1
|
McGinn EA, Mandell EW, Smith BJ, Duke JW, Bush A, Abman SH. Dysanapsis as a Determinant of Lung Function in Development and Disease. Am J Respir Crit Care Med 2023; 208:956-963. [PMID: 37677135 PMCID: PMC10870865 DOI: 10.1164/rccm.202306-1120pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
| | - Erica W. Mandell
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Neonatology
| | - Bradford J. Smith
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Pulmonary and Sleep Medicine, and
- Department of Bioengineering, Anschutz School of Medicine, University of Colorado–Denver, Aurora, Colorado
| | - Joseph W. Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona; and
| | - Andrew Bush
- Center for Pediatrics and Child Health, Imperial College of Medicine, London, United Kingdom
| | - Steven H. Abman
- Pediatric Heart Lung Center, Department of Pediatrics
- Department of Pediatric Pulmonary and Sleep Medicine, and
| |
Collapse
|
2
|
Yilmaz C, Dane DM, Tustison NJ, Song G, Gee JC, Hsia CCW. In vivo imaging of canine lung deformation: effects of posture, pneumonectomy, and inhaled erythropoietin. J Appl Physiol (1985) 2020; 128:1093-1105. [PMID: 31944885 PMCID: PMC7272757 DOI: 10.1152/japplphysiol.00647.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Mechanical stresses on the lung impose the major stimuli for developmental and compensatory lung growth and remodeling. We used computed tomography (CT) to noninvasively characterize the factors influencing lobar mechanical deformation in relation to posture, pneumonectomy (PNX), and exogenous proangiogenic factor supplementation. Post-PNX adult canines received weekly inhalations of nebulized nanoparticles loaded with recombinant human erythropoietin (EPO) or control (empty nanoparticles) for 16 wk. Supine and prone CT were performed at two transpulmonary pressures pre- and post-PNX following treatment. Lobar air and tissue volumes, fractional tissue volume (FTV), specific compliance (Cs), mechanical strains, and shear distortion were quantified. From supine to prone, lobar volume and Cs increased while strain and shear magnitudes generally decreased. From pre- to post-PNX, air volume increased less and FTV and Cs increased more in the left caudal (LCa) than in other lobes. FTV increased most in the dependent subpleural regions, and the portion of LCa lobe that expanded laterally wrapping around the mediastinum. Supine deformation was nonuniform pre- and post-PNX; strains and shear were most pronounced in LCa lobe and declined when prone. Despite nonuniform regional expansion and deformation, post-PNX lobar mechanics were well preserved compared with pre-PNX because of robust lung growth and remodeling establishing a new mechanical equilibrium. EPO treatment eliminated posture-dependent changes in FTV, accentuated the post-PNX increase in FTV, and reduced FTV heterogeneity without altering absolute air or tissue volumes, consistent with improved microvascular blood volume distribution and modestly enhanced post-PNX alveolar microvascular reserves.NEW & NOTEWORTHY Mechanical stresses on the lung impose the major stimuli for lung growth. We used computed tomography to image deformation of the lung in relation to posture, loss of lung units, and inhalational delivery of the growth promoter erythropoietin. Following loss of one lung in adult large animals, the remaining lung expanded and grew while retaining near-normal mechanical properties. Inhalation of erythropoietin promoted more uniform distribution of blood volume within the remaining lung.
Collapse
Affiliation(s)
- Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Gang Song
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Dane DM, Yilmaz C, Gyawali D, Iyer R, Menon J, Nguyen KT, Ravikumar P, Estrera AS, Hsia CCW. Erythropoietin inhalation enhances adult canine alveolar-capillary formation following pneumonectomy. Am J Physiol Lung Cell Mol Physiol 2019; 316:L936-L945. [PMID: 30785346 DOI: 10.1152/ajplung.00504.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paracrine erythropoietin (EPO) signaling in the lung recruits endothelial progenitor cells, promotes cell maturation and angiogenesis, and is upregulated during canine postpneumonectomy (PNX) compensatory lung growth. To determine whether inhalational delivery of exogenous EPO augments endogenous post-PNX lung growth, adult canines underwent right PNX and received, via a permanent tracheal stoma, weekly nebulization of recombinant human EPO-containing nanoparticles or empty nanoparticles (control) for 16 wk. Lung function was assessed under anesthesia pre- and post-PNX. The remaining lobes were fixed for detailed morphometric analysis. Compared with control treatment, EPO delivery significantly increased serum EPO concentration without altering systemic hematocrit or hemoglobin concentration and abrogated post-PNX lipid oxidative stress damage. EPO delivery modestly increased post-PNX volume densities of the alveolar septum per unit of lung volume and type II epithelium and endothelium per unit of septal tissue volume in selected lobes. EPO delivery also augmented the post-PNX increase in alveolar double-capillary profiles, a marker of intussusceptive capillary formation, in all remaining lobes. EPO treatment did not significantly alter absolute resting lung volumes, lung and membrane diffusing capacities, alveolar-capillary blood volume, pulmonary blood flow, lung compliance, or extravascular alveolar tissue volumes or surface areas. Results established the feasibility of chronic inhalational delivery of growth-modifying biologics in a large animal model. Exogenous EPO selectively enhanced cytoprotection and alveolar angiogenesis in remaining lobes but not whole-lung extravascular tissue growth or resting function; the nonuniform response contributes to structure-function discrepancy, a major challenge for interventions aimed at amplifying the innate potential for compensatory lung growth.
Collapse
Affiliation(s)
- D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Dipendra Gyawali
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Roshni Iyer
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Jyothi Menon
- Department of Bioengineering, University of Texas at Arlington , Arlington, Texas
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington , Arlington, Texas
| | - Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Aaron S Estrera
- Department of Cardiothoracic Surgery, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
4
|
Dane DM, Yilmaz C, Gyawali D, Iyer R, Ravikumar P, Estrera AS, Hsia CCW. Perfusion-related stimuli for compensatory lung growth following pneumonectomy. J Appl Physiol (1985) 2016; 121:312-23. [PMID: 27150830 DOI: 10.1152/japplphysiol.00297.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022] Open
Abstract
Following pneumonectomy (PNX), two separate mechanical forces act on the remaining lung: parenchymal stress caused by lung expansion, and microvascular distension and shear caused by increased perfusion. We previously showed that parenchymal stress and strain explain approximately one-half of overall compensation; the remainder was presumptively attributed to perfusion-related factors. In this study, we directly tested the hypothesis that perturbation of regional pulmonary perfusion modulates post-PNX lung growth. Adult canines underwent banding of the pulmonary artery (PAB) to the left caudal (LCa) lobe, which caused a reduction in basal perfusion to LCa lobe without preventing the subsequent increase in its perfusion following right PNX while simultaneously exaggerating the post-PNX increase in perfusion to the unbanded lobes, thereby creating differential perfusion changes between banded and unbanded lobes. Control animals underwent sham pulmonary artery banding followed by right PNX. Pulmonary function, regional pulmonary perfusion, and high-resolution computed tomography of the chest were analyzed pre-PNX and 3-mo post-PNX. Terminally, the remaining lobes were fixed for detailed morphometric analysis. Results were compared with corresponding lobes in two control (Sham banding and normal unoperated) groups. PAB impaired the indices of post-PNX extravascular alveolar tissue growth by up to 50% in all remaining lobes. PAB enhanced the expected post-PNX increase in alveolar capillary formation, measured by the prevalence of double-capillary profiles, in both unbanded and banded lobes. We conclude that perfusion distribution provides major stimuli for post-PNX compensatory lung growth independent of the stimuli provided by lung expansion and parenchymal stress and strain.
Collapse
Affiliation(s)
- D Merrill Dane
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Dipendra Gyawali
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Roshni Iyer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Aaron S Estrera
- Department of Cardiothoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
| |
Collapse
|
5
|
Fleming J, Conway J, Majoral C, Bennett M, Caillibotte G, Montesantos S, Katz I. Determination of regional lung air volume distribution at mid-tidal breathing from computed tomography: a retrospective study of normal variability and reproducibility. BMC Med Imaging 2014; 14:25. [PMID: 25063729 PMCID: PMC4118261 DOI: 10.1186/1471-2342-14-25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/08/2014] [Indexed: 11/22/2022] Open
Abstract
Background Determination of regional lung air volume has several clinical applications. This study investigates the use of mid-tidal breathing CT scans to provide regional lung volume data. Methods Low resolution CT scans of the thorax were obtained during tidal breathing in 11 healthy control male subjects, each on two separate occasions. A 3D map of air volume was derived, and total lung volume calculated. The regional distribution of air volume from centre to periphery of the lung was analysed using a radial transform and also using one dimensional profiles in three orthogonal directions. Results The total air volumes for the right and left lungs were 1035 +/− 280 ml and 864 +/− 315 ml, respectively (mean and SD). The corresponding fractional air volume concentrations (FAVC) were 0.680 +/− 0.044 and 0.658 +/− 0.062. All differences between the right and left lung were highly significant (p < 0.0001). The coefficients of variation of repeated measurement of right and left lung air volumes and FAVC were 6.5% and 6.9% and 2.5% and 3.6%, respectively. FAVC correlated significantly with lung space volume (r = 0.78) (p < 0.005). FAVC increased from the centre towards the periphery of the lung. Central to peripheral ratios were significantly higher for the right (0.100 +/− 0.007 SD) than the left (0.089 +/− 0.013 SD) (p < 0.0001). Conclusion A technique for measuring the distribution of air volume in the lung at mid-tidal breathing is described. Mean values and reproducibility are described for healthy male control subjects. Fractional air volume concentration is shown to increase with lung size.
Collapse
Affiliation(s)
- John Fleming
- National Institute of Health Research Biomedical Research Unit in Respiratory Disease, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Yilmaz C, Dane DM, Patel NC, Hsia CC. Quantifying heterogeneity in emphysema from high-resolution computed tomography: a lung tissue research consortium study. Acad Radiol 2013; 20:181-93. [PMID: 23122057 DOI: 10.1016/j.acra.2012.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE AND OBJECTIVES To quantify spatial distribution of emphysema using high-resolution computed tomography (HRCT), we applied semiautomated analysis with internal attenuation calibration to measure regional air volume, tissue volume, and fractional tissue volume (FTV = tissue/[air + tissue] volume) in well-characterized patients studied by the Lung Tissue Research Consortium (LTRC). METHODS HRCT was obtained at supine end-inspiration and end-expiration, and prone end-inspiration from 31 patients with mild, moderate, severe, or very severe emphysema (stages II-V, forced expiratory volume at 1 second >75%, 51%-75%, 21%-50% and ≤20% predicted, respectively). Control data were from 20 healthy non-smokers (stage I). Each lobe was analyzed separately. Heterogeneity of FTV was assessed from coefficients of variation (CV) within and among lobes, and the kurtosis and skewness of FTV histograms. RESULTS In emphysema, lobar air volume increased up to 177% above normal except in the right middle lobe. Lobar tissue volume increased up to 107% in mild-moderate stages then normalized in advanced stages. Normally, FTV was up to 82% higher in lower than upper lobes. In mild-moderate emphysema, lobar FTV increased by up to 74% above normal at supine inspiration. In severe emphysema, FTV declined below normal in all lobes and positions in correlation with pulmonary function (P < .05). Markers of FTV heterogeneity increased steadily with disease stage in correlation with pulmonary function (P < .05); the pattern is distinct from that seen in interstitial lung disease (ILD). CONCLUSION CT-derived biomarkers differentiate the spatial patterns of emphysema distribution and heterogeneity from that in ILD. Early emphysema is associated with elevated tissue volume and FTV, consistent with hyperemia, inflammation or atelectasis.
Collapse
|
7
|
Ravikumar P, Yilmaz C, Bellotto DJ, Dane DM, Estrera AS, Hsia CCW. Separating in vivo mechanical stimuli for postpneumonectomy compensation: imaging and ultrastructural assessment. J Appl Physiol (1985) 2013; 114:961-70. [PMID: 23329819 DOI: 10.1152/japplphysiol.01394.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Following right pneumonectomy (PNX), the remaining lung expands and its perfusion more than doubles. Tissue and microvascular mechanical stresses are putative stimuli for compensatory lung growth and remodeling, but their relative contribution remains uncertain. To temporally separate expansion- and perfusion-related stimuli, we replaced the right lung of adult dogs with a customized inflated prosthesis. Four months later, the prosthesis was either acutely deflated (DEF) or kept inflated (INF). Thoracic high-resolution computed tomography (HRCT) was performed pre- and post-PNX before and after prosthesis deflation. Lungs were fixed for morphometric analysis ∼12 mo post-PNX. The INF prosthesis prevented mediastinal shift and lateral lung expansion while allowing the remaining lung to expand 27-38% via caudal elongation, associated with reversible capillary congestion in dependent regions at low inflation and 40-60% increases in the volumes of alveolar sepal cells, matrix, and fibers. Delayed prosthesis deflation led to further significant increases in lung volume, alveolar tissue volumes, and alveolar-capillary surface areas. At postmortem, alveolar tissue volumes were 33% higher in the DEF than the INF group. Lateral expansion explains ∼65% of the total post-PNX increase in left lung volume assessed in vivo or ex vivo, ∼36% of the increase in HRCT-derived (tissue + microvascular blood) volume, ∼45% of the increase in ex vivo septal extravascular tissue volume, and 60% of the increase in gas exchange surface areas. This partition agrees with independent physiological measurements obtained in these animals. We conclude that in vivo signals related to lung expansion and perfusion contribute separately and nearly equally to post-PNX growth and remodeling.
Collapse
Affiliation(s)
- Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hsia CCW, Tawhai MH. What can imaging tell us about physiology? Lung growth and regional mechanical strain. J Appl Physiol (1985) 2012; 113:937-46. [PMID: 22582216 DOI: 10.1152/japplphysiol.00289.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interplay of mechanical forces transduces diverse physico-biochemical processes to influence lung morphogenesis, growth, maturation, remodeling and repair. Because tissue stress is difficult to measure in vivo, mechano-sensitive responses are commonly inferred from global changes in lung volume, shape, or compliance and correlated with structural changes in tissue blocks sampled from postmortem-fixed lungs. Recent advances in noninvasive volumetric imaging technology, nonrigid image registration, and deformation analysis provide valuable tools for the quantitative analysis of in vivo regional anatomy and air and tissue-blood distributions and when combined with transpulmonary pressure measurements, allow characterization of regional mechanical function, e.g., displacement, strain, shear, within and among intact lobes, as well as between the lung and the components of its container-rib cage, diaphragm, and mediastinum-thereby yielding new insights into the inter-related metrics of mechanical stress-strain and growth/remodeling. Here, we review the state-of-the-art imaging applications for mapping asymmetric heterogeneous physical interactions within the thorax and how these interactions permit as well as constrain lung growth, remodeling, and compensation during development and following pneumonectomy to illustrate how advanced imaging could facilitate the understanding of physiology and pathophysiology. Functional imaging promises to facilitate the formulation of realistic computational models of lung growth that integrate mechano-sensitive events over multiple spatial and temporal scales to accurately describe in vivo physiology and pathophysiology. Improved computational models in turn could enhance our ability to predict regional as well as global responses to experimental and therapeutic interventions.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, USA
| | | |
Collapse
|
9
|
Konerding MA, Gibney BC, Houdek J, Chamoto K, Ackermann M, Lee GS, Lin M, Tsuda A, Mentzer SJ. Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis 2012; 15:23-32. [PMID: 21969134 PMCID: PMC3268013 DOI: 10.1007/s10456-011-9236-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/19/2011] [Indexed: 01/24/2023]
Abstract
Growth of the remaining lung after pneumonectomy has been observed in many mammalian species; nonetheless, the pattern and morphology of alveolar angiogenesis during compensatory growth is unknown. Here, we investigated alveolar angiogenesis in a murine model of post-pneumonectomy lung growth. As expected, the volume and weight of the remaining lung returned to near-baseline levels within 21 days of pneumonectomy. The percentage increase in lobar weight was greatest in the cardiac lobe (P < 0.001). Cell cycle flow cytometry demonstrated a peak of lung cell proliferation (12.02 ± 1.48%) 6 days after pneumonectomy. Spatial autocorrelation analysis of the cardiac lobe demonstrated clustering of similar vascular densities (positive autocorrelation) that consistently mapped to subpleural regions of the cardiac lobe. Immunohistochemical staining demonstrated increased cell density and enhanced expression of angiogenesis-related factors VEGFA, and GLUT1 in these subpleural regions. Corrosion casting and scanning electron microscopy 3-6 days after pneumonectomy demonstrated subpleural vessels with angiogenic sprouts. The monopodial sprouts appeared to be randomly oriented along the vessel axis with interbranch distances of 11.4 ± 4.8 μm in the regions of active angiogenesis. Also present within the regions of increased vascular density were frequent "holes" or "pillars" consistent with active intussusceptive angiogenesis. The mean pillar diameter was 4.2 ± 3.8 μm, and the pillars were observed in all regions of active angiogenesis. These findings indicate that the process of alveolar construction involves discrete regions of regenerative growth, particularly in the subpleural regions of the cardiac lobe, characterized by both sprouting and intussusceptive angiogenesis.
Collapse
Affiliation(s)
- Moritz A. Konerding
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Barry C. Gibney
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Jan Houdek
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Kenji Chamoto
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Grace S. Lee
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Miao Lin
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston MA
| |
Collapse
|
10
|
Yilmaz C, Watharkar SS, Diaz de Leon A, Garcia CK, Patel NC, Jordan KG, Hsia CCW. Quantification of regional interstitial lung disease from CT-derived fractional tissue volume: a lung tissue research consortium study. Acad Radiol 2011; 18:1014-23. [PMID: 21596593 DOI: 10.1016/j.acra.2011.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/16/2011] [Accepted: 03/18/2011] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVES Evaluation of chest computed tomography (CT) is usually qualitative or semiquantitative, resulting in subjective descriptions often by different observers over time and imprecise determinations of disease severity within distorted lobes. There is a need for standardized imaging biomarkers to quantify regional disease, maximize diagnostic yield, and facilitate multicenter comparisons. We applied lobe-based voxelwise image analysis to derive regional air (Vair) and tissue (Vtissue) volumes and fractional tissue volume (FTV = tissue/[tissue+air] volume) as internally standardized parameter for assessing interstitial lung disease (ILD). MATERIALS AND METHODS High-resolution CT was obtained at supine and prone end-inspiration and supine end-expiration in 29 patients with ILD and 20 normal subjects. Lobar Vair, Vtissue, and FTV were expressed along standard coordinate axes. RESULTS In normal subjects from end-inspiration to end-expiration, total Vair declined ~43%, FTV increased ~80%, but Vtissue remained unchanged. With increasing ILD, Vair declined and Vtissue rose in all lobes; FTV increased with a peripheral-to-central progression inversely correlated to spirometry and lung diffusing capacity (r(2) = 0.57-0.75, prone end-inspiration). Inter- and intralobar coefficients of variation of FTV increased 84-148% in mild-to-moderate ILD, indicating greater spatial heterogeneity, then normalized in severe ILD. Analysis of discontinuous images incurs <3% error compared to consecutive images. CONCLUSIONS These regional attenuation-based biomarkers could quantify heterogeneous parenchymal disease in distorted lobes, detect mild ILD involvement in all lobes and describe the pattern of disease progression. The next step would be to study a larger series, examine reproducibility and follow longitudinal changes in correlation with clinical and functional indices.
Collapse
Affiliation(s)
- Cuneyt Yilmaz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Yilmaz C, Tustison NJ, Dane DM, Ravikumar P, Takahashi M, Gee JC, Hsia CCW. Progressive adaptation in regional parenchyma mechanics following extensive lung resection assessed by functional computed tomography. J Appl Physiol (1985) 2011; 111:1150-8. [PMID: 21799134 DOI: 10.1152/japplphysiol.00527.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In adult canines following major lung resection, the remaining lobes expand asymmetrically, associated with alveolar tissue regrowth, remodeling, and progressive functional compensation over many months. To permit noninvasive longitudinal assessment of regional growth and function, we performed serial high-resolution computed tomography (HRCT) on six male dogs (∼9 mo old, 25.0 ± 4.5 kg, ±SD) at 15 and 30 cmH(2)O transpulmonary pressure (Ptp) before resection (PRE) and 3 and 15 mo postresection (POST3 and POST15, respectively) of 65-70% of lung units. At POST3, lobar air volume increased 83-148% and tissue (including microvascular blood) volume 120-234% above PRE values without further changes at POST15. Lobar-specific compliance (Cs) increased 52-137% from PRE to POST3 and 28-79% from POST3 to POST15. Inflation-related parenchyma strain and shear were estimated by detailed registration of corresponding anatomical features at each Ptp. Within each lobe, regional displacement was most pronounced at the caudal region, whereas strain was pronounced in the periphery. Regional three-dimensional strain magnitudes increased heterogeneously from PRE to POST3, with further medial-lateral increases from POST3 to POST15. Lobar principal strains (PSs) were unchanged or modestly elevated postresection; changes in lobar maximum PS correlated inversely with changes in lobar air and tissue volumes. Lobar shear distortion increased in coronal and transverse planes at POST3 without further changes thereafter. These results establish a novel use of functional HRCT to map heterogeneous regional deformation during compensatory lung growth and illustrate a stimulus-response feedback loop whereby postresection mechanical stress initiates differential lobar regrowth and sustained remodeling, which in turn, relieves parenchyma stress and strain, resulting in progressive increases in lobar Cs and a delayed increase in whole lung Cs.
Collapse
Affiliation(s)
- Cuneyt Yilmaz
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Hsia CCW, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010; 181:394-418. [PMID: 20130146 DOI: 10.1164/rccm.200809-1522st] [Citation(s) in RCA: 677] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Abstract
Lung function is inextricably linked to mechanics. On short timescales every breath generates dynamic cycles of cell and matrix stretch, along with convection of fluids in the airways and vasculature. Perturbations such airway smooth muscle shortening or surfactant dysfunction rapidly alter respiratory mechanics, with profound influence on lung function. On longer timescales, lung development, maturation, and remodeling all strongly depend on cues from the mechanical environment. Thus mechanics has long played a central role in our developing understanding of lung biology and respiratory physiology. This concise review focuses on progress over the past 5 years in elucidating the molecular origins of lung mechanical behavior, and the cellular signaling events triggered by mechanical perturbations that contribute to lung development, homeostasis, and injury. Special emphasis is placed on the tools and approaches opening new avenues for investigation of lung behavior at integrative cellular and molecular scales. We conclude with a brief summary of selected opportunities and challenges that lie ahead for the lung mechanobiology research community.
Collapse
|
14
|
Yilmaz C, Ravikumar P, Dane DM, Bellotto DJ, Johnson RL, Hsia CCW. Noninvasive quantification of heterogeneous lung growth following extensive lung resection by high-resolution computed tomography. J Appl Physiol (1985) 2009; 107:1569-78. [PMID: 19729592 DOI: 10.1152/japplphysiol.00503.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To quantify the in vivo magnitude and distribution of regional compensatory lung growth following extensive lung resection, we performed high-resolution computed tomography at 15- and 30-cmH(2)O transpulmonary pressures and measured air and tissue (including microvascular blood) volumes within and among lobes in six adult male foxhounds, before and after balanced 65% lung resection ( approximately 32% removed from each side). Each lobe was identified from lobar fissures. Intralobar gradients in air and tissue volumes were expressed along standardized x,y,z-coordinate axes. Fractional tissue volume (FTV) was calculated as the volume ratio of tissue/(tissue + air). Following resection compared with before, lobar air and tissue volumes increased 1.8- to 3.5-fold, and whole lung air and tissue volumes were 67 and 90% of normal, respectively. Lobar-specific compliance doubled post-resection, and whole lung-specific compliance normalized. These results are consistent with vigorous compensatory growth in all remaining lobes. Compared with pre-resection, post-resection interlobar heterogeneity of FTV, assessed from the coefficient of variation, decreased at submaximal inflation, but was unchanged at maximal inflation. The coefficient of variation of intralobar FTV gradients changed variably due to the patchy development of thickened pleura and alveolar septa, with elevated alveolar septal density and connective tissue content in posterior-caudal and peripheral regions of the remaining lobes; these areas likely experienced disproportional mechanical stress. We conclude that HRCT can noninvasively and quantitatively assess the magnitude and spatial distribution of compensatory lung growth. Following extensive resection, heterogeneous regional mechanical lung strain may exceed the level that could be sustained solely by existing connective tissue elements.
Collapse
Affiliation(s)
- Cuneyt Yilmaz
- Dept. of Internal Medicine, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9034, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hsia CCW, Dane DM, Estrera AS, Wagner HE, Wagner PD, Johnson RL. Shifting sources of functional limitation following extensive (70%) lung resection. J Appl Physiol (1985) 2008; 104:1069-79. [PMID: 18258800 DOI: 10.1152/japplphysiol.01198.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously found that, following surgical resection of approximately 58% of lung units by right pneumonectomy (PNX) in adult canines, oxygen-diffusing capacity (Dl(O(2))) fell sufficiently to become a major factor limiting exercise capacity, although the decline was mitigated by recruitment, remodeling, and growth of the remaining lung units. To determine whether an upper limit of compensation is reached following the loss of even more lung units, we measured pulmonary gas exchange, hemodynamics, and ventilatory power requirements in adult canines during treadmill exercise following two-stage resection of approximately 70% of lung units in the presence or absence of mediastinal distortion. Results were compared with that in control animals following right PNX or thoracotomy without resection (Sham). Following 70% lung resection, peak O(2) uptake was 45% below normal. Ventilation-perfusion mismatch developed, and pulmonary arterial pressure and ventilatory power requirements became markedly elevated. In contrast, the relationship of Dl(O(2)) to cardiac output remained normal, indicating preservation of Dl(O(2))-to-cardiac output ratio and alveolar-capillary recruitment up to peak exercise. The impairment in airway and vascular function exceeded the impairment in gas exchange and imposed the major limitation to exercise following 70% resection. Mediastinal distortion further reduced air and blood flow conductance, resulting in CO(2) retention. Results suggest that adaptation of extra-acinar airways and blood vessels lagged behind that of acinar tissue. As more lung units were lost, functional compensation became limited by the disproportionately reduced convective conductance rather than by alveolar diffusion disequilibrium.
Collapse
Affiliation(s)
- Connie C W Hsia
- Pulmonary and Critical Care Medicine, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9034, USA
| | | | | | | | | | | |
Collapse
|