAS, HMOX1, SOD2, NFE2L2) were quantified by qRT-PCR from muscle biopsies taken Pre and Post exercise. Hypoxia and hypobaria had no effect throughout recovery. Post-exercise TEAC (p=0.041), FRAP (p=0.013), and 8-ISO (p=0.044) increased, while PC (p=0.002) and 3-NT (p=0.032) were decreased. LOOH was lower in Post (p=0.018) NH trial samples. Exercise-dependent increases occurred in NFE2L2 (p=0.003), HMXO1 (p<0.001), SOD2 (p=0.046), and EPAS (p=0.038). Exercise recovery under conditions of NH and HH did not impact blood oxidative stress or redox-sensitive gene transcripts.
Collapse
Affiliation(s)
| | - Tiffany S Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Kathryn G Tiemessen
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - John Cuddy
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Walter Hailes
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska - Omaha, Omaha, NE, USA
| | - Brent C Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - John C Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| |
Collapse
|
10
|
Exercise- and Cold-Induced Human PGC-1α mRNA Isoform Specific Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165740. [PMID: 32784428 PMCID: PMC7460212 DOI: 10.3390/ijerph17165740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Cold exposure in conjunction with aerobic exercise stimulates gene expression of PGC-1α, the master regulator of mitochondrial biogenesis. PGC-1α can be expressed as multiple isoforms due to alternative splicing mechanisms. Among these isoforms is NT-PGC-1α, which produces a truncated form of the PGC-1α protein, as well as isoforms derived from the first exon of the transcript, PGC-1α-a, PGC-1α-b, and PGC-1α-c. Relatively little is known about the individual responses of these isoforms to exercise and environmental temperature. Therefore, we determined the expression of PGC-1α isoforms following an acute bout of cycling in cold (C) and room temperature (RT) conditions. Nine male participants cycled for 1h at 65% Wmax at −2 °C and 20 °C. A muscle biopsy was taken from the vastus lateralis before and 3h post-exercise. RT-qPCR was used to analyze gene expression of PGC-1α isoforms. Gene expression of all PGC-1α isoforms increased due to the exercise intervention (p < 0.05). Exercise and cold exposure induced a greater increase in gene expression for total PGC-1α (p = 0.028) and its truncated isoform, NT-PGC-1α (p = 0.034), but there was no temperature-dependent response in the other PGC-1α isoforms measured. It appears that NT-PGC-1α may have a significant contribution to the reported alterations in the exercise- and temperature-induced PGC-1α response.
Collapse
|